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We explore self-dual Cheru-Simous Higgs systems with the local SU(3) and global U(1) sym-
metries where the matter field lies in the adjoint representation. %e show that there are three
degenerate vacua of difFerent symmetries and study the unbroken symmetry and the particle spec-
trum in each vacuum. %e classify the self-dual configurations into three types and study their
properties.

PACS number(s): 11.15.Kc, 11.10.Lm

I. INTRODUCTION

There has been some recent activity related to the var-
ious self-dual Chem-Simons Higgs systems. A bound on
the energy functional of these systems is saturated by the
solitonic configurations of the fractional spin. When the
gauge symmetry is Abelian, the structure of these config-
urations has been studied quite thoroughly [1,2]. While
the self-dual systems with an arbitrary gauge group and
xnatter are shown to exist in the theories with a global
U(1) symmetry, the self-dual configurations in these sys-
tems have been studied only in the cases where either
the gauge symmetry or the matter is simple [3]. The
nonrelativistic limit of these systems with matter in the
adjoint representation has also been studied extensively,
where the classification of finite energy soliton solutions
has been found [4].

However, the soliton structure with non-Abelian sym-
metry turns out in general very rich and intricate. In this
paper we investigate a somewhat tractable case: The the-
ory with an SU(3) gauge group with matter made of a
complex scalar field in the adjoint representation. This
model is one of the simple models with nontrivial non-
Abelian features and exhibits rich vacuum and solitonic
structures. Solitons in this theory would carry fractional
spins and non-Abelian charges. We hope our work will

shed some light on the general structures of the self-dual
systems.

First, we investigate the general consequences of the
self-dual equations for the configurations saturating the
energy bound. Then we show that there are three degen-
erate vacua of various unbroken syinmetries and topolo-
gies, and analyze the particles spectrum at each vacuum.
After that we study the characteristics of the self-dual
configurations and classify them into three types. In
general we expect these self-dual coafigurations describe
topological and nontopological solitons dwelhng on each
phase. %e study the topology of these solitons. Our
analysis here provides a signi6cant but not complete un-
derstanding of these classical soliton solutions of the self-
dual equations in our model.

There is usually an underlying N = 2 supersymxnetry
behind every self-dual model [5]. In the similar line, there
have been. some studies of the underlying N = 2 super-
symmetry in (Maxwell) Chem-Simons Higgs systems [6].

In addition, it is obvious that the maximal possible sym-
rnetry for three dimensions is N = 3 because a maximal
vector multiplet can have spin 1, 2, 0, —

2 up to sign. All
such N = 3 supersy~metric Chem-Simons-Higgs theo-
ries have been constructed recently [7].

In Sec. II, we review briefiy the self-dual model with
the SU(3) gauge group and a complex scalar field in the
adjoint representation. We then investigate in some de-
tail the restrictions on the 6eld conngurations imposed by
the self-dual equations. In Sec. III we study the ground
states, their symmetric properties and elementary excita-
tions. In Sec. IV, we classify the self-dual configurations
into three types and study their properties. In Sec. V we

conclude with some remarks.

II. MODEL

Let us consider a Chem-Simons-Higgs theory with lo-
cal SU(3) and global U(l) symmetries. The generators
of SU(3) in the fundamental representation are made of
3x3 Hermitian matrices, T, with a = 1,2, . . . , 8 and sat-
isfy the commutation relations [T T ) = if T' with

f ~ as the structure constants of SU(3). The normaliza-
tion is such that trT Ts = b s/2. The scalar matter field

P = (Pz+igl)T is made of a pair qP&, $1 in the adjoint
representation of SU(3). The Lagrangian density for the
theory is given by

Z = ~e "'tr
I

A„O„Ap ——A„A„Ap
I

2i
3 )

where D„P = 0„$ i [A„,P] with A„= A„T—. The gauge
field strength is given by I"„„—:I"„„T = 8~A„—B„A„—
i[A„,A„]. The theory is renormalizable because in 2+1
dimensions the sixth order terxn in the potential energy
has a dimensionless coupling constant. For consistent
quantum mechanics, the coefBcient e should be quantized
so that e = k/4z with a nonzero integer, k [8].

The Gauss law constraint obtained &om the variation
of Ao is
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g =— —+Fiz —i([Dog, P] —[Q,Do4]) = 0 ~ (2.2) 4
pq = p —(tr[P, P] —v trP P) . (2.ii)

pg = 2i tr(D PtP —PtDoP) (2 3)

and the charge is Q = f d2i pq.
We are interested in finding a bound on the energy

functional. The energy functional for the Lagrangian
(2.1) is

The local gauge try~formation generators are made of
tr(gT ). The Lagrangian (2.1) is invariant under the
global phase rotation of the scalar field. The charge den-
sity of the corresponding global U(l) symmetry is J = — d r2e;~r;tr Do Dq +Dq Do

=2 dr v Cph„—tr —2v (2.i2)

For the configurations satisfying Eqs. (2.8) and (2.9), the
total angular moment»~ becomes

E= drq tr Do +tr D;

+—«« I 8' l0' All
—«*0 I') . (2.4)

With Gauss's law (2.2), the second term in curly brackets
becomes

tr
I
D'y'

I
= tr

I (Di +iD2)4 I'

trDo t, t, —v2

v2—H.c. 6 —pg2K
(2 5)

up to a total derivative. This allows us to put
~

Dog
~

and the potential energy density into a total square. Af-
ter integrating by parts, the energy functional can be
written as

2

E= dr2 trDo

v2+«
I D,Q+iD«41 ) + —O. (2.6)

Since the integrand in Eq. (2.6) is non-negative, there
is a bound on the energy functional

Z&mfqf, (2.7)

Dot + -„([4»[4' &]] —v'&) = o

Dip +iD2$ = 0, (2.9)

where the upper (lower) sign corresponds to the positive
(negative) value of Q. In addition, Gauss's law and Eq.
(2.8) can be combined to

(2.10)

When Eq. (2.8) is satisfied the U(l) charge density
(2.3) becomes

where m—:v2/~ is the mass of elementary particles in the
symmetric phase. The bound is given by a total global
charge, which is not a priori related to any topological
quantity. The bound (2.7) is saturated by the configura-
tions satisfying Gauss's law and the self-dual equations

where the non-negative C~h, is the spatial asymptotic
value of tr([qV, P] —2v2$t4)/v4. Czh, depends on the
phase or vacuum the system resides on and will be cal-
culated Sec. III for each phase. As the potential energy
density is non-negative, the ground states are character-
ized by the zeros of the potential energy density, satisfy-
ing

[4 [4' 4]1 - v'4 = o (2.i3)

which implies trP" = 0 for any natural n»mber n
I et us now explore some aspects of the self-duality

equations Eqs. (2.9) and (2.1Q). One can easily see
that these equations satisfy Botrg" p ntrP" /kv~ = 0 and
(Bi + iBz)trqP = 0 for any natural number n, which im-
plies that trP" is a (anti)holomorphic function. As the
field configuration approaches one of vacua at spatial in-
finity where trP" = 0 because of Eq. (2.13), the holomor-
phic function should vanish everywhere, i.e., trP" (z) = 0.
After triangularization with a similar transformation, the
trace conditions imply that the diagonal elements of the
triangularized matrix va»~sh leading to gP = 0 for n & 3.

The relation P (x) = 0 everywhere is an important
property of the self-dual configurations. If gP = Q and
gP g 0, there is a three-dimensional complex vector u
such that $2u j 0. Three vectors, u, gu, g2u are lin-
early independent and form a basis of a three dimensional
complex vector space. Starting from 4Pu, we can find an
orthonormal basis by the standard procedure in linear
algebra. In this orthonormal basis, P becomes

(0 f ~)
P=v 00 g

~0 o 0)
(2.i4)

where dimensionless f, g, h are in general complex. If
gP = 0 and 4 P 0 then, one can show easily that P is
again given by Eq. (2.14) with either f or g being zero.
As there is an orthonormal basis where P is given by
the above triangular matrix, one can see that there is
always a special »»itary transformation from any 45 sat-
isfying gP = 0 to this triangular matrix. We can use a
local gauge transformation to put the P field in the above
form at each spacetime point. Here we will not consider
the possibility of configurations, e.g., magnetic monopole
instantons, for which there may be a topological obstruc-
tion to choose such a gauge globally.
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III. GROUND STATES AND SPECTRA

Let us now consider the ground states of the model
and explore the unbroken symmetries and particle spec-
tra. As the potential energy in the Lagrangian (2.1) is
non-negative, the ground state conBgurations of zero en-

ergy satisfy Eq. (2.13). By identifying J, = [Pt, P]/v,
J+ ——~24t/v, J = ~2[,P/e, one can see that J
(J+ + J )/2, J„=(J + —J )/2i and J, satisfy the an-
gular momentum commutation relation. As P is a 3 x 3
triangular matrix, "the total angular moment»m" can
be zero, one half and one, two, and three dimensional
representations, respectively.

Alternatively, we notice that the vacuum configura-
tions are the solutions of the self-dual equations. Thus
a vacuum configuratioa can be chosen to the triangu-
lar form (2.14). We solve Eq. (2.13) with the triangu-
lar scalar field (2.14) to find the vacuum configurations.
Since the vacuum energies of three phases are degener-
ate, there will be topological domain walls interpolating
two di8erent vacua.

A. Phase I

Let us consider Brst the case of the one-dimensional
representation. The vacu»m expectation value of P be-
comes (P) = 0. This is the symmetric phase or phase

I

B. Phase II

For the case of the two-dimensional representation the
vacuum expectation value of P caa be chosen to be

(0 0 1)
(P) = 0 0 0

2 (0 o 0)
(3.1)

In this case |zh „ofEq. (2.12) becomes 2i. In the
unitary gauge, the scalar Beld becomes

o .+b/~2~
Pi —2o./~6 0

p. /v6
(3.2)

All components except 8 are complex. The fields are aor-
malized to have the standard kinetic term. The masses
of the fields are m = m, mp, = mp, = 3m/2, and
m~ = 2m, and mb = 2m. The gauge field in the uni-
tary gauge bosons

I where the global U(1) and local SU(3) symmetries are
preserved. There is no propagating mode for the gauge
field. The scalar field P carries»nit global charge and
forms the adjoint representation of SU(3). The mass of
the scalar field is m = uz/ir, . t ~i, , is Eq. (2.12) van-
ishes.

(' a„/~6+ b„/v2
Clp, —2a„/~6

dp

c2p

a„/~6 —b„/v 2 )
(3.3)

with masses ms = 2m, m„= m„= m/2, mg = m. The field a„ is the gauge field for the leftover Abelian local gauge
symmetry and there is no corresponding propagating degrees of &eedom.

By examiniag the symmetry generators which leave Eq. (3.1) invariant we can find the unbrokea generators.
The SU(3) xU(1) group is spontaneously broken to the global U(1)~ and local U(1)s symmetry group. With the
definition, Ts:—diag(1, 0, —1) and Ts = (1, —2, 1)/v 3, the generators of the uabroken symmetries are given as
8 = Jd r(pq —trT g) and 8 = f dzr trTsg.

Since the group gauge acting on the adjoint represeatation is really SU(2)/Zs where Zs is the center of SU(3), the
vacu»r» manifold of phase II would be [SU(3)/ZsxU(1)q]/[U(1)~XU(1)p] and 7 dimensional. We argue in the next
section that the first fundamental homotopy group of this vacuum manifold is Z2.

We can write the Lagrangian in terms of the fields (3.2) and (3.3), which would be invariant under these unbroken
symmetries. One can calculate the charge density for these generators. For the global U(l)~ symmetry, the charge
density is given by

pg —trgT = i((n7r —rim-) + -(p;mp. —p;mp ) + 2(pm~ —p7r~) }
+—(2V x b —'Lci x ci —2c2 x c2 —2td x d}.

2

For the local U(1)z symmetry, the charge density is

(3.4)

trgT = 3(—(pimp, —
pimp, ) + (p2vrp, —pzp, )}+ Ic(V x a+ 3ici x ci —3ic2 x c2} .

In phase II the energy bound (2.7) becomes

(3.5)

f&km d r pg —trT (3 6)

because of Gauss's law on the physical configurations. Note that all particles of global U(l)~ charge saturate the
above bound.
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Here we should note that there could be magnetic monopole instantons in this phase leading to the violation of
the charge (3.5) for the local gauge symmetry [9]. The gauge charge would be conserved modulo an integer which
depend. on the coefnclent of the Chem-Simons term and the minimum monopole magnetic a~ F ther lnvestlgatlon
is necessary to settle this interesting possibility.

C. Phase III

The three-dimensional representation would lead to the ground con6guration

(010)
(P), =v 0 0 1

(ooo)
(3.7)

In this phase C~q „in Eq. (2.12) becomes 2. In the umtary gauge we can choose the scalar field to be

( &/~30 .+ (q+ g)/2~2
-2&/~30

( @/~2 q/2

-3;/~30
e+ (g —()/2v 2

X/V so )
(3.S)

The mass spectrum is given by mz ——5m, m„= 2m, my ——Sm, mq ——2m and mg ——6m. The gauge 6eld in the
unitary gauge is given by

p„2+q„2 3 r„+8„2 t„2
(r„+s„)/2 —&~/~3 (ri —s„)/2

t„/~2 (r„—sv)/2 —py/2 + 0„/2~3 $

(3.9)

with masses mz ——2m, mq ——6m, m„= m, m, = Sm, and mz ——2m.
The original symmetry is then spontaneously broken to a global U(1)~ symmetry. The generator of this symmetry

is U = f dlr(pq —2 trTsg), where

p~ —2trgr' = i((~~, —g~„-) + 2(g~„g~&) + 3(4-~~ W~q))—
+~(2& x p+ir x r+is x s+ 2it x t} . (3.10)

In phase III, the energy bound (2.7) becomes &=If I', G=lul' (4.1)

'r p —2tr T3 (3.11)

due to Gauss's law. The masses of all charged field except
those of y and s„saturate the energy bound. Usually the
masses of charged particles in self-dual models saturate
the energy bound. This seems to be the first example
where the bound is not saturated by charged particles.
If our theory is a part of X = 2 supersymmetric theory, y
and 8„would be the bosonic part of a vector supermulti-
plet. The vacuum manifold of phase III would be given by
an 8-dimensions& space [SU(3)/Zs x U(l) g]/U(l) U. We
argue in the next section that the first homotopy group
of this manifold is Z3.

IV- SELF-DUAL CONFIGURATIONS

In this section we study some properties of the self-dual
configurations which satisfy Eqs. (2.9) and (2.10). Let
us first try to classify the possible configurations. There
is always a gauge where the scalar field is given by Eq.
(2.14) as argued before. For convenience we introduce
three dimensionless quantities E, G, H such that

where f, g, h are given in Eq. (2.14).
From gauge invariant combinations trptp, trptp,

tr(gtg)2, and det[gt, 4] of the scalar field, one can ob-
tain some dimensionless gauge-invariant quantities:

K=F+G+H, L, =I'G, M = fgh,
(4.2)

pg = +4me [K(1 —2K) + 6L] . (4.s)

The total angular momentum (2.12) becomes

We classify the nontrivial (K g 0) solutions of the self-
dual equations into three types: type A with M = L = 0,
type B with M = 0, 1 g 0, and type C with M g 0. As
we will see, type A is the simples and type C is the most
complicated and interesting. For each phase studied in
the previous section, the above three types of self-dual
solutions might exist. Some of them would be topological
and others would nontopological.

In terms of the above gauge invariant quantities, the
global charge density (2.11) for the self-dual configura-
tions becomes
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J=2e dr Ch +2K —K +3I (4.4) (al bl
0 —(ai + a2) b2 (4.6)

B$ —i[A, P] = 0 . (4 5)

To understand further implications of the self-dual
equations we define 8 = Bq + i', 8 = Oq —i', A =
Aq+i A2, and A = Aq —iA2. The magnetic field becomes
Fi2 ——(BA —OA —i[A, A])/2i. Prom now on we will be
only interested 1n positive Q configuratlons. Equation
(2.9) can be written as

Furthermore Eq. (4.5) in components becomes

Of —i(2ai + a2)f = 0,

Og+ i(ai + 2az)g = 0,

Oh —i(ai —az) h + ib2 f —ibig = 0 .

(4 7)

With P given in Eq. (2.14), the above equation implies
that A should be a traceless triangular matrix:

With the gauge field (4.6), the off-diagonal components
of the self-dual equation (2.10) become

Obi + i(2ai + a2)bi —ib2c —4im (2K —1)gh = 0,
Ob2 —i(ai + 2a2)b2+ ibic —4im (2K —1)fh = 0,

Oc+ i(a, —a, )c = 0 .
(4.8)

The diagonal components of Eq. (2.10) become

Oa& —Oa&+i
~

bi
~

+i
~

c
~

+4im [(2K —1)(K —G) —3L] = 0,

Oa2 —Oa2 —i
[ b2

~

—i
~

c ~' —4im [(2K —1)(K —F) —3L] = 0
(4.9)

The self-dual equations in components are then given by
Eqs. (4.7), (4.8), and (4.9). Let us now examine more
closely what the self-dual equations imply for each type
of solutions.

A. Type A solutions

O(fbi) = 0 . (4.10)

As fbi is holomorphic function and the gauge field goes to
zero at the spatial infinity, bq should be zero everywhere.

Thus Eqs. (4.7) and (4.8) become identical to the self-
dual equations studied in Refs. [1,2] with different nu-
merical factors:

Of —2iaif = 0,

1 2—.(Bai —Oai) + 2m E(2E —1) = 0 .
2i

(4.11)

With ln f—:2 lnE + i g Arg(r —q ) with vortices at
g, we can combine the above two equations to

For type A solutions we can easily see that there is a
local gauge transformation where f g 0 and g = h = 0
everywhere. (This is a gauge equivalent to the case only
h is not vanishing. ) Thus, this type of configuration can
exist only in phases I and II. As there is no contribution
to the energy &om a2, b2, c, we can regard a2, b2, c to be
zero. (In the Lagrangian equation, the Beld strength is
zero and so the vector potential can be chosen to be zero. )
Then, Eqs. (4.7) and (4.8) lead to

V' lnE+ 8m E(1 —2F) = 4z') b(r —q ), (4.12)

where e;~O, O~Arg(r —q) = 2z'b(r —q) is used The .so-
lutions of this equation are made of Q balls in the sym-
metric phase I and vortices in the asymmetric phase II.

The topology of vortices in the asymmetric phase is in-
teresting. In the SU(2) case, vortices are shown to have
the Z2 topology [3]. In our case, the f field of an elemen-

tary vortex in phase II would be given as f —e'~/~2 at
large distance, which is equivalent to applying a gauge
transformation exp[imp(As/2k As/~3)] on the vacuum ex-
pectation value f = 1/~2. Since both of these mappings
lead to the same vortex and are nontrivial elements of
the first homotopy group z i[SU(1)/Zs] = Zs, the topol-
ogy of elementary vortices in phase II should be Z2. This
is also supported by the fact that the asymptotic e' ~/~2
of the f field for vortices of vorticity 2 is represented by
the gauge transformation exp[iyAs] which is a trivial el-
ement of z-i[SU(3) /Zs].

There is a simplification of the global charge and the
total angular momentum. Equations (4.3) and (4.11)
leads to the charge density as a total derivative

p~ ——2KV x a& . (4.13)

The total global charge would then get a contribution
only from the spatial infinity. To simplify the angular
moment»~ (2.12) we introduce a transverse vector al ——

ai —i Q V'Arg(r —q ), which is not well defined at the
vortex position. Since the angular moment»m density is
finite everywhere, there is no 6nite contribution kom the
vortex positions to the angular moment»i» (2.12) and
the integration region may be reduced &om B to R, =
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R —(q }.The angular momentum for type A can then
be written as

Equations (4.18) are invariant under two U(1) gauge sym-
metries. We choose the gauge so that

J = —Smm d rr x ai(2F —1)F
Ri

=4K d FrxaV'xag
R~

2 1=4& d rV ~ —rai —agr-ag
R~ 2

(4.14)

For a given type A self-dual configuration, the angular
momentum can be evaluated as the sum of the boundary
contributions from the vortex positions and spatial infin-
ity. Equation (4.14) was used extensively in the second
paper of Ref. [2) to study the vortex dynamics. Espe-
cially, the statistical phase of vortices is argued to be
originated &om both the Aharonov and Bohm phase and
the quant»~ Magnus phase. Similar arguments would
apply to our case under the study.

ln f =
2 lnF+i ) Arg(r —qy ),

ln g =
2 ln G + i ) Arg(r —qsp),

P

(4.19)

=4m) 6(r —qy ),

(4.20)

V' lnG —4m (—2F + 4G —FG+ F —2G)

where qy, q p are positions of f, g vortices. Then, Eq.
(4.18) can be written as

V lnF —4m (4F —2G —FG —2F + G)

B. Type B solutions

Let us here start by considering types B and C in gen-
eral terms. For types B and C solutions, fg P 0 and
from Eqs. (4.7) and (4.8) we get

B(fgc) =0,
(4.15)

B(fbi + gb2) —i(fbi —gbg)c = 0 .

As the gauge fields vanish at spatial infinity, the first part
of Eq. (4.15) implies that fgc = 0 everywhere, which
in turn implies e = 0 everywhere. The second part of
the above equation implies fbi + gb2 —0, which can be
satisfied by introducing a new variable u such that

= 4m) 6(r —q p) .
P

We expect type B solutions in all three phases. In
phase II, one of f or g would take the vacuum expectation
value 1/~2 at spatial infinity. By similar argument for
vortices of type A in phase II, elementary vortices of type
B in phase II would have a topology Z2. In phase III,
vortices of type B would have the Zs topology. To see
this, we assume that at spatial infinity f e*"" and

g e'~ with integers k, /. This is equivalent to a gauge
transformation exp[i' diag(2k + l, —A,'+ l, —k —2l)/3] of
(P), which is a Zs element of SU(3).

From Eq. (4.18), the global charge density (4.3) for
type B becomes

bi ———igu, b2 ——ifu . (4.16) pq = 2«x (ag —a2) . (4.21)

Bh —i(ag —a2)h —(F + G)u = 0 . (4.17)

Equations (4.7) and (4.16) lead to an equation for the
field h: Since the gauge fields should be smooth functions, the

total charge will get a contribution only from spatial in-
finity. To understand the angular momentum better, let
us define

For type B solutions where h = 0, the oH-'diagonal

elements b, 's of the gauge field vanish everywhere as we
can see from Eqs. (4.16) and (4.17). Equations (4.7) and
(4.9) become

ai ——ai —[2BArg(f) + BArg(g)]/3,

a2 ——a2 + [BArg(f) + 2BArg(g)]/3 .
(4.22)

Bf —i(2ag + a2)f = 0,
Bg + i(a, + a2)g = 0,

Bai —Bai+4im (2F —G —1)F= 0,
Ba2 —Bal —4im (2G —F —l)G = 0 .

(4.18)

From Eq. (4.18) one can see they are transverse vector
fields. Similar to type A, we subtract the vortex positions
from the integration domain, R2 = R2 —(qy, q p}with-
out any change of the angular momentum. With Eqs.
(2.12) and (4.16) the angular momentum becomes

J = 2e d r(V x ai(2r x ai + r x a2) + V x a2(2r x a2 + r x ai)}
R~

= 2z d r V (ra; —2a;(r a;) + r(ai ~ a2) —ai(r ~ a2) —a2(r ai)} .
R~

(4.23)
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Thus, the total angular moment»~ would get contribu-
tions &om the vortex positions and spatial infinity. For a
given self-dual configuration, we can write down the total
angular momentum as a function of vortex positions in
principle. As discussed for type A, Eq. (4.23) would lead
to a considerable understanding of the dynamics of the
slowly moving vortices.

C. Type C solutions

From Eqs. (4.8) and (4.16) we get the equation for the
u field:

Bu + i(ai —a2)u —4m (2K —1)h = 0 . (4.24)

From Eqs. (4.7), (4.17), and (4.24) we get

8(fgu) —4m (2K —1)fgh = 0,
(4.25)

8(hu) —(F + G) ] u ]
—4m (2K —1)II = 0,

which implies that 8(hu) is a real field.
Since M = fgh is a gauge invariant quantity, the vor-

tices of the f and g field should be closely related to that
of the h field. However, it is not easy to see what kind
of solutions will exist because of the self-dual equations
Eqs. (4.7), (4.9), (4.17), and (4.25) are rather compli-
cated. In principle, type C could exist in all phases of
the theory. The topology of type C vortices in the bro-
ken phases would be identical to that of type A or B
vortices because type C solutions become type A or type
B at spatial infinity.

Note that the charge density is given as a total deriva-
tive:

V. CONCLUSION

We have studied the self-dual Chem-Simons Higgs sys-
tems with SU(3) gauge symmetry and U(l) global sym-

metry. The matter field is made of a complex scalar field
in the adjoint representation. Our work is a first step
toward understanding the self-dual Chem-Simons Higgs
systems where the non-Abelian symmetry plays a cru-
cial role. We have analyzed the vacuum structure, par-
ticle spectrum, and unbroken symmetries. In addition,
we classified the self-dual configurations into three types
of increasing complexity. We have shown that vortices
in phase II would have the Z2 topology and vortices in
phase III would have the Z3 topology. We have seen
the global charge of the self-dual configurations is given
as a boundary contribution from spatial infinity, mak-

ing topological the total energy of those configurations.
In addition, the self-dual configurations are characterized
by the total angular moment»m, which we have shown

to take a rather simple form for at least types A and B.
Ideally, we want to understand the nature of self-dual

solitons completely and there are many directions to take
to reach that goal. Here are some ideas to be explored:
the rotationally symmetric solutions, the topological do-

main walls interpolate degenerate vacua, the self-dual so-

lutions of type C, the classical dynamics of slowly mov-

ing solitons, the relation between relativistic and nonrel-
ativistic solutions, and the possible magnetic monopole
instantons in phase II. We would also like to understand
the quantum aspects of these solitons. One novel possi-
bility might be the "non-Abelian Magnus force and sta-
tistical phase" between vortices in the asymmetric phase.
We finally note that some of understandings gained here
could be easily generalized to the cases with more com-

plicated gauge groups and matter fields.

pq = [~(a2 ai) —~(a2 ai)j + ~&(~u) (4 26)
2i

ACKNOWLEDGMENTS

However, we have not succeeded in expressing the an-
gular moment»m as a boundary contribution as in Eq.
(4.23). The self-dual equations satisfied by type C is
rather complicated and needs a further consideration.

We thank Alexios Polychronakos for useful discussions.
This work was supported in part by the NSF Presidential
Young Investigator program (K.L.), the Alfred P. Sloan
Foundation (K.L.), and Department of Energy (H.-C.K.).

[1] J. Hong, Y. Kim, and P. Y. Pac, Phys. Rev. Lett. 84,
2330 (1990);R. Jackiw and E. J. Weinberg, ibid. B4, 2334
(1990).

[2) R. Jackiw, K. Lee, and E. Weinberg, Phys. Rev. D 42,
3488 (1990);Y. Kim and K. Lee, ibid. 49, 2041 (1994).

[3] K. Lee, Phys. Lett. B 255, 381 (1991);K. Lee, Phys. Rev.
Lett. BB, 553 (1991);G. V. Dunne, Phys. Lett. B 324, 359
(1994).

[4] B.Gossman, Phys. Rev. Lett. BS, 3230 (1990); G. Dunne,
R. Jackie, S.-Y. Pi, and C. Trugenberger, Phys. Rev.
D 43, 1332 (1991); G. Dunne, Anu. Phys. (N.Y.) 223,
180 (1993); G. V. Dunue, "Classification of Nonabelian
Chem-Simons Vortices, " Connecticut University Report
No. UCONN-93-8, hep-th/9310182, 1993 (unpublished).

[5] E. Witten aud D. Olive, Phys. Lett. 78B, 97 (1978); P.
Di Vecchia and S. Ferrara, Nucl. Phys. B130, 93 (1977);
Z. Hlousek and D. Spector, ibid. B397, 173 (1993).

[6] C. Lee, K. Lee, and E. J. Weinberg, Phys. Lett. B 243,
105 (1990);E. A. Ivanov, ibid. 288, 203 (1991);S. J. Gates
aud H. Nishino, ibid 281, 72 (1992); .B. H. Lee, C. Lee,
and H. Min, Phys. Rev. D 45, 4588 (1992).

[7] H.-C. Kao and K. Lee, Phys. Rev. D 48, 4691 (1992);
H.-C. Kao, Phys. Rev. D 50, 2881 (1994).

[8] J. Schonfeld, Nucj Phys. B185, 157 (1981); S. Deser,
R. Jaciw, and S. Templeton, Ann. Phys. (N.Y.) 140, 37
(1982)].

[9] K. Lee, NucL Phys. B373, 735 (1992); F. A. Bais, P. van

Direl, and M. de Wild Propitius, ibid. BSQS, 547 (1993).


