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Landau gauge vrithin the Gribev harizen
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We consider a model which electively restricts the functional integral of Yang-Mills theories to
the fundamental modular region. Using algebraic arguments, we prove that this theory has the
same divergences as the ordinary Yang-Mills theory in the Landau gauge and that it is unitary. The
restriction of the functional integral is interpreted as a kind of spontaneous breakdown of the BRS
symmetry.

PACS number(s): 11.15.8t

I. INTRODUCTION (1.4)

A perturbative expansion of gauge field theories re-
quires gauge fixing. In 1978 Gribov [1] pointed out that
covariant gauges (and most others that can be cast in the
form of a local efFective action) do not uniquely specify
a single configuration on a gauge orbit in non-Abelian
theories. This ambiguity can be disregarded when dis-
cussing high-energy processes and does not afFect the
well-known perturbative results of asymptotic freedom,
or equivalently, asymptotic scaling. At low energies, the
presence of additional gauge copies can however no longer
be overlooked [1], and this is at least one reason why a
perturbative analysis is found to fail in this case.

Gribov [1] suggested to restrict the functional integra-
tion to the space of configurations A which are transverse,

and such that

BD(A) (0, (1 2)

where D(A) is the covariant derivative. The boundary
of the region so defined is called the Gribov horizon and
lies inside a certain ellipsoid [2].

The restriction to the region defined by (1.1) and (1.2)
would already imply that the gluon propagator difFers

from the usual one at low momenta [1],

k„k„) k

kz )' k4 + g2Np2 ' (1 3)
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and depends on a dimensionful parameter p.
The fundamental modular region (FMR), where the

Hilbert norm of the connection

attains its absolute minimum with respect to gauge trans-
formations U [3,4],

FMR = (A: F~(1) ( I"~(U)), (1 5)

is a proper subset of the region defined by Gribov, since
(1.1) and (1.2) characterize any relative minimum of the
Hilbert norm (1.4), and such relative minima have been
shown to exist [5]. The FMR is therefore a refinement of
Gribov's region and in particular of the definition of the
Landau gauge (1.1) and has for this reason been called
the "minimal" Landau gauge [4]. Zwanziger proposed a
local action which concretely implements the restriction
to the FMR when a certain nonperturbative "horizon
condition" [6,7] is satisfied. He studied this mechanism
in the continuum [6] as well as in the critical limit of
lattice gauge theory [7,8). Quite remarkably this version
of the SU(N) Yang-Mills (YM) theory naturally gives a
gluon propagator of the Gribov type (1.3) where the pa-
rameter p is self-consistently determined by the "horizon
condition" [6,7].

The required locality of the classical action immedi-
ately raises the question of renormalizability: whether
new divergences or anomalies not present in the ongi-
nal YM theory have been introduced, which would im-

ply that the proposed gauge fixing is not renormalizable.
In Ref. [9] an analysis based on the Becchi-Rouet-Stora
(BRS) symmetry of the model indicated that radiative
corrections develop at most four divergences. Arguments
were put forward that only two of these should occur in
a perturbative expansion.

The Landau gauges, the restriction of the FMR be-
ing the "minimal" one, have mell-known nonrenormal-
ization properties [10]. In this paper we algebraically re-
cover these properties for the new gauge model, namely,
that only two independent renormalization constants are
needed, and thus confirm also &om the renorxaalization
point of view that the model belongs to the class of Lan-
dau gauge theories. We also prove that the restriction to
the FMR does not spoil the unitarity of the theory.

The paper is organized as follows. In Sec. II, we present
the symmetries of the model, which include a Ward iden-
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tity typical for the Landau gauge [ll]. The full algebraic
structure allows us to give in Sec. III a formal proof that
indeed only two divergences are present. At the same
time we demonstrate that the whole algebra is &ee of
anomalies. Section IV is devoted to an interpretation of
the model at the nonvanishing physical value for the ex-
ternal sources. We show that this is equivalent to a kind
of spontaneous breakdown of the BRS symmetry. The
results are then summarized in Sec. V.

sA„= —(D„c)

sc

sc =b
s(d = (p )

1 fobc b

2
sb =0,

sy '=0,
(2.5)

with f ~ being the structure constants of the gauge
group. Finally, the operator s is the ordinary BRS trans-
formation extended to the additional fields

II. THE MODEL
AND ITS ALGEBRAIC STRUCTURE

s(p~ = ctp~

and to the sources by

see; =0,

To constrain the functional integral to the FMR,
additional fields (u, , y, , u ', y ') and external sources
(U„', V„;,M„',N„;) were introduced [9] into the original
Yang-Mills theory. These new fields transform under a
global U'(f) symmetry on the composite index i = (y, , a),
with f = 4(N —1).

The model in Euclidean space-time is described by the
action [9]

sU '=M', sM '=0,
P

(2 6)

One can easily verify the nilpotency of the BRS operator
(2.5) and (2.6):

s =0. (2.7)
S=SgYM+s d z 8„~ ' D„y; +U„' D„p;

+V„;(D„~) + U„'V„;], (2.1)
In Ref. [9] it is argued that the physical value for the
sources is

where GYM is the ordinary Yang-Mills action in the Lan-
dau gauge,

~ah Uab 0pv pv

(2.S)

S" =a A —a A +f ~AbA
pv P v 0 p p, v

and the covariant derivative is defined as

(D„X) = B„X + f A„X',

(2.3)

(2.4)

1
GYM ——

2 d zF„vF„v —s d z „c A„, 2.2
4g2

Mab Vab g gab
pv pv + Pv

where p is a parameter of dimension [mass) 2, whose value
is determined by a self-consistency condition that will be
discussed in Sec. IV. The BRS symmetry (2.5) and (2.6)
is the simplest which is cohomologically equivalent to the
ordinary one, because the additional fields transform as
doublets [12]. With the BRS transformation (2.5) and
(2.6), the action corresponding to (2.1) explicitly is

1S = d z F„vF„v — „b A„— „c Dpc + pp
' Dpp; —Bpct/

' Dp~,.4g2 P»

+f (8„~ ')(D„c)b(p,'+ M„'(D„rp;) —U„'(D„~;) + f U„*(D„c)y,'

+N„;(D„~ ) + V„,(D„rp') —f V„;(D„c) ru + M„'V„; —U„*N„, (2.9)

where the dimension and ghost charge assignments of the
fields are summarized in Table I.

As customary, we couple external sources to the non-
linear BRS variations in (2.5) of the quantum fields. The
full classical action

I

then satisfies the Slavnov identity

8(z) = 0,
where

(2.12)

Z = S+S„~, (2.1O)

with

S„t—— d z E„sA„+L sc (2.11) Our conventions differ &om those of [9j and the p-P prop-
agator of (2.9) is positive.
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bZ bZ bZ bZ bZ 6Z"'*' 6K-b~-'6 -6 "6- '6,-
Co~muting W with the Slavnov operator (2.13), an-

other nonlinear symmetry emerges [see (2.33)]:

., 6Z ., 6Z . 6Z~
,. +M„.+N„;

V /LAN

(2.13)

and the corresponding linearized operator-

with

&'(z) = o

4 bZ hE bK

(2.23)

„, &6Z 6 6Z 6 6Z 6

6K„bA„6A„6K„61.bc

bE b 8 b, 8

+ aa + Max

In addition we have the symmetry

R~Z =0,

(2.24)

(2.25)

(2 14) where

is nilpotent:

Bg8g ——0 . (2.i5)

6 6R;= dz io; +V„;

g Z=b, (2.16)

For theories in the Landau gauge, the integrated ghost
equation of motion gives a Ward identity [ll], which in
our case is

U'~2
bM ~

V

(2.26)

Anticommuting the symmetry (2.25) with the Slavnov
identity (2.12) we get the Ward identity of the U(f) sym-
metry [see (2.33)]:

where

g fg 4 ~f d

bc
I

bb' ' 6(u' by"

"'6¹. " 6M"

(2.17)

where

M~K =0,

—aj ~ —aj ~ Uai
b~i 6

—ai P 6Uui(d P

Maj

(2.27)

(2.28)

ga g4 abc ~bye I b c (2.18)

R,„. E=O, (2.ig)

is a linear breaking in the quantum Gelds, and, thus, only
present at the classical level.

The anticommutator between the ghost equation
(2.16) and the Slavnov identity (2.12) is known to give the
ward identity of rigid gauge invariance [ll] [see (2.33)]: E

~b
OQ, Ap 0 ) (2.29)

By means of the diagonal operator Qy = M,' the i-valued
6elds are assigned an additional quantum number. In
Table I we summarize the quantum numbers of the Gelds
and sources. Apart &om the familiar gauge condition
and antighost equation

where

~a ) d4 fabc@,b
rig b4

(all fields 4)
(2.20)

bE bE
bK I bc

(2.3o)

this model is also characterized by the set of local equa-
tions

We can also write the Ward identity

(2.21)
TABLE I. Dimensions, Faddeev-Popov charges, and Qy

numbers of the Selds.

with

V

A c c 5
dim 1 0 2 2 1 1 1 1 3 4

@II 0 1 —1 0 1 —1 0 0 —1 —2

Qy 0 0 0 0 i —1 1 —1 0 0

M N U V
2 2 2 2
0 1 —1 0

—1 1 —1 1
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where

7(au)i

4(')
L(~)

A(y)t

&(~);

7(s)Z = &(~)

b b b~b
bur "hN bbt gkt

b b

b -.
+ "bV..

gLt

b (~6+f lV
b&

+u
b

+Ui b~, l )c

"hMa* '. +a

abc Vb8 bUai f

Vibrio

c

fabc Ubi gc

fabcMbipc

fa~Vb gc.
fabc~b gc

pit p

(2.31)

(2.32)

, t'M b@&
7((c)i+ @ + (7((y)i (a()i) i I b-a &bruta

R',.8(@)+8 R,'. @ =M,'. 4,
~j gk(@) + gk~j y bkyj y
7(")+k@ +k(7( )@ +( )) = k(~()@ +(-)) '

7(—) +k@++k(7(—)'@ +( )') *( (v)k (v)k) '

where 4 is a generic functional of even ghost charge and
gsi, is the linearized operator corresponding to (2.24).

The model we are considering turns out to be com-
pletely determined by the gauge condition (2.29) and
the local equations (2.31), the Slavnov identity (2.12),
the ghost equation (2.16), the symmetry (2.21), and the
quantum numbers listed in Table I.

III. RENORMALIZATIONIn the proof of the renormalization of a model, the non-
linear algebra formed by the symmetry operators plays
an important role because it yields consistency conditions
on the counterterm and on the possible anomalies of the
theory.

The only nontrivial algebraic relations are

We prove the renormalizability of the model by first
finding the most general counterterm compatible with
the algebraic structure described in the previous section
and then by showing that the symmetries considered hold
to all orders of perturbation theory, i.e., that they are not
anomalous.

A. Counterterm

According to the quantum action principle (JAP) [13],
the counterterm is the most general integrated local func-
tional Za of dimension four with vanishing ghost and Qy
numbers satisfying the identities

6Za

8@8(%') = 0,

8(@)—8@
~

—B„A„~ =
b +&„b~

b )' be .l be b@

g 8(@)+ 8+(g 4 —4 ) = 'R;,,4,
W8(%) —8+WC = g*(4),
7(-.)*8(~)—~~(7(-.)'~ —~(-.)') = 7(=)'~ —~(=)'

( )8(@)+ ~s'( ( )@ +(-)) =
( )@ +( )

g's'@ —w(g'()) —c') = f d4x(t(") 0 —c(')), '

( h b l . . . 66@ b@ l

f i

——B„A'
i

),bbc

7( *)«'~ —~') —g'(7( *)~ —~(.*))

fake(7ci @ ~ci )

and

„bZ~ bZ~
bK i' bc

7(„)Za ——7(y)Za = 7( )Za = 7(—)Za = O,

B~Z~ ——0,

(3.1)

(3.2)

7(=)'«'~ —~') + g'(7(=)'~ —~(=)')

(2.33) g Z~=O,

WZ~ ——0 .

(3.3)

(3.4)
(7(-)'~ —~(-)'»

g z'(@) + Xi(g @ —4 ) = f d x(7(~')c —E(„')),
Za [A, c, K, I,M, N, U, V], (3.5)

The relations (3.1) imply [9] that Za is in fact only a
functional of
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where

K„=K„+c)„c+ f (U +o) ~ )rp'+ f 'V

M '=M '+0
c

Uai Uai + g —ai
I

V„i= V„i+0„p; .

(3.6)

The most general counterterm satisfying the Slavnov con-
dition (3.2) with ghost and Qy numbers zero therefore is

E~ ——co d zF„„F„„

+By d x cqK„A„+c2L c + c3U„'V„;

(3.8)

where co, cq, e2, c3 are arbitrary constants. Exploiting the
ghost condition (3.3), we obtain

r = z+r«"~, (3.11)

where I'«"~ is at least of order h,. In Sec. IV, we will ex-
ploit that I'~q"~ is consequently a functional of the com-
binations (3.6), c, and the connection A only.

To collect the symmetries (2.12), (2.16), (2.19), (2.21),
and (2.23) into one operator, we first consider the trans-
formation on the 6elds generated by

Q = s + ( g + g 'R„+A;W~ + g; Jo + o, T( *) + 7; T( ')

0 0
(ga i fabc b c) P + fobc~b(c

2 |9g ' c)(a

+[( A; + f '(q cr,' —( v )]
ubc b c b c

lecting the symmetries into one nilpotent operator by
introducing global ghosts [16]. This method is particu-
larly convenient when proving that a whole algebra of
operators is &ee of anomalies.

It is trivial to show that the identities (2.29)—(2.31)
hold for the quantum vertex functional

a reduction of the possible divergences peculiar for the
Landau gauge [11]. Finally the constraint (3.4) implies
that

a aWSc-(;+( g; f~n'-~ )~ . ,

where

(3.12)

cy = —c3 (3 9) ( b

We have thus algebraically shown that the model de-
fined by the classical action (2.9) and the symmetries
(2.12), (2.16), (2.21) has two divergences,

Z~ ——co d zE„„E„„

(b8;b)dz~c —(sc) .+p*, ~, (3.14)

+cgBg d x K„A„—U„'V i (3.10)
T" = d4x~ +f'~"(8 bl

(3.15)

that can be absorbed through two independent multi-
plicative renormalization constants, in complete agree-
ment with ordinary Yang-MiHs theory in the Landau
gauge [10]. The degrees of freedom introduced to con-
strain the functional integral to the FMR [6,7] therefore
do not lead to additional divergences.

T(') — d 2; + f ~
&p +v,

i
. (3.16)4

br@, (, .bb bP j
In definition (3.12) we introduced global ghost fields

((, rl, A, g, a, 7), whose quantum numbers are summarized
in Table II. The operator Q is nilpotent:

B. Anomalies

It does not describe a symmetry of the action S,

(3.17)

Since the new 6elds introduced to constrain the func-
tional integral to the FMR all appear as BRS doublets, it
is obvious that they do not belong to the cohomology of
the Slavnov operator [12], which therefore is cohomolog-
ically equivalent to the ordinary one. Algebraically one
only 6nds the usual Adler-Bardeen anomaly, whose coef-
6cient is known to vanish if all 6elds transform according
to real representations of the gauge group [14]. One still
has to show that the other symmetries used to obtain the
result (3.10) are not anomalous as well.

Although the conventional procedure [15] of individ-
ually implementing the identities de6ning the model is
quite straightforward in our case thanks to the absence
of gauge anomalies, we adopt here the technique of col-

qs = J d'z[(~M„—i,U„-+ g,' ~-'v„wn„.), -
7; (D„M„') —o,—(D„U„') ], (3.18)

but the modi6ed classical action

dim
@II
Qy

0

0

TABLE II. Dimensions, Faddeev-Popov charges, and Qy
uumbers of the global ghosts.
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I = S+S.(~), (3 yg) satisfies the generalized Slavnov identity

where

S~ = zE„A„+I c +X'
+(g;M„*—A;U„*+f r; U„*)A„], (3.20) with

D(I) =0, (3.2i)

17(I) = d
6 +6L 6

+ X,. 6
+(q~ )6b +(Q ) +(Q94)6 +(& )6

( 6I 6I 6I bI 6I bI 6I 6I 6I , 6I

+(q '), + (QM„") M., + (Q&„;) ~. + (QU;*) 6U., + (&V *)6y.

ga 1 fabc b c) p + fabc b(c

BI
+N'~'+ f"(~'; (';)]-, (.'+—

& ~' f"~-' ) B.. (3.22)

The corresponding linearized operator

hI b 6I 6 6I b hI b 6I 6 6I b
I =

bK bAa hA bKa bLa hc bc 6L bX * 6ua 6~ hX *+ + + + ~ +

+(~b )6b. +(c ), +(~V;)6 .+(P');+(&~ *)6
6' b' 6'; 6; h

P'I
"' 6V„,)

aS Sc+f

+[@~,+ f.~(&b~, —gb~,. )] .—(~;+ L.
.

&, —f.~&b~;) (3.23)

is nilpotent:

1&r =O (3.24)

The introduction of the global ghosts leads to the following identities for the action I:
BI BI BI ; BI , BI
B(a (4) ' Bga (9) & B),. (~) ' B~a (a) ' B~a (~) '

BI 4 ; hI7()I:— + d zX ' =bI ),
(3.25)

where

$4~(La fabcXb& c)
(4)

~a d4 fabc(KbAc Lb c Xba c)
(g) p p

4() d zM A

(3.26)
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a~ g4 Xas
(~)

~ai d4 fabcU tnA'c
{~) v

are linear breakings. The nonlinear algebra, valid for any even ghost charged functional 4,

())(i9.o())(g()J
d z[f '(g;X c'+ g;U„A'„+ q I' —y; f'"'X 'rP) —A;X '], (3.27)

Bgc

(3.28)

~~
'D(@) + &+

I ~~
—&ii) I

= We —(~(,) @ —aI,)) + 4
I ~

—ai') I + d'*(( X ' + f "'g U„A'„),

(3.29)

7( )17(%') —17@(7( )4' —6I )) = g'(4) —( ~

—6(*)
~
+ d xf g M„A'„,

t' 8@
(3.30)

~ .'D(+) &
I ~ . &"

I

— d' (T" @ —&" ) —
I

—&"
I f 'I &")

I(~)

(3.31)

a 84'

qB;.

+fa~g~
~

~c'
~

+ d4~fa~c((~X '+ p~fc~'g~Ac),(8@
(g~c (a)) p

implies, for a functional 4 = F() satisfying

(3.32)

(3.33)

p(Q) ~j p(Q) ~ai
(u)

—
(e) ~ - —

( )
p{@) ~ai

(7) ' (3.34)

(3.35)



LANDAU GAUGE WITHIN THE GRISOV HORIZON 6623

that the following identities hold: VIA =0 (3.40)

t." r(~) = a + ~ ~ix"c +~iU„"X„

+ bI c bfcdexdi e) p Xai]

~a r(Q) fabc( b~c + (b~c
I'1g (~) (4)

+n,'a(
) + mba(. )),

~p() — $4~ aXai + a~pa U&gc

(s.s6)

8 a 0 8 8~='8(-'" 8 -+"'W, "8
0 8

+0; +7; (3.41)

into

Since 'DI is a nilpotent operator, Eq. (3.40) is a coho-
mology problem that we solve by decomposing Pl with
the filtration operator [12]

z'(r+~) = —f a4~ y "q M„"x'„,

f g4 Tai p(Q) g4 g'ai + abc b~ci

+I =+(
where

8 8
D(p) = Bg —(

19gq

8
* 8r

(s.42)

(s.4s)

f d4 Tai r(Q) d4 [~ai
(v) (v)

fabc((b~ci + Ubif cde dye )]

From Eqs. (3.21) and (3.36) one sees that at vanishing
global ghosts and source X the quantum vertex func-
tional r —= r(q)~, „,, ~—p satis6es

Because of (2.15), the operator D(P) is nilpotent, and
the result of [12] ensures that the cohomology of 171 is
isomorphic to a subspace of that of D( ), which does not
depend on the global ghosts (g, g; g, A;r, o) nor on the
Belds (y, u; V, g; U, M; V, N) since they appear in (3.43)
as BRS doublets [12]. We are therefore left to study the
cohomology problem

BEX =0, (s.44)

ve. r=rig

Pr=
g (r)=

d @Tie=(~)

d zT*r=
(~)

0,
ga

0,
0,
0,

d @LE'(~) '

XLhk( ) )

(3.37)

~(r(Q) ) ~(Q) (s.ss)

only by a quantum insertion AI'(&), which to lowest order
in h is an integrated local functional of dimension four,
ghost charge +1 and Qy counting mirnber zero:

which is the desired result.
It is quite straightforward to show that relations (3.33)

and (3.34) hold and it is apparent from the nonlinear al-
gebra (3.27)—(3.32) that proving the absence of anoma-
lies has been reduced to showing that the generalized
Slavnov identity (3.21) is not anomalous. We can now

apply the mathematical tools developed for nilpotent op-
erators [12].

From the JAP [13] we know that the generalized
Slavnov identity could be broken at the quantum level,

where B~ is the linearized Slavnov operator of ordinary
Yang-Mills theory. As discussed previously, the solu-
tion of (3.44) is a trivial cocycle since there is no Adler-
Bardeen anomaly in this model [14], and consequently
the cohomology of 'Vi is empty.

We have thus proved that the solution of the Wess-
Zumino consistency condition (3.40) is

(s.45)

i.e., that the generalized Slavnov identity (3.21) is not
anomalous, and that the symmetries (3.37) we considered
are therefore valid to all orders of perturbation theory.

Along the same lines, it is straightforward to also prove
that the symmetries (2.25) and (2.27) are anomaly-free
by starting from the transformations generated by the
nilpotent operator

Q' = s + A~R' + g,'M* —(A' + g'b g")
Bg.

(s.46)

where (A*, g*.) are again global ghosts. All the symme-
tries that form the algebra (2.33) are thus valid at the
quantum level, and the unitarity of the model is ensured
[»]-

IV. THE MODEL AT PHYSICAL SOURCESm«) = x+ o(ax) . (3.39)

This lowest-order breaking A must satisfy the Wess-
Zo~ino consistency condition [17,18]

The analysis of the Gribov ambiguity made in [6,7],
has demonstrated that the functional integration is elec-
tively constrained to the FMR in a quant»m theory de-
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fined by the classical action (2.9) for nonvanishing phys-
ical sources:

b m b' —pv f rp'„qx„, (4.9)

M„„s~ph = —V„„s~ph = pb„„b'P, (4.1)

where the mass parameter is determined self-consistently
by the horizon condition [9]

lead to a quantum vertex functional of the shifted quan-
tum fields, which is just the one for nonvanishing external
sources

I"" [y, &p, ur, u, c, c, b, A]

or =0,
Op

ph

(4 2) = I'[rp', P', u, ~, c, c', b', A; M', V'], (4.10)

when the quantum fields 4 6 (A, c, c, b, y, p, ~,~) as-
sume their vacuum values

with

M„'„~ = pMb„„bI, , V„'„b ———yvbpvbs . (4.11)

= I'~M=iv= = =o . (4.5)

In the previous sections we have shown that it is a 6-
nite functional of the renormalized Gelds and coupling
constant. The replacements

V'g g ~ V'~g+'7M&I ~g ~ (4.6)

4
@=@lph

As shown in [7], Eq. (4.2) can only be satisfied at a non-
vanishing value for p. At their physical values (4.1) the
sources do not appear as BRS doublets and the classical
action is no longer BRS symmetric:

s(S'l&h) = ~s(D V )

In the following we will give another interpretation of
the quantum vertex functional at nonvanishing physical
sources (4.1) which in the previous sections was shown
to be renormalizable. Surprisingly it can also be looked
upon as the quantum vertex functional of the BRS-
symmetric model with vanishing sources where a cer-
tain spontaneous symmetry breakdown has occurred. We
will show that a simple redefinition of the quantum fields
in the BRS-symmetric quantum vertex functional gives
the one for nonvanishing physical sources. The horizon
condition (4.2) can be interpreted as the condition that
the quantum vertex functional is stationary for vanishing
quantum fields.

We wish to emphasize that this is just an interpreta-
tion of the horizon condition and the quantum vertex
functional at the physical sources. It is not a proof that
a nontrivial solution to the horizon condition (4.2) exists.
But if there is a solution with p g 0, as the Gribov prop-
agator (1.3) and the analysis of the FMR by Zwanziger
[7] strongly suggest, then the horizon condition (4.2) is
nothing else but a sort of gap equation for the (dynam-
ical) spontaneous breakdown of soine of the symmetries
(including BRS) of the model.

To be specific, let us first consider the 8ymmetric quan-
tum vertex functional at vanishing sources:

Relation (4.10) can easily be verified from the form of the
classical action (2.9) and the fact that the radiative cor-
rection r«") in (3.11) only depends on the combinations
(3.6). That the radiative correction only depends on the
combinations (3.6) is assured by our previous proof that
the model is renormalizable (and in particular anomaly-
free) for any value of the external sources Th.is proof is
therefore crucial for (4.10) to hold.

We obtain the quantum vertex functional at the phys-
ical value of the sources (4.1) upon setting

Pv = fM=Q ~ (4.12)

The equality of p~ and pM can always be achieved by
suitably defining the normalizations of y', y', u', and

This fre.edom in the (relative) normalizations implies
that correlation functions Chat do not involve these GeMs
are only functions of the product p~pM ——p~ and not of
p~ or pM separately. This is, in particular, true for the
vacuum energy density and the gluon propagator.

It is remarkable that the explicit coordinate depen-
dence of the shifts (4.6)—(4.9) is not reflected in I'. This
can be traced to the invariance of the symmetric quantum
vertex functional under the global U( f) group in addition
to its O(4) and SU(N) symmetry under Euclidean coor-
dinate, and rigid gauge, transformations. Each of these
symmetries is individually broken spontaneously by the
shifts (4.6)—(4.9) but a diagonal SU(N) x O(4) subgroup
remains intact and assures coordinate and global color
invariance also in the broken phase.

The analogy with spontaneous symmetry breakdown
can be further pursued, because the shifts (4.6)—(4.9) also
change the vacuum values of the quantum fields. Pertur-
bation theory with physical values (4.1) of the sources
corresponds to an expansion around nontrivial vacuum
values in the symmetric theory. Furthermore the di8'er-
ence in the classical vacuum energy density between the
trivial and nontrivial vacuum values (4.6)—(4.9),

(~sym )+~vac — (~ ) gl=rpl=col=el=bl=w=A=c=o

~syml [rp=rp=w=c=b~Ã=A=c=O)

= —4(~' —1)~v&M, (4.13)

'7V&l ~g ) (4 7)
Zwanziger observed that the shifts (4.6)—(4.9) also eliminate

the BRS-breaking terms in the lattice regu1arized version of
this model [8].
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= Z]M=N=rr=~ —o, implies that the broken
phase is energetically preferred. We can interpret the
horizon equation (4.2) as a minimizing condition for the
vacu»m energy density in the presence of quant»m Buc-
tuations. These are in fact necessary to satisfy (4.2),
because (4.13) only depends linearly on pss7v = p .

Although surprising and perhaps even disturbing, a
careful analysis of covariant gauge 6xing on the lattice
also indicated that the BRS symmetry of non-Abelian
gauge theories could be spontaneously broken, in order
to avoid that the summation over Gribov copies conspires
to yield vanishing expectation values for gauge invariant
observables [19].

V. CONCLUSIONS

The model defined by the classical action (2.9) was
prosed [9] to efFectively restrict the functional integra-
tion of Yang-Mills theories to the FMR (1.5) by means
of additional fields and external sources which satisfy a
self-consistency or "horizon" condition (4.1)—(4.3) at the
physical point.

This restriction to the FMR is a refinement of the
usual Landau gauge, a kind of minimal one without Gri-
bov copies. We indeed recovered also for this model the
property [11]of Landau gauges that the integrated ghost
equation of motion yields a Ward identity [Eq. (2.16)].
The rich symmetry structure (2.33) allowed us to prove
algebraically that only two independent divergences ap-

pear in a perturbative analysis, which mes~~ that the
model has the same renormalization properties as ordi-
nary Yang-Mills theory in Landau gauge [10] in spite of
the additional 6elds and sources. The renormalization
proof was completed by showing that the symmetries of
the model do hold to all orders of perturbation theory,
i.e., are not anomalous. Unitarity of the physical 8 ma-
trix is then a consequence of the validity to all orders of
perturbation theory of the Slavnov identity.

We believe that the algebraic structure of the enlarged
theory efFectively eliminates all the additional degrees of
freedom introduced. This would be in the spirit which
led to the construction of the model, namely, constrain-
ing the gauge 6eld con6gurations to the FMR, without
altering the physical content of the original Yang-Mills
theory [6,7). This conjecture is supported by the obser-
vation that the BRS-breaking term (4.4) at the physical
point can be understood as resulting from the nonpertur-
bative shifts (4.6)—(4.9) in the BRS-symmetric case and
that the horizon condition extremizes the vacu»m energy
density.
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