
PHYSICAL REVIEW D VOLUME 50, NUMBER 10 15 NOVEMBER 1994

DifFerential equations for definition and evaluation of Feynman integrals
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It is shorn that every Feynman integral can be interpreted as a Green function of some linear
difFerential operator arith constant coefBcients. This de6nition is equivalent to the usual one but
needs no regularization and application of the R operation. It is argued that the presented formalism
is convenient for practical calculations of Feynman integrals.

PACS number(s): 11.10.Gh

Though fundamental results in renormalization the-
ory were obtained many years ago in classical works of
Fey~~an, Tomonaga, Schwinger, Dyson, Salam, Bogol-
ubov, Parasiuk, Hepp, and Zimmermann, renormaliza-
tion problems continue to attract the attention of the-
orists. In particular, during the last twenty years very
many papers were devoted to investigations of various
regularization schemes.

Of course, all known regularization schemes are equiv-
alent, in principle, at the perturbative level. However,
their practical value is dHFerent. For instance, only the
discovery of dimensional regularization [4] allowed the
possibility to carry out systematical calculations in gauge
theories. Moreover, different regularization schemes that
are equivalent at the perturbative level can be inequiva-
lent beyond perturbation theory. For instance, a partial
summing of a perturbation series by means of renormal-
ization group methods can give scheme-dependent results
(see, for instance, [6)). This fact stimulates a further
search of "the most natural" and convenient regulariza-
tion scheme.

In this paper we will show that Feynman integrals can
be defined and evaluated without any regularization at
all. Of course, in itself it is not a surprise. In particular,
the recently proposed differential regularization [5] also
needs no regularization in the usual sense. But the sim-

plicity of our results is the real surprise. S'e uphill shou
that any Feynman diagram urithout internal vertices can
be treated aa a Green function of some linear digemntial

operator tvith constant coeQcients. This result allows us
also to define and evaluate Feyn~an diagrams with in-
ternal vertices because such diagrams can be considered
as certain diagrams without internal vertices at a zero
value of some external momenta. For instance, the value
of the diagram with internal vertices in Fig. 1 coincides
with the value at k = q = 0 of diagram in Fig. 2.

The renormalization scheme, given in this paper, is
equivalent to the usua1 R operation scheme. But "equiva-
lent" does not mean "the same. " Indeed, in the standard
R operation renormalization scheme one must, first, regu-
larize the initial divergent (in general) Feynrnan integral.
Then it is necessary to use a rather complicated subtrac-
tion prescription (forest formula) to obtain a finite result.
Nothing similar is needed in my renormalization scheme.
To obtain a finite expression for a given Fey~man inte-
gral, one must only solve some well-defined difFerential
equations. Neither any regularization, nor any manipu-
lations with counterterm diagrams are needed to obtain
a finite result.

For simplicity, in this paper we will consider only scalar
Feynman integrals. The general case will be investigated
in the forthcoming longer paper.

Let us consider an arbitrary (Euclidean) Feynrnan dia-
gram without internal vertices in coordinate space. This
is the well-defined function

F„(zi, ..., z„;(m,,)) = D(z; —z, ;m,,), (1)
a11 lines of F

where

But their Fourier image

FIG. 1. Example of a diagram arith internal vertices.
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A beautiful account of foundations and modern achieve-

ments of renormalization theory can be found, for instance,
in monographs [1—3].
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FIG. 2. The diagram without internal vertices that corre-

sponds to one in Fig. 1.
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(pl ".p 1—(in' ')) d zi ' d z —1 exp(ipizi + . . + ip —iz —1)r(zl ." z —1 0 (i'''))
(2m4)"

is not, in general, well delned. The problem
of renormaliz ation theory is to define the function
I'(pi, ..., p„ i,. (m2 )) .

Below we will interpret m,-- as the square of some Eu-
clidean two-dimensional vector. Then we can write

m, , = (m,, 1) + (m;, 2) .2 . . 2

Further, let us define the Fourier image of D(z, m ) with
respect to variables mi and m2 (here mi + mz ——m ):

ape+au. m

D(z, u) = /d me' D(x, m) ='J d pd m
@2+m2

4

z.„=) Bx.

'. 02+)
i=1

Therefore,

3 1
D(z, u) = 16'.s

z2 + 112 2

where u = (&i, u2), u = ui + uz. It follows from the
definition that D(z, u) is the Green function of a slx-
dimensional Laplace operator:

A
2

~ ~ ~

r„(zi, ..., z„;(u .))—=
h ~ ~

all lines of I'
d mi exp i ) m iud I'„(zi, ..., z„;(m,. ))

all lines of I'

= (1«')" 1

P(zi, ..., z„;{u,', ))
'

where N is the total number of lines in diagram I' and P
is the polynomial:

Equation (5) defines I' up to a solution of the homoge-
neous equation:

d d ~ h

all lines of F
l(z' —zi)'+ u,', I'. (3) P

I
i, ...,i,0; (E „) I

I' = 0.(. 8 . (9

We see that I' satis6es the simple algebraic equation

P(z, ..., z„;(u, ))r(z, ..., z„;(u; )) = (1«) . (4)

Comparing (2), (3), and (4), we see that it is very
natural to define r(pi, ..., p„ 1) as a solution of the dif-
ferential equation

C. B . 8P
I i, ...,i,0; (E~„) I r„(pi, ...,p„„(m,', ))

= (I«') "~(») "b(p--1)
~ L ~

all lines of I'
()(m;, ). (5)

This means that I' is the Green function of the linear
di6'erential operator P (iB/Dpi, ...). For instance, the di-
agram in Fig. 2 is de6ned by

This arbitrariness can be Gxed inductively in the follow-

ing way.
All diagrams with (L—1) loops are already defined. For

a given L loop diagram -with a divergent index ur(r) one
defines the (I —1)-loop diagram r;~ as a diagram I' with-
out the line (ij) with the propagator [(p —k) + m;~]
where p is the external momentum. We can always de6ne
external momenta in such way that I',

~ does not depend
on p. (See Fig. 3, where r;z is represented as shaded
block. )

It is easy to see that if I' satis6es

(Z. ..)'r = (16 ')h(m, ,)r...

then I' also satisfies Eq. (5). Finally, we impose the
asymptotic conditions

(&~-,)'(&(p-q)-. )'(&~-.)'(&~-.)'(&e-.)'r

= (1«) b(p)b(q)b(k) h'(m;),

where

. (8 0)' . 82
~(.—.)-.=) I(~ . ~ ) +).~

7

PIC. 3. Illustration to the proof of equivalence of proposed
renormalization scheme and the usual one.



50 Dla'rrdtENTJAL EQUATIONS FOR DEFINITION AND. . . 6591

1
lim r=o, 1 I'=0,

+ m. ~~~+

for any r & 0.
It is easy to prove that Eq. (6) together with analo-

gous equations for other lines with asymptotic conditions
(7) define r up to a polynomial of degree u(r) with re-
spect to external momenta and masses. [For ur(r) & 0
the diagram r is defined unequivocally if (L —1)-loop di-
agrams are already defined. ] So our definition reproduces
the usual renormalization arbitrariness in the definition
of Fey~man integrals.

Now let us prove that for renormalizable theories with
a divergent index less or equal to two, our definition is
equivalent to the usual one. Consider again the diagram
in Fig. 3 regularized by means of the cutoff at large
momentum A. We will denote this diagram as I'~. The
renormalized diagram I"' (A) is the s»m of r~ and coun-
terterm diagrams. The latter ones can be divided into
two sets. The first set of counterterm diagrams contains
the line (ij). The sum of r~ and these diagrams can be
written as

Bned by the equations

lsz 6(mi)
p+m

(~ )zr(i) lsz. 6(m2)
PTAS (12)

Using the formula

1 1
2 + m222~i

C—COO

0(Re c(1

I (1)—
27ri

C+tOO

dsr(s)r(1 —s)(mz)' I, + fi(m2)

C—COO

OgRe c&1

one can represent the solution of (11) in the form

d4a r. . (A)
)a(&~ (p &)'+m—,', *' (8)

where I', satisfies the equation

(i4)

(E~„) „2= lsz 6(p —k)6(m;~) (9)

where I' (A) is renormalized diagram r;~. This diagram
does not depend on p.

The second set of counterterm diagrams does not con-
tain the line (ij). They are produced by the change of
some divergent subdiagrams of I' that contain the line
(ij), on polynomials not more than second degree with
respect to external momenta and masses (see, for in-
stance [1—3]). In particular, these polynomials are not
more than second degree with respect to p and m;~. The
diagram I" (A) is the s»m of (8) and these polynomials.

Using the formulas

Is~'6(m, )
g&llg 8

I', = dk 1

[(p- I )'+ 2](~z) (16)

[This can be proved by using of formula (9).]
Introducing Feynman parameters, one can write I', in

the form

and fi(m2z) is an arbitrary function.
If in (15) 1 & Re s & 2, then the solution of (15) is a

convergent Fey~man integral:

and (8), one can prove that

(a „)'r" (A) = is '6(m;, )8(A —~p;~)r;.;."(A) (10)

[because the above-mentioned polynomials are a»»ihi-
lated by (E~,, )z]. In the limit A m oo one obtains
the Eq. (6). Asymptotic conditions (6) are satisfied due
to Weinberg's theorem [8] . This finishes the proof.

Now let us consider an illustrative example that shows
how our de&~ition works in practical calculations.

The diagram I'& & in Fig. 4 is the simplest divergent
Fey~man one. According to our general theory it is de-

x
dz

s —1 o (1 —z) (x@2 + mi2)
(i7)

We see that I', can be analytically continued in the
strip 0 ( Re 8 & 1 before integration with respect to x.
Substituting (17) in (14) and integrating with respect to
s, one obtains

(i) 2
'

l ~t', + ( —*)(*&'+ i)
~

+ fi(m'). (i8)

Let p2 is an arbitrary constant with dimension of
[mass] . Then (18) can be rewritten in the form

FIG. 4. The simplest divergent Feynman diagram.
Representation (13) was used first for the evaluation of

Feynman integrals in [9].
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r(1) K2 d 1
x -XI"+xm1+ 1-xm2 +%2 1+1 p + m2

P
(19)

Equation (12) can be solved in an analogous way. Coinparing results, one can prove that the sum of terms outside
the curly brackets in (19) is constant. It can be included in the definition of p . So, finally, we obtain a fame&iar

result:

r(i). 2 2 2, 2 d l
~

*( —*)P'+™i+(—*)I' (p, m1, m2) = —x dxln

y, (mi —m2) m2 p +mi+m2 —2p f=x ln ln 2 + ln
mim2 2p mi p + mi+ m2+ 2p f (20)

where
I

where r(i& (p2, M2, g 2) is defined by (20) and
rg(p2, M2, g 2) satisfies the equation

(m —m) m +m 1
+ +— (h,~) (p = 16m h(M). (24)

4m2
r('~(p' m' m') = ~'

4m~
o' 2

x I

(p2 + g2 g2) (22)

Comparing (ll), (21), and (22), we see that r(2l can be
represented as

We see that a finite result for a divergent diagram in
Fig. 4 can be obtained without any regularization and
application of the R operation.

Now let us consider a less trivial application of our
theory. We will calculate the two-loop diagram in Fig.
5. In general, this diagram depends on three different
masses mi, m2, andms. For simplicity, we will consider
only the most important case m1 ——m2 = m, m3: M.
The general case can be treated analogously.

Power expansions for this diagram were investigated
for the equal mass case in [10] and for the general case
in a recent work [11].See also [12] for the corresponding
numerical results.

Up to a polynomial of first degree with respect to p2,
the corresponding Feynman integral can be defined by

(D M) I'( l(p M m ) = 16m b(M)r (p m m ).

(21)

Up to an insignificant constant, I'~ ) can be represented
in the form

Using the formula

LM lnM = 2mb(M)

one can represent the solution of (24) in the form

M2
M ln +M 1o +p 2o. + 3o

(25)

1 f p'
fi =0, f2 = -- fa = &'

I
» ——1 I.

)
(26)

The replacement of functions fi, f2, and fs by any other
ones, for which the integral (22) converges, leads to an
insignificant change of I'& ) on the polynomial of first de-
gree with respect to p2.

Substituting of (25) and (26) in (23), we obtain our
final result:

4m2

4m~ o 2

x~ r('l(p', M', ') — '
o 2 o2 2o 2

where fi, f2, and fs are arbitrary functions of n These.
functions must be defined so that integral (23) converges.
Using the explicit formula (20) for I'( &, it is easy to prove
that one of the possible choices is

4m2r'(p' M' m') =~'
4na2 0'

rx
~

r('l(p', M', g')

——y(p, M, g ) i,g 2 )

FIG. 5. Rising sun diagram.

(23)

—vr ln —+~
o 2

The integrand in (27) is of order O(g 4 ln g' ) at g'

oo. So integral (27) converges.
To the author's knowledge, integral (27) cannot be ex-

pressed through standard special functions. But the in-

tegrand in (23) is a rather simple elementary function
and so this formula makes it possible to investigate I'~ )

in detail. This will be done in a forthcoming paper.
A onefold integral representation, that is very similar

to (27), was obtained independently in works [ll] and
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[12] by dispersive methods. An analogous representation
for Sve propagators self-energy diagram can be found in
[is,i4].

Now it is unclear whether our approach to renormaliza-
tion theory has principal advantages in comparison with
the standard formulation. But, at least, the calculations,
represented above, show that our approach gives new ef-
fective methods of evaluating Feynman integrals. So the

author believes that the proposed formalism will be use-
ful in various investigations in quantum 6eld theory.

The author is indebted to D. J.Broadhurst, A. I. Davy-
dychev, and V. A. Smi~nov for valuable discussions and
comments and also F. A. Berends, M. Buza, and J. B.
Tausk for sending copies of their recent works.

[1] N.N. Bogolubov and D.V. Shirkov, Introduction to the
quantum Field Theory (Wiley, New York, 1980).

[2] J.C. Collins, Renormalization (Cambridge University
Press, Cambridge, England, 1984).

[3] V.A. S~irnov, Renormalization and Asymptotic Egpan
sions (Springer, Berlin, 1991).

[4] G.'t Hooft and M. Veltman, Nucl. Phys. B44, 189 (1972);
C.G. Bollini and J.J. Giambiagi, Nuovo Cimento B 12,
20 (1972); J.F. Ashmore, Lett. Nuovo Cimento 4, 289
(1972); G.M. Cicuta and R. Montaldi, ibid. 4, 329 (1972).

[5] D.Z. Freedman, K. Johnson, and J.I. Lattore, Nucl. Phys.
B$71, 353 (1992); P.E. Haagensen and J.I. Lattore,
Phys. Lett. B 28$, 293 (1992);V.A. S~irnov and O.I. Za-
vialov, Theor. Math. Phys. (Rus. ) 96, 288 (1993); V.A.
Smirnov and O.I. Zavialov, Report No. MPI-Ph/93-95
(unpublished); V.A. S~irnov, Report No. MPI-PhT/94-
4 (unpublished).

[6] P.M. Stevenson, Phys. Rev. D 2$, 2916 (1981);G. Grun-

berg, ibid. 29, 2315 (1984); A. Dhar and V. Gupta, ibid.
29, 2822 (1984); V. Gupta, D.V. Shirkov, and O.V.
Tarasov, Int. J. Mod. Phys. A B, 3381 (1991); D.V.
Shirkov, Theor. Math. Phys. (Rus. ) 9$, 466 (1992).

[7] J.C. Collins, Nucl. Phys. B80, 341 (1974); S. Weinberg,
Phys. Rev. D 8, 3497 (1973).

[8] S. Weinberg, Phys. Rev. 118, 838 (1960).
[9] E.E. Boos and A.I. Davydychev, Theor. Math. Phys.

(Rus. ) 89, 56 (1991).
[10] E. Mendels, Nuovo Cimento A 45, 87 (1978).
[ll] F.A. Berends, M. Buza, M. Bohm, and R. Scharf, Report

No. INLO-PUB-17-93 (unpublished).
[12] F.A. Berends and J.B. Tausk, Nucl. Phys. B421, 456

(1994).
[13] D.J. Broadhurst, Z. Phys. C 47, 115 (1990).
[14] D.J. Broadhurst, J. Fleisher, and O.V. Tarasov, Z. Phys.

C BO, 287 (1993).


