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It is well known that Dirac quantization of gauge theories is not, in general, equivalent to reduced
quantization. When both approaches are self-consistent some additional criterion must be found
in order to decide which approach is more natural, or correct. Now, in many cases quantization
on the physical degrees of freedom is properly curved-space quantization, with a highly nontrivial
curvature: neither constant nor Ricci flat. On the other hand, the configuration space of the unre-
duced gauge theory is often (Ricci) flat, which makes Dirac quantization considerably simpler. We
show that the natural “minimal” Dirac quantization scheme, together with certain restrictions we
impose on the observables, is sufficient to make the quantum commutator of quadratic observables
free of van Hove anomalies. This means the “minimal” Dirac quantization (acting in the physical
Hilbert space) is actually a curved-space quantization scheme suitable for the type of curvature
mentioned above, at least within a restricted (but still interesting) class of observables. In fact, we
demonstrate that this curved-space quantization scheme, unlike “minimal” reduced quantization, has
remarkable similarities with other curved-space quantization schemes proposed elsewhere. However,
unlike these other schemes, it contains a piece which depends in an essential way on the gauge
structure of the unreduced theory, and so could not have been guessed working strictly from within
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the classical reduced theory.

PACS number(s): 11.15.—q, 03.65.Ca, 03.70.+k, 11.10.Ef

I. INTRODUCTION

This is the second of two papers addressing the ques-
tion of Dirac versus reduced quantization of gauge the-
ories, which has received some attention in the recent
literature [1-6]. Since gauge theories play a prominent
role in our current understanding of nature it is impor-
tant to understand them in depth, at both the classi-
cal and quantum levels (see, e.g., [7,8]). At the classi-
cal level the Lagrangian is invariant under local gauge
transformations, which means the manifold M, repre-
senting the instantaneous configurations of the system,
contains redundant, or gauge degrees of freedom. These
extra degrees of freedom constitute so-called gauge or-
bits, and can be divided out, resulting in the reduced
configuration space m, representing the physical degrees
of freedom. In the phase space analysis the redundant
degrees of freedom manifest themselves as constraints on
the full phase space, I' = T*M, which are linear in the
momenta. Solving these constraints, and again divid-
ing out the gauge degrees of freedom, yields the reduced
phase space, v = T*m. Classical reduction is then the
map which takes an observable on I to the corresponding
observable on ~.

For quantization one then has two choices: so-called
reduced quantization of the unconstrained theory on «y, or
Dirac quantization [9] on I'. In the latter the constraints
are quantized and applied as operators to select a subset
of physical states from the full set of quantum states, and
this subset is subsequently endowed with a Hilbert space
structure, and called the physical Hilbert space. It is well
known that these two approaches, Dirac versus reduced,
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generally lead to distinct quantum systems [1-6]. It is
even known that this difference can be understood as a
factor ordering ambiguity of the Hamiltonian acting in
the physical Hilbert space [6]. In this series of papers
we further illuminate the geometrical significance of this
ambiguity, and provide clues to its resolution.

In the first paper [10] (henceforth referred to as I) we
analyzed the rich geometry of the classical theory, for in-
stance, the classical reduction, emphasizing the role of
the horizontal basis in establishing a Yang-Mills connec-
tion on M. Furthermore, we calculated the Ricci tensors
associated with three Levi-Civita connections on M, and
discussed their interrelationships. We make use of these
results in this second paper, as we proceed with the quan-
tum analysis.

We first observe that, although the kinetic energy term
in the Hamiltonian often induces a flat metric on M (or
at least, as we suppose here, Ricci flat), the reduced con-
figuration space m is usually neither Ricci flat nor of con-
stant curvature (examples include scalar electrodynamics
[11], and the “helix model” [3] used in I). This means re-
duced quantization is really curved-space quantization,
which is highly nontrivial and ambiguous for observables
quadratic (or higher order) in the momenta [12-16]. Such
a nontrivial curvature also aggravates van Hove anoma-
lies [17-19] in quantum commutators of quadratic ob-
servables, which may jeopardize, for example, the quan-
tum realization of classical symmetries with generators
quadratic in the momenta (for example, the boost gen-
erators, as well as the Hamiltonian, in the Poincaré sym-
metry [20]).

Dirac quantization, on the other hand, is much less
troublesome, at least in this respect; instead we have
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subtleties associated with the gauge degrees of freedom.
In particular, we find that minimal! Dirac quantization
cannot be applied consistently to all classical observables
quadratic in the momenta. In this paper we suggest
restrictions on the quadratic observables that are suffi-
cient to guarantee this consistency, as well as eliminate
van Hove anomalies in quadratic-quadratic commutators.
This means the Dirac factor ordering (acting in the phys-
ical Hilbert space) is actually a specific curved-space
quantization scheme which is free of van Hove anoma-
lies, at least within a restricted (but still interesting) class
of observables and curvature. In fact, by using the ge-
ometrical results in I, together with the restrictions on
observables mentioned above, we demonstrate a remark-
able similarity between this Dirac quantization and other
curved-space quantization schemes which have been pro-
posed from time to time in the literature.

The paper is organized as follows. We begin with a
brief introduction to the Dirac versus reduced factor or-
dering ambiguity, including a discussion of the consis-
tency condition mentioned above. This is followed by
a discussion of van Hove anomalies, along with a sur-
vey of various curved-space quantization schemes found
in the literature. We then suggest sufficient restrictions
for Dirac quantization to be free of van Hove anomalies
for quadratic-quadratic commutators, and describe how,
within these restrictions, Dirac quantization resembles
the other curved-space quantization schemes. These re-
sults are illustrated using Kuchai’s helix model [3] again,
as we did in I (see Sec. II of I for our notation).? Finally
we present conclusions, and suggest directions for future
research.

II. THE DIRAC VERSUS REDUCED FACTOR
ORDERING AMBIGUITY

The classical reduction of a generic observable C(K) on
the full phase space I', which is homogeneous quadratic
in the momenta, is summarized by

C(K) := K*BP,Pg v c(k) := k*®paps, 1

where c(k) is the corresponding physical observable on
the reduced phase space « (refer to I for notation, etc.).
Here k, a tensor on the reduced configuration space m,
is the physical projection of its counterpart K on the
full configuration space, M. We are interested primarily
in observables quadratic in the momenta (such as the
kinetic energy term in the Hamiltonian) since it is in the
quantization of these that the Dirac versus reduced factor
ordering ambiguity first emerges.3

!This term is defined later.

2 As pointed out by Kucha#, this toy model is actually a finite
dimensional analogue of scalar electrodynamics—the latter is
discussed, in the above context, elsewhere [20].

3A more complete discussion, including observables lower
order in momenta, is given in [21].
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We begin with reduced quantization. Since v = T*m
it is natural to choose Schrodinger picture quantization.
Furthermore, m is equipped with a (nontrivial) metric g
(inherited from the metric G on M) so we choose the nat-
ural Hilbert space Hphys:=L?(m,e(9)) of smooth square
integrable complex-valued functions on m. Here e(9),
used in the inner product, is the volume form associated
with g. The reduced quantization map is

c(k) = k®papy — g4 (k) := —R2V kY,
= _ﬁ2{kabeaeb + (ﬁakab)ﬁb} , (2)

where V is the Levi-Civita connection on m. This will be
called “minimal” quantization in that, given the leading
term (quadratic in derivatives) the additional comple-
mentary term, linear in derivatives, is the minimum one
necessary to make the operator self-adjoint. Of course
one may add more terms, for instance real potential terms
associated with the curvature of m, without affecting self-
adjointness, and indeed this freedom will become relevant
shortly. For the kinetic energy (k = 3g71), (2) yields the
usual curved-space Laplacian term.

We now turn to Dirac quantization. The phase space
I' = T*M, and M is equipped with a metric G, so
we can proceed exactly as for reduced quantization (ig-
noring the constraints for now). Define the state space
F := C*(M, C) of all smooth complex-valued functions
on M, then the Hilbert space H := L%(M, E(9)) consists
of all those elements of F which are square integrable
with respect to the volume form E(®) associated with G.
Again, the choice of quantization map is not unique, but
in order to at least fix ideas, and facilitate a meaningful
comparison with reduced quantization, let us begin with
both quantization maps on an equal footing. Thus the
Dirac quantization map is also chosen to be minimal:

C(K) = KABPAPB —> Q(K) = —hZVAKABVB ) (3)

where V is the Levi-Civita connection on M.

In the spirit of Dirac [9] we now account for the con-
straints [see (1.3)] by quantizing them, on the same foot-
ing as any other observables linear in the momenta. For
such observables the minimal quantization map is

C(V):=VAPy s Q(V) := —ih{VAV 4 + L(V4V4)}.
(4)

The physical state space, Fphys C F, is then defined
as the collection of states ¥,y annihilated by the con-
straint operators:

Q((ﬁa)\l’phy, =0 Va & Yphys € Fphys - (5)

As emphasized by Kuchaf [2] the choice of basis for the
gauge vectors ¢, is arbitrary at the classical level, but
this breaks down at the quantum level, at least if one
demands that the constraint operators be self-adjoint.
The trouble stems from the complementary divergence
term in (4), and can be eliminated naturally by restrict-
ing to “preferred” bases which are “compatible” with the
Hilbert space structure:
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L4, E®) =0 Va, (6)

i.e., where the ¢, are divergence-free [cf. (I.63) with
Wq = @Pq]- This condition is natural in that (5) then
implies ¥pnys(Q) = ¥(q(Q)); i.e., Fpnys consists of gauge
invariant complex-valued functions on M. Furthermore,
(5) is consistent: the quantum constraints are first class.
In our case the gauge theory arises by the action of a Lie
group on M, and we assume that the basis of generators
of the group action satisfies (6), a condition which is ob-
viously invariant under change of Lie algebra basis. For
example, in the helix model (see I) the gauge vector ¢,
is Killing and so (6) is satisfied.

Finally, for completeness we note that if the orbits of
the gauge group are not compact then the ¥}, are not
square integrable, in which case Fphys @ H. This is a
topic which we leave outside the scope of this work (see,
e.g., [22], and references therein): the purpose of this
section is simply to introduce the Dirac versus reduced
factor ordering ambiguity in the “standard” way [2-4,6],
and then devote the remainder of our discussion to its
geometrical interpretation. We only want to include a
remark by DeWitt [23] to the effect that in order to factor
out the gauge group in the Feynman path integral one
must treat the gauge group formally as if it were compact,
which is related to the traceless condition f*,, = 0. So
we see that the weak conditions (I.63) are sufficient for
the Dirac quantization to go through (but see also (10),
ahead).

Now before we can compare reduced quantization (2)
with Dirac quantization (3) we must (quantum) reduce
the latter: A quantum observable Q contains pieces
which vanish when acting on Fphys, leaving a “physical
residue” operator which we denote as Q**°. Using the
horizontal and vertical basis introduced in I we have

KABVB\I’phys= {KAb'wb + KAﬁ’wg} Wohys
= KAbab\Ilphys 3 (7)
where K4b := K4Beb etc. The right-hand side of (7)
is a vector field on M, denote it by V4, say, whose Levi-

Civita divergence can be calculated using the Ricci rota-
tion coefficients derived in Sec. V of I:*

V.V=w;VA+T4 ,VE
= 0av® + v%0.ln /g7 + ¢a V7, (8)

where v® = k%8, V¥, pys is gauge invariant since C(K) is
a classical observable [see (I.13)]. Hence

Q(K)Uphys = (—ih)?{0ak®p + k°(8alnw) s
+(¢aKab)ab}‘I’phys ) (9)

where w := ,/g7 is gauge invariant.

4This result is valid even under the assumptions (1.63), which
are weaker than (I.65).
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Clearly, for Q(K) not to knock ¥pnys out of Fpnys,
i.e., to be a quantum observable, we require ¢, K=® to
be gauge invariant. In fact, as we shall now argue, it is
reasonable to demand the stronger condition

$aK® =0 Vb. (10)

If this is satisfied the quantum reduction induces the
quantization map

c(k) = k®papy, — ¢"*(k) = (—ih)?w  0,wk®8, (11)

on the reduced space. ¢*® is self-adjoint with respect to
the volume form

e :=wdg' A---Adg™ = ﬁe(g) , (12)
which induces a Hilbert space structure on
Fonys:® Hres := LE(m,e™). If b K® # 0 the quan-

tum reduction cannot be consistent, since such a term
cannot be incorporated into the Inw term in (9), nor can
it be interpreted as the leading term of an operator for
a vector on m since the factor of i would be wrong for
self-adjointness. Note that (10) is automatically true for
the kinetic energy® (K = 1G ') since the metric on M is
diagonal in the horizontal and vertical basis; for generic
K this extra condition will also play an important role
in our later results.

In order to facilitate a comparison between the two
quantization maps given in (2) and (11) it is convenient
to perform a unitary transformation on the latter so that
both act in the same Hilbert space Hphys:

PR LN edir — ,Y—I/Zeres — e(g)’ (13)
wres — ,d)dir — 71/4¢re57 (14)
qres — qdir — 71/4qres,y—1/4 . (15)

A straightforward calculation yields what we henceforth
refer to as Dirac quantization,

qU (k) = g"*(k) + Ra(k), (16)

which differs from the minimal reduced quantization
scheme by an additional potential term

a(k) = y V4V, (K Vyt/4) (17)

5The same Hilbert space structure is induced by the quan-
tum reduction of observables linear in momenta [see (4)], but
only if a condition analogous to (10) is imposed on the corre-
sponding vectors, namely, ¢oV* = 0.

SThis apparently contradicts a statement by Kuchaf
(Eq. (3.11), p. 3048, in [2]): by substituting (I.34) into his
equation (3.11) it is easy to see that in our case the kinetic
term in the Hamiltonian is a quantum observable precisely
because we are taking seriously the role of the horizontal ba-
sis as establishing a connection on M [cf. (1.44)], as well as
demanding (6).
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that depends on /7, the volume element on the gauge
orbits. Thus Dirac and reduced quantization are phys-
ically distinct [6,4,3]—they lead to different spectra for
the same observable (see also cautionary remarks in [5]
regarding domains of operators).

Kuchaf [3] has shown that, for even the simple helix
model,

(18)

is nontrivial.” He favors reduced quantization over Dirac,
mainly because of objections to a Hilbert space structure
on the state space F [2], which have been addressed above
(for a more complete discussion, refer to [21]). Romano
and Tate [4] have considered the rigid rotator and the hy-
drogen atom, and favor Dirac quantization over reduced
because of agreement with experiment. Kunstatter [6]
has recently shown that the difference is equivalent to a
factor ordering ambiguity involving /7, the volunie el-
ement on the gauge orbits. Clearly further criteria are
needed to decide which factor ordering (if either) is cor-
rect. It is the purpose of this paper to suggest a new
criterion based on the theory of curved-space quantiza-
tion.

III. CURVED-SPACE QUANTIZATION

Reduced quantization has an advantage over Dirac
quantization in the sense that the gauge degrees of free-
dom lhave been eliminated already at the classical level,
and so do not contribute additional subtleties to the
quantization procedure. A significant disadvantage, how-
ever, is that even if the metric G on M is flat, often
the corresponding metric g induced on m has nontriv-
ial curvature. (Examples where this is the case include
Yang-Mills theory and scalar electrodynamics [11], and
the helix model [3]; see (1.83).) Hence reduced quanti-
zation is essentially Schrodinger picture quantization on
a curved configuration space, and as such inherits all of
the difficulties and ambiguities inherent in curved-space
quantization.

Now, since the work of Groenewold [17] and van Hove
[18] it has been known that no quantization scheme exists
which homomorphically maps the entire classical Pois-
son algebra into quantum commutators.® For example,
the Poisson bracket of two physical observables homoge-
neous quadratic in the momenta is a third one, honioge-
neous cubic in the momenta: {c(k),c(l)} = ¢(s). Using
the minimal quantization scheme (2), the corresponding
quantum commutator is

"There is a sign discrepancy between (18) and Kuchai’s
result that appears to stem from the statement |7|1/ 2 =
(1 +r?)~1/2 above Eq. (47) in [3], which should instead read
|1|1/2 (1 +r2)+1/2

8See, e.g., [19] for a more precise statement.
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;’_i[qred(k)’qred(l)] — qred(s) + h2qred(w) , (19)
where Q™*4(s) is the cubic counterpart to (2) (which is
linear and homogeneous in 8), and

w? = —1V,V sbd — 7, 4%,
A% = kPR e + (Vek®?)(Val™?) (20)
— 1V (kY 1% — k4V,1P) — (k & 1).

The vector field w cannot be written solely in terms of s
(and in general does not vanish even when s = 0), and
represents a failure of the minimal quantization scheme
to preserve the classical Poisson algebra. While such van
Hove anomalies are anot exclusive to curved-space quan-
tization (of course), the presence of curvature [the Ricci
tensor in (20)] amplifies the problem.

Curvature of the configuration space also opens up ad-
ditional ambiguities in quantization. For example, from
the point of view of either dimensional analysis or the
correspondence limit, there is no reason not to add a
multiple of A2R (the Ricci scalar) to the usual Laplacian
term of the kinetic energy operator. There is great prece-
dence for this in the literature [24-31]. For our purposes
we need only observe that, although there is no general
agreement, (h2/8)R is a commonly quoted result, but
even more common is (A2/12)R, obtained most notably
by geometric quantization (see [32,33]). Indeed Emch
[31] states that (%2/12)R “produces the best possible fit
of the quantum partition function to its classical limit.”

More generally, to the minimal quantization map
g**d(k) in (2) one may add a potential term AZA(k),
where A(k) might consist of a curvature term such as
k®®R 4, or a contracted derivative term such as Vo Vikat.
Often the niotivation for adding such terms is to try to
cancel anomalous van Hove terms in at least the lowest
order quantum commutators. For example, Vaisman [14]
argues that in order to “preserve as many brackets as
possible” the additional potential term should be of the
form

A(k) = 1[k®®Ras — (VaVsk®)] + B(K),

where

(21)

z,: em [F(vm) + 1(Vavh) (Vsv3,)] -

m=1

B(k) = (22)

The notation in B(k) refers to the local decomposition

r
ab E : a,b
= EmUmn VU, s
m=1

where r is the rank of k, €,, = +1, and v,,, are some vec-
tor fields on m. If we let £ denote the physical observable
v%p,, then the function th(v) represents the difference

between the operators £2 and €2, which is arbitrary in
Vaisman’s work. But, unless well chosen, B(k) will de-
pend on the choice of local bases v,,, as happens with
the choice F(v) = 0 [whereas a choice such as B(k) =0
is of course consistent] [14].

But with such arbitrariness in F one might argue that

(23)
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the particular form of A(k) given in (21) is devoid of
any special significance. That this is not the case is sup-
ported by recent work® [13], from a completely indepen-
dent point of view, which shows that a generalization
of the Weyl correspondence principle [34] from flat to
curved configuration spaces leads to the same A(k) in
(21), but with B(k) = 0.1°

Now the question is whether any of these proposed
curved-space quantization schemes, employing additional
potential terms such as A(k), eliminate van Hove anoma-
lies in, say, quadratic-quadratic commutators. The an-
swer is no, at least not in the generic case. In fact, Bloore,
Assimakopoulos, and Ghobrial [15] have shown that no
“Schrodinger-type” quantization scheme exists in which
the commutator of the kinetic energy operator with a
generic quadratic operator is free of van Hove anomalies,
unless the configuration space is of constant curvature or
Ricci flat. Thus, in order to consider more interesting
curvatures, it is necessary at least to restrict the type of
quadratic observables in some way.

So we conclude that the ambiguities associated with
the curved-space quantization of observables quadratic
in the momenta are not well understood, but that there
is likely some significance to the addition of a poten-
tial term A(k) of the particular form given above. Fur-
thermore, the possibility of avoiding van Hove anoma-
lies in quadratic-quadratic cummutators exists only
within certain restrictions on the observables and the
curvature.!l It is the purpose of this paper to suggest
a suitable set of such restrictions, and show that within
these restrictions the potential term a(k), provided nat-
urally by Dirac quantization, is remarkably similar to the
A(k) of curved-space quantization.

IV. RESTRICTIONS ON OBSERVABLES AND
CURVATURE

We now return to Dirac quantization on the full space,
and henceforth assume that the metric G on M is flat (or
at least Ricci flat). Then if we use the minimal quantiza-
tion map (3), the commutator of two quadratic observ-
ables Q(K) and Q(L) will have a van Hove term anal-
ogous to (20), except without the Ricci tensor term, a
considerable simplification over the reduced quantization
case. The remaining terms all involve covariant deriva-
tives of K and L, which suggests the expediency of re-
stricting all tensors involved in quadratic observables to
being covariantly constant.

®See also earlier work by Underhill [16].

1°Zhang-Ju and Min [13] actually consider a one parameter
family of quantization maps for observables quadratic in the
momenta, but the one referred to here is the only one of these
which is self-adjoint (at least for generic k).

'The notion of a preferred subset of observables also oc-
curs in the group-theoretic approach to canonical quantiza-
tion, see, e.g., [35].
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Within the two restrictions that we have suggested (M
Ricci flat and VK = 0), which will play a crucial role in
our later results, the minimal quantization map on the
full space is free of van Hove anomalies for quadratic-
quadratic commutators. Now the important point is that
the same is therefore true of the residual quantization
map on the reduced space, ¢g**(k) in (11), or, equiv-
alently, of the Dirac quantization map g% (k) given in
(16). Furthermore, even though M is Ricci flat, the re-
duced space m usually has nontrivial curvature, as in the
examples quoted previously, Yang-Mills theory and scalar
electrodynamics [11], and the helix model [3]. In partic-
ular, the curvature may be neither constant nor Ricci
flat, which takes us outside of the restrictions necessary
in [15] to a more interesting class of curvature: that in-
duced on the quotient space of a gauge group acting on a
Ricci flat M. Necessarily, then, the observables have been
restricted, in this case to any k£ which is the physical pro-
jection of a covariantly constant K. We emphasize that
VK = 0 does not imply Vk = 0, and so, from a curved-
space quantization point of view, c(k) represents an in-
teresting observable [for example, the derivative term in
the A(k) in (21) need not be trivial]. So within suitable
restrictions the Dirac quantization map ¢%(k), involv-
ing the additional potential a(k), is really a curved-space
quantization scheme free of van Hove anomalies in a re-
stricted, but nevertheless still interesting, setting.

However, the price for quantizing on the unreduced
space first is that we have to deal with quantum reduc-
tion, which is not always consistent. Thus we must im-
pose a third restriction, namely the quantum reduction
consistency condition (10) (a condition which does not
follow from VK = 0).

This set of three restrictions seems quite narrow, and
one might ask if there exist any physically interesting
models, containing a special subset of observables, in
which they are satisfied. The answer is yes. In the case
of scalar electrodynamics on flat spacetime, M is flat,
and, furthermore, the generators of the Poincaré group
acting on I' form an important subset of observables,
whose quadratic pieces satisfy VK = 0 and ¢, K = 0
[20]. (Note that both the Hamiltonian and the boost
generators have pieces quadratic in the momenta, so
one encounters quadratic-quadratic commutators in the
Poincaré algebra.) These properties likely also apply in
a large class of Poincaré invariant gauge theories on flat
spacetime.

The VK = 0 restriction is probably stronger than nec-
essary for the elimination of van Hove terms, and the fact
that in the case of scalar electrodynamics it is realized by
a symmetry subalgebra suggests a way in which it might
be relaxed. For instance, in any symmetry subalgebra,
with generators containing pieces at most quadratic in
the momenta, the commutators of such pieces must van-
ish for the algebra to close. If the Hamiltonian is to be
included in the subalgebra (as emphasized in dynamical
quantization [36]) then all of the other associated ten-
sors must be Killing tensors: V(4KBC) = 0. For con-
figuration spaces of constant curvature (including flat),
Underhill and Taraviras [37] have presented a quantiza-
tion map in which the commutator of the kinetic energy
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operator with any other quadratic observable, with K a
Killing tensor, is free of van Hove anomalies. Through a
different quantization map Bloore, Assimakopoulos, and
Ghobrial [15] achieve the same end, but for generic K;
unfortunately, flat spaces are excluded from considera-
tion. Perhaps these results, or suitable generalizations
stressing the role of symmetry subalgebras, may be used
in quantization on the full space, leading to an even
more useful and interesting class of observables for which
Dirac quantization succeeds as a curved-space quantiza-
tion scheme on the reduced space. In any case, the re-
striction VK = 0 is sufficient for our present purposes.

Now let us turn to the question of how the three re-
strictions discussed above can be applied to illuminate
the similarity between a(k) and A(k). In order to sim-
plify the following analysis we shall henceforth assume
the strong conditions (I.65), instead of the weak condi-
tions (1.63) in effect heretofore, which means, in particu-
lar, that the metric components v, are gauge invariant,
and that the gauge vector fields are Killing vector fields.
We begin with the covariant constancy restriction, but,
instead of VK = 0, it is instructive to first examine the
analogous condition VV = 0 for a vector field V on M.
Assume that C(V) is an observable on I':

(Lw,V)* = 2wh, (24)

for arbitrary scalar fields £ on M, which is equivalent to
the physical projection V¢(Q) =: v*(g(Q)) being gauge
invariant, where V@ := e4 V4 [cf. (I1.14)]. This means

'w,YVa = Lw-, (eiVA) = 6,‘: - fa 'yBVB ] (25)

where we used (1.27).

Using the Ricci rotation coefficients in (I.66)—(1.71),
the components of VV in the horizontal and vertical basis
are

VoV = $ub + 1F,, 5V, (26)
VaVﬁ = ’anB - %fﬁ act® + %7Ba(€7a7av)V1 » o (27)
VoVt = % e V% — %(eb'/a'y)vv ’ (28)
VaVﬁ = anﬁ + %7ﬁ1(6c’7’1a)vc + %fﬂ a'YV‘y * (29)

The consequences of demanding VV = 0 can now be read
off from these equations. For instance, the scalars {5 can
be expressed algebraically in terms of the components of
V by using the forth of these equations in (25):

€5 = =372 (Vorsy)o® + 3% 48V7.

Now, if we quantized C(V') using minimal quantization,
the quantum reduction consistency condition analogous
I

(30)
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to (10) would be
0=w,V" =€ - pV° =¢], (31)
which, by (30), is equivalent to
v2V,ln /7 = 0; (32)

i.e., the volume element on the gauge orbit should be
constant along the integral curves of v. Furthermore,
from (26) we learn that, although v is not covariantly
constant on m in the generic case,

Vot = -1F,%v7, (33)

it must be a Killing vector, V(®»?) = 0 (and so also di-
vergence free).

Let us show that nontrivial observables C(V') exist in
which VV = 0, and the quantum reduction is consistent,
by constructing one in the helix model. VV = 0 means
that the components V4 in the Cartesian coordinates
X,Y, Z are constants. Using (1.5) we find that the only
solution to (24) is

V =(0,0,{) and {5 =0, (34)

where ( is an arbitrary constant. The components of V'
in the horizontal and vertical basis are

’U“=e?4VA=(g) ’ (35)
Ve =eGVA = 4PGapwg VA =C(1+ 0%,  (36)

where we used (1.39) and (I.49). Thus, since v = (3/8B,
whereas /7 depends only on p, we see that v also sat-
isfies the quantum reduction consistency condition (32).
Finally, using (33) and the fact that the Yang-Mills cur-
vature F7 ,; is nonzero, we observe that v is not covari-
antly constant. We will make use of this v shortly.

The analysis of the VK = 0 restriction is analogous to
the one just given for V', and the details may be found in
the Appendix. To account for the Ricci flat restriction
we write

0 = k®Rap + u2KPRop + vK*PRog, (37)

for arbitrary u, v, since each term on the right hand side
vanishes independently. Here R ;5 are the components
of the Ricci tensor on M in the horizontal and vertical
basis. The nominal choice u = v = 1 corresponds to the
natural contraction K4ABR 4ip» but any choice is equally
valid. Then, using the analysis of the VK = 0 restriction,
together with the results of the Kaluza-Klein-like study
of curvature in gauge theories given in I, we can extract
from (37) an expression for a(k):

2(1 + v)a(k) = [k*®Ras — (2 — v)(VaVek?®)]

+55%°(Var™®) (Vovap) + 3 (20 — v) K*P Faa "Fa® —

v
YK af "9

+1(1 = )k FreaF ¢ + L(1 = )k (Valn v/7) (Viln /7)
+[1 = (21 = V)](Vak®)(Vsln ) + 3 (1 = v) (Varap) F* s ° K. (38)
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The details of this calculation are outlined in the Ap-
pendix. This is the central result of our work.

V. DISCUSSION

Two features of this result are immediately striking.
First, the simple potential term a(k) in (17) actually con-
tains terms such as k“"’Rab and V ka“b, in accordance
with virtually all other quantization schemes on a curved
configuration space. Second, it contains terms in addi-
tion to these, which appear to require knowledge of the
gauge structure not available in the classically reduced
theory.

The nominal choice u = v = 1 eliminates the last four
terms in (38), leaving

a(k) = jk*Ras — (Vo Vek™)] + B(K), (39)

where

B(k) == 1[k**(Var™®)(Verap)

+Kaﬂ—7'-aa b]:ﬁba _‘Kaﬂfs 'w/cxt.f"y 53}* (40)
Comparing a(k) with the A(k) in Vaisman’s quantiza-
tion scheme (21), we see a remarkable agreement of the
leading terms.

At this point one might argue that, at worst, all we
have done is artificially extract certain desirable terms
from a relatively simple object, a(k), leaving behind a
more complicated object, 3(k). To see that this is not
the case we deepen the correspondence with Vaisman’s
quantization scheme by establishing similarities between
his B(k), given in (22), and our B(k). In analogy with
(23) we construct the rank r tensor

k

KAB .— Z

m=1

mVAVE (41)

m "m)

€m = *£1, out of some set of covariantly constant vector
fields V;,, on M, which also satisfy (24) and (31) as per
our previous discussion. This K is covariantly constant,
produces a gauge invariant physical projection

-
k® = 2 K4BeY = Z €mv2 vl , (42)
m=1

and satisfies the quantum reduction consistency condi-
tion (10):

'ng"B = wB(eiKABeg) = Z emvfanVf, =0. (43)

m=1

But the vector fields V,, satisfy (33), so the middle term
in B(k) is

%Kuﬁfaa b]'-ﬁba = % Z em(V::j:aa b)(Vnﬁt‘rﬂba)

% Z em(vavfn)(ebv;) ) (44)

m=1
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exactly the term in Vaisman’s B(k).

Furthermore, Dirac quantization now fixes the func-
tion F(v) in B(k), which remained arbitrary in Vaisman’s
work [14]. Comparing (44) with (40) and (22) yields

*(Var™®)(Verap) = VEVP 10 f 756
(45)

F(v) = is[

(at least for this special class of covariantly constant V).
We notice that F'(v) depends on the gauge structure—in
general, it cannot be calculated using information avail-
able only in the classical reduced theory. It can, however,
be written exclusively in terms of gauge orbit quantities
simply by squaring (29) (with zero on the left hand size)
and observing that the cross terms vanish, so in fact

F(v) = = 2(waV?)(waV®). (46)

[Notice that in the case of a one dimensional gauge group
F(v) is identically zero on account of (31).] It is inter-
esting that F'(v) has the same form as the other term in
B(k) [see (22)], but is its gauge orbit counterpart.

We can pursue this “duality” further by writing F'(v)
in terms of 6(,, the Levi-Civitd connection associated
with v,g, instead of w,. With regard to our discussion
in Sec. V of I, we write

VaVP = woVP + 1P, V7. (47)

On squaring this we find
F(v) = —Y(V.VP)(VgV®) + LVVAR,s,  (48)

where we used (29) again, as well as the expression (1.88)
for the Ricci tensor R,p within a gauge orbit. Applying
this result to the tensor case, (40) becomes

Bk) = LKPRap+ Y em[—5(VaVi)(VsVin)
m=1

%(V 02 ) (V)] . (49)

It is remarkable that for every term in a(k), associated
with m, there appears to be a “gauge orbit complement”
term; for example, %K "‘ﬁ’kag is the gauge orbit com-
plement of %k“bﬁab. (It can be shown that 60651{ B

analogous to the term Vo Vsk?, identically vanishes with
our assumptions, which may be the only reason it does
not appear like the others.)

Let us now realize this discussion in a concrete exam-
ple. Recall that for the helix model we had constructed a
covariantly constant vector V Lsee (35) and (36)], which
is suitable for use in (41): K48 = eVAVE. The compo-
nents of this K in the horizontal and vertical basis are

K = ev®u® = e ( v e ) , (50)
K% = VP = (247! ( (1) ) , (51)

K% = eVovP = ¢(2y72, (52)
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where v = detyag = 1 + p?. Although k is a Killing
tensor, it is not covariantly constant; instead we find

VaVik® = €(2(3p% — 2)y73. (53)
Furthermore, using (1.83) we have
k®*Rap = €(23p%y 73, (54)

so the leading terms in a(k) are
L [ Rab — (VaVek®)] = 3y~ (55)

As mentioned earlier, F(v) vanishes identically for a one
dimensional gauge group, so the only term that con-
tributes to S(k) is

TlsKaﬁ-Faa b}-ﬂb %= _%6C27_3 ) (56)

where we made use of (1.51).

Observe that although B(k) is nontrivial for this par-
ticular k, in this model, it cancels with the leading terms,
so that a(k) vanishes. In other words, the Dirac quan-
tization of this £ we constructed coincides with minimal
quantization, and so it is not as interesting as one might
have hoped for. However, this is not true in general, as
demonstrated in the important case of the kinetic energy;
see (18), and also [4].

Specializing now to k®® = %g“b, the Dirac quantization
(16) tells us that the kinetic energy operator
1R-B(2eY}, (57)

T o= ¥ (g™) = ~H(3A -

where [see (39) and (40)]

B(397") = 5[(Verap) (VEr™P) = FrapF12°
+frapf7P). (58)

This result exhibits the (%2/8)R curvature scalar term
mentioned earlier, but the 8 term is new. The natural
question is whether or not 3(1g™?) is zero, and, if not,

is it proportional to R? The answer to the first question

is no: even in an example as simple as the helix model

we find
(Veras) (V™) = —4p%(1+ %) 72, (59)
FrapF1 = 8(1+ )72, (60)

whose difference does not vanish. The answer to the sec-
ond question is also no—but comparison of (60) with
(1.84) suggests the identification F2 < 4R, true at least
for this example.

To generalize this result, recall that in the Appendix we
derived expressions for k%R gy, K' "ﬁ'R’.ap, and K “"Rag
[see (A22), (A27), and (A25)], each of which vanishes for
Ricci flat M. In the special case of the kinetic energy, an
interesting mechanism arises: k® cha}-" » € is the same
as K°BF, ”.7-',31, , so the cross term equation becomes
trivial, and the remaining two reduce to
i(Verap)(Ver*),  (61)

R =1F apF " + Aln /7 -
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0= 1FaF ' - Aln/A — (Vcln /7)(Veln /7)
+3 frapf1P . (62)

It is then natural to add these two equations, and thereby
cancel the terms highest order in derivatives of vy, yielding

FrapF1 = 4R = 1 foap £ + 3(Vevap) (74°°)
+4(Veln y3)(V¥In V) , (63)

which has the desired 3R leading term. Using this in (58)
we can then eliminate the Yang-Mills curvature term, and
the kinetic energy operator becomes

A

T=-R{iA-LR-8(1¢s7 M)}, (64)
where

ﬁ'(%g_l) = ﬁ[%(vcﬁ'aﬁ)(ﬁc'?'aﬁ)

—(Velny7)(VoIn 3) + frapf7*?]. (65)

Remarkably, this reproduces the (A2/12)R result of ge-
ometric quantization.!? This mechanism of eliminating
the Yang-Mills curvature term may provide a hint why
(n?/ 4)k“bRab usually appears in curved-space quantiza-
tion schemes with generic k, whereas (%2/12)R is more
common in treatments that deal exclusively with the ki-
netic energy case, k% = % g°®.

Nevertheless, T still contains a “nonremovable” 8 (or
B')_term which cannot be completely absorbed into the
K2R term, as proven by the helix model example, and this
term depends on the gauge structure of the unreduced
theory. But the only natural object associated with m,
and having the correct dimensions, that can be added to
the Laplace-Beltrami operator is a multiple of K2R. So,
despite its remarkable similarity with other curved-space
quantization schemes, the Dirac scheme could not have
been guessed working strictly within the framework of
the classical reduced theory.

Let us summarize our results. For many gauge theo-
ries, quantization on the physical degrees of freedom is
essentially curved-space quantization, with a configura-
tion space whose curvature is neither constant nor Ricci
flat (examples include scalar electrodynamics [11] and the
helix model [3]). For such cases Bloore, Assimakopoulos,
and Ghobrial [15] have shown that no Schrodinger-type
quantization scheme exists in which the quantum com-
mutator of the kinetic energy with another arbitrary ob-
servable, quadratic in the momenta, is free of van Hove
anomalies. In particular, minimal quantization does not
work. Hence, in order to avoid such anomalies, our con-
siderations must be restricted to some subset of quadratic
observables. But the nature of this restriction and, more-
over, the correct curved-space quantization scheme, are
not a priori obvious.

12We remark that (64) can be obtained with the choice p =
0, v = 2 in (38).
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On the other hand, we observe that the gauge theo-
ries in question usually have a (Ricci) flat full configura-
tion space, which makes Dirac quantization simpler than
reduced: in this case it is natural to use the minimal
quantization scheme. Although van Hove anomalies in
quadratic-quadratic commutators are still present, they
are now easily eliminated by restricting our considera-
tions to quadratic observables C(K) in which the tensors
K are covariantly constant. Modulo an additional con-
sistency condition on K [see (10)], quantum reduction
then automatically results in a curved-space quantiza-
tion scheme (16) on the physical degrees of freedom, in
which quadratic-quadratic commutators are free of van
Hove anomalies, at least within a restricted, but never-
theless still interesting, class of observables c(k). This
restricted class includes, for example, the generators of
the Poincaré symmetry in scalar electrodynamics [20].
Although the additional potential term «(k), naturally
present in Dirac quantization, has been studied before
[4,6,5] (at least for the kinetic energy,’® k = 3g71), its
connection with curved-space quantization, as well as the
elimination of van Hove anomalies, within a suitably re-
stricted class of observables, is new.

In particular, a(k) contains the curvature and deriva-
tive terms present in virtually all proposed curved-space
quantization schemes, even with the “correct”* numeri-
cal factors. And since m is curved we should expect such
terms. It is for this reason we believe that Dirac quantiza-
tion is more natural than minimal reduced quantization
which, by decree, contains no such terms.

Also, recalling that a(k) represents a factor order-
ing ambiguity [6], these results suggest a connection be-
tween the curvature and derivative terms usually added
in curved-space quantization, and issues of factor order-
ing. Furthermore, with M Ricci flat and K covariantly
constant, our choice of minimal quantization for the unre-
duced theory is consistent in the sense that any analogous
curvature or derivative terms on the full configuration
space would vanish anyway.

However, besides these terms, a(k) contains some un-
expected terms: it appears that to each “expected” term
in a(k) there corresponds an additional, enigmatic “com-
plementary orbit term,” having a similar form, but re-
quiring knowledge of the gauge structure not available in
the classical reduced theory. Whatever role these com-
plementary terms play in eliminating van Hove anoma-
lies, the point is a(k) cannot be constructed using ob-

3For more generic quadratic observables we find that we
must introduce the additional consistency condition (10) to
ensure that they are quantum observables. This condition
plays a nontrivial role in our calculations leading to the
curved-space quantization interpretation of a(k).

YRemember that the agreement on these factors is not unan-
imous, and, furthermore, none of the proposed quantization
schemes claims to eliminate van Hove anomalies in quadratic-
quadratic commutators, at least not for the type of curvature
considered here.
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jects found only in the classical reduced theory: adding
a(k) by hand to minimal reduced quantization in order
to achieve the Dirac curved-space quantization scheme
would be unnatural. Perhaps not all information needed
for a correct curved-space quantization (which avoids cer-
tain van Hove anomalies, for instance) is available in
the classical reduced theory. Perhaps information about
other structures on M is required, in which case we may
have to take seriously the natural metric on M, as well as
the natural basis of gauge vectors (modulo linear trans-
formations with constant coefficients): we may not be
able to assume, a priori, that the gauge vector basis is
arbitrary [2], or that the kinetic term in the Hamiltonian
is arbitrary up to terms that vanish on the constraint
surface [37].

A possible future research direction is to understand
the nature of the “complementary orbit terms.” In this
regard, we observe that the terms in 3, for example, [see
(65)] are essentially horizontal derivatives of the orbit
metric, and as such are reminiscent of an “extrinsic cur-
vature” of the orbits embedded in M. Another direction
might be to relax the VK = 0 restriction, as discussed
in Sec. IV.
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APPENDIX: ANALYSIS OF RESTRICTIONS

In this Appendix we analyze the three restrictions,
VK =0, wgK® = 0, and M Ricci flat, used to derive
(38).

1. Consequences of restrictions on K

First, suppose that C(K) is an observable on I,

(Lo, K)AB = 84y (A1)

for arbitrary vector fields {5‘4 on M, which is equivalent
to the physical projection K%*(Q) =: k°®(¢(Q)) being
gauge invariant [cf. (I.14)]. Using (1.27) we then find

w K = L, (e3K*Pe}) = 365° — 25K, (A2)
w K = L, (e53KABef) = ¢8> — 2= KPP, (A3)
where {5“ and 55“ are the horizontal and vertical com-
ponents of {5‘4, and Eg“ = E.‘;‘ﬂ by definition.

Using the Ricci rotation coefficients in (I.66)—(1.71),

the components of VK in the horizontal and vertical ba-
sis are

VcKab — 6ckab + f&c (aKb)J ,
V,yKab — f‘yd (akb)d _ (6(07‘76)Kb)6 ,

(A4)
(A5)
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V. K% = w K% + T 4K
+%[’Yﬂa(ec7¢xé)Ku& - fﬂcdkad

+Fsc° K%, (A6)
V,K%® = w,K® + L[F\ g °K® + fP ;K%
+7°%(Varan)k® — (Virs) K], (A7)

VK = w K + 47V oy,5) KPP — F@ KD,
(A8)

V_YKdﬁ — quaﬁ + f(a _761(!3)<s + 7““(6475.,)1(")" .
(A9)
In analogy with the vector case, demanding VK = 0 (in

particular the fourth and sixth relations above) then fixes
the ﬁf,“ algebraically in terms of the components of K:

650 — —'}-‘Yd aKdﬁ + (60’)’75)1(813

"'Yﬁa (ed'Ya'y)kad + fﬂ ‘y&KaJ )
€57 = =P (Varsy) K + f (s K.

(A10)
(A11)

Now we see that the quantum reduction consistency con-
dition (10),

0=wgK® = 1£0° — fPps K = 1¢5°,  (A12)
is equivalent to
k®*Viln /7 + 1 F5p °KY — LKV y,5 =0. (A13)

Furthermore, from (A4) we learn that, as in the vector

case, k is not, in general, covariantly constant on m,
Vk® = —Fs. CK¥? (A14)

but must, of course, be a Killing tensor: Viegad) = 0.
But, unlike in the vector case, the “divergence”

Vpk®® = —3 Fsp °K® (A15)
= k®Vln /7 — 1K*PV .4 (A16)
= 3V (rapKP) (A17)

does not necessarily vanish. The second line, which will
be useful later, follows from the quantum consistency
condition (A13), and the third line, an interesting al-
ternative form for V.2, follows from contracting (A8)
with 74s. [That 743K >? is gauge invariant can be seen
by contracting (A9) with v,g, and then using (A5).]
Now, the quantity we are particularly interested in is
VaVpk® = wo (Vpk®) 4+ 1% . Vike®, (A18)
where we have put w, in place of d,, with impunity. On
substituting (A15) we find

6a.ebkab = _%[wufaba + f‘aacj:Sbc - f\cab]:Jc G]Kw
"i[]:ﬁack‘:b - ﬂ‘y(éa’Yv&)Kw
-—faabKaﬂ]fgb e, (A19)

where (A6) was used to obtain an expression algebraic in
the components of K.
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2. Consequences of M Ricci flat

In I we used a Kaluza-Klein-like approach to calculate
the horizontal and vertical components of the Ricci tensor
on M; see (1.81), (1.85), and (I.86). Contracting (I.81)
with k% yields

kab'Rab = kab"éab + %kab}-.ycap € — k""@aﬁbln \/’7
+5E(Var"?) (Vovag) - (A20)

The third term on the right hand side, second order in
derivatives of v, closely resembles a(k) in (17). In fact,

£V, Viln /7 = Vo (k®Vln \/7) — (Vak®®)(Veln /7)
= 2a(k) — 1k°®(V,ln /7)(Vsln /7)
—(Vak®)(Veln /7), (A21)
and so
E®Rap = —2a(k) + k®*Rap + 1k FrcaF s ©
+35°°(Var*®) (VoYap)
+1k°(V,In /7)(Velny/7)
+(Vak?®)(Veln 7).
When M is Ricci flat the left hand side vanishes, sug-

gesting a relationship between a(k) and k%R ;.
Next we contract (1.86) with K4,

(A22)

KaﬁRaB = _%Kaﬂfs‘yaf’ysﬁ - %Kaﬁ]:aa b}-ﬂba
~ 5K Avap + 3K (Varya) (Vos8)
~1(Valn y7) K (V2 70g) (A23)

Again, the third term on the right hand side, second order
in derivatives of «y, can be written in terms of a(k):

K An,p = 4a(k) — 2V, Vpke®
—k°(Voln /7)(Vsln /7)
+E P57 (Varya) (Vos58)
+F%%(Vavap) K% . (A24)

The calculation is similar to (A21), but, in addition,
makes use of (A16) and (A8). Using (A16) again, now in
the right hand side of (A23), we finally obtain
K®Rap = —2a(k) + V,Vik®® — LK*Pf0  fss
-%Kaﬂfaa b]:ﬁba
—3k%(Valn /) (Vsln v/7)
+H(Vak®)(Voln v/7) = 37 % (Varap) K .
(A25)
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Lastly, we contract (1.85) with K°4:
2K“ﬂRaﬁ = [‘wb]:ga b + It beFBa A (,a}-gc b
+(4ln ) Foa HIE (A26)
Comparing this with V,V,k in (A19), and using (A15)

again, we have the third and final Ricci curvature rela-
tion,

2K%PR.5 = —2V,Vpk® — 2(V k) (Vsln 1/7)
—%[fﬂ acka - 'Yﬂ’y(ﬁa'y—yJ)Kb&

—Faa bKaﬂ]fgb e, (A27)

These three relations (A22), (A27), and (A25), which
also embody the restrictions on K, are combined in the
form (37) to yield (38).
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