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Higher order coupled cluster approximation to the vacuum of 4'4 field theory in 1 + 1
dimensions
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The S6 approximation of the coupled cluster method is applied to the vacuum state, energy, and
6eld expectation value of C field theory in 1+1 dimensions. Depending on the quantities considered
the results show good to excellent convergence.
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I. INTRODUCTION

In a series of papers the coupled cluster method (CCM)
has been applied to 4 field theory in 1+1 dimensions
(44) [1—3]. Another paper [4] deals with the various the-
ories with both 4 and 4 coupling. They all are based
on the "S4 approximation. " In this scheme all terms with
more than four virtual particles in the exponent operator
S = ZS for the vacuum state have been omitted, and
the remaining equations for Sz, S~, Ss, and S4 have been
solved exactly. It turned out that, except for a certain
"critical region" around second-order phase transitions,
this method works quite well, both for the ground state
(= vacuum) as well as for the one and two meson states
[3,4]. This is quite in line with the great success of the
method in quantum chemistry or, more generally, in /ED
of many electron systems [5]. In these cases there is no
doubt that higher orders will contribute very little. This
is also true for the anharmonic oscillator [6]. Here a di-
rect comparison with exact results and those &om some
other methods can be made. It exhibits a much higher
accuracy of the CCM as compared, for instance, to the
Lanczos method [7]. In quantum field theory so far the
quality of the approximation was not well under control
because no higher orders have ever been computed. Ide-
ally, a check of the ground state should be performed
by solving the equation for the next higher S„'s. Thus,
in the present paper the "S6 approximation" will be de-
scribed in which also both S5 and S6 have been fully
taken into account. This then. allows one to draw conclu-
sions about the quality of the various approximations.

Recently there have been many discussions on the
meaning and structure of field theoretical vacua. From
them there emerged the insight that it is indeed a non-
trivial object (i.e. , not a bare vacuum), regardless of
whether one is using the equal time or light &ont dy-
namics [8,9]. Indeed, the origins of this insight are quite
old [10]. Thus, it certainly makes sense to construct ex-
plicitly such a vacuum. The vacuum energy by itself
has no physical meaning. But it is needed to redefine
the Hamiltonian such that the vacuum state becomes an
eigenstate with eigenvalue zero, as required by symmetry
arguments.

For applications of the CCM to lattice versions of

field theories see Refs. [11,12] and the literature quoted
therein.

This paper is organized as follows. In Sec. II the model
with the application of the (standard) CCM to the vac-
uum, whereas in Sec. III techniques for computing ex-
pectation values, will be described, followed in Sec. IV
by some remarks on numerical techniques and problems.
Finally the results and conclusions will be presented in
Sec. V.

II. HAMILTONIAN AND ITS VACUUM

The model is given by the Hamiltonian

dxH (2.1)

with

a = X -'(VC)'+ -'ll'+ —C'+ -C'
2 2 2 4

(2.2)

4 = dk (age'" + a&e
'" ),

/47I iog

idg = Qrn +k (2.3)

Here N means normal ordering with respect to the mass
parameter m. It has been introduced to remove ultra-
violet divergences generating an irrelevant infinite con-
stant. The recipes for performing the transition &om
non-normal ordering to normal ordering are standard
[13], and thus we shall not write down the non-normal
ordered Hamiltonian. Spatial integrations extend over a
normalization volume I ~ oo.

There are some properties specific to the 4&+~ field
theory which have to be taken into account for a proper
approximation (truncation) scheme. The model has two
phases (or Hilbert space sectors): the "symmetric sec-
tor" (with field expectation value (4) = 0), and the
"condensed" phase (field expectation value di8'erent from
zero, the "symmetry breaking" or "(4) g 0 sector"). The
phase transition is of second order [14].

Expanding as usual
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the Bogolubov transformation

bi, + " "bt „+ gm(uptb(k)
2/~i ei 2vt~aea

(2 4)

generates new annihilation and creation operators bg and
b& with a new bare vacuum 4p defined by bp4p ——0. t ist

the wave operator shift introduced to facilitate a nonvan-
ishing field expectation value (i.e., symmetry breaking),

4=4.„+t, (2 5)

and ei, is a new (theoretical) single particle energy. Vary-
ing the energy expectation value (@i,l'Rl@s) with respect
to t and eg corresponds to the "Gauss approximation"
(Hartree approximation in the language of many body
theory) [1,15]. It fixes t and ei, . On the other hand, the
"maximum overlap condition" [2] minimizes the overlap
l(@sl@,) l

between the bare vacuum and the exact wave
function 4„.It leads to zero amplitudes for one- and
two-particle excitations and does not fix t and eI, .

The application of the CCM to the vacuum has been
described in much detail in Refs. [1—4]. Thus here only
the essentials will be put down without any details. The
vacuum state is written in the usual exponential form

whereas in the condensed one both even and odd n show
up [2]. Moreover, in the latter sector there are important
cancellations between terms involving even and odd n
from their competition in favor of preserving or breaking
the symmetry. Thus, an S5 approximation would not
make sense.

Transition from the S4 to the S6 approximation means
a big step: The member of terms in all equations becomes
much larger. And there are 170/660 terms in the Ss/Ss
equations which in the present case have been derived
by hand. One just has to exploit commutators and ma-
trix elements via Wick's theorems, which is quite easy
for each individual term and cumbersome only because
there are so many of them. At present there is work in
progress using some of the algebraic computer programs.
Once this becomes routine, the CCM hopefully will turn
out to be also a very manpower-efficient method to find
low-energy states of complex Hamiltonians. In any case,
it is not feasible to write down here the explicit equa-
tions. Even their graphical representation, a standard
in quantum chemistry, being quite extensive and foreign
in the realm of quantum field theory, will not be shown
here.

III. FIELD EXPECTATION VALUE
I@ .) = exp(s)IC's)

with

s=) s„,

where S„creates n virtual particles:

(2.6)

(2 7)

The computation of expectation values of operators
0 is a notoriously difficult task within the standard
CCM, because it is hard to utilize fully the exponential.
Based on the Feynman-Hellman theorem there is a for-
mally rigorous technique [16]: Replace the Hamiltonian
by 'R + pO. Then the expectation value is

S„=—, dki dk„s„(ki k„)bq bq . (2.8)
1

(o) = dE, (~)

p=0
(3.1)

Then the (standard) CCM equations are

(@&lexp(—S)+exp(s) I@'&) = E
(4'i„ lexp( —S)'Rexp(s) l@s) = 0,

(2.9)

These derivatives with respect to the new coupling con-
stant p are difficult to obtain with sufficient accuracy, be-
cause they are based on the difFerence between two large
quantities divided by a small one. Thus, in the present
work in addition to this more sophisticated method also
ordinary low order expansions of the exponentials in

(4g, ~„lexp( —S)'Rexp(s) l@s) = 0, (exp(ZssS„)@sl
0

l
exp(Zss S„)4b)

(exp(Zss S„)4s l
exp(Zss S„)4s)

(3.2)

Here

l@~. i.) =by„4, " ba Ie's) (2.10)

are Fock states of n particles. The S6 approximation
takes all S„with n & 6 into account, thus leading to
just the first seven equations (2.9), with only up to five
dimensions because of momentum conservation. As in
Refs. [2] and [4] the maximnm overlap condition has been
invoked. As noted above, this leads to vanishing Sq and
S2. The coupled equations (2.9) then determine energy,

6g and S3 to S6, in this order. More precisely, one has
to solve all equations except the first one, and then use
the results in the first equation to obtain the energy.

In the symmetric phase only S with even n occur,

have been used. The truncation is defined by the pre-
scription that at most three independent integrations are
taken into account. This then includes all terms with
S3S4 Ss S4 and S4S&. In [1—4] only the first term had
been used. To arrive at a fair comparison, in the present
paper also the second term has been added in the S4
approximation, although it has only a small effect.

IV. NUMEMCS

Far away kom the critical region this coupled set of
up to five-dimensional equations could be solved by iter-
ation. The starting parameters t and eI, were obtained
&om the Gauss approximation. Then in separate cy-
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cles erst the equations for S3 and S4 were solved itera-
tively with S5 and S6 set equal to zero. Afterwards the
equations for S5 and S6 were solved by iteration, using
4, E'Ic S3, and S4 &om the Grst cycles. This was repeated
until convergence within at least l%%uo was achieved. The
number of iterations needed typically was quite small.

This procedure was not possible nearer to the critical
region. Here the equation for S6 naturally made some
problems. The S 's now being quite large, the cancel-
lations between large terms, mentioned above, in combi-
nation with the high dimensionality lead to slow conver-
gence. Thus, it was necessary to approach the critical
region by changing the coupling strength in very small
steps, using the results Rom the last step as input. First,
the (1,2,3,4) particle equations were solved as in Ref. 2.
Then a single iteration of the Gve- and six-particle equa-
tions was done, the results inserted into the one- to four-
particle equations, which were solved as before. This was
repeated until convergence was achieved to an accuracy
of better than l%%uo. Thus in each step only one (very time
consuming) iteration of the five- and six-body equations
was needed. At the very end the latter equations were
solved separately with a few iterations to make sure that
indeed a solution was obtained. In all cases it turned out
that these last iterations generated very little change.
The maximum number of iterations needed was 65.

The number of mesh points for the (Gauss-Legendre)
integrations mostly was 21 per dimension. Near the criti-
cal region also 23 points were used for comparison. There
was less than 1'%%uo difFerence between both. At some values
for A the calculations were checked even with 25 points,
leading to the same results. Thus very likely the mesh is
dense enough. The maximum momentum included was
around 250 (with m = 1), varying somewhat with the
number of mesh points.

Exploiting the Feynman-Hellmann method, Eq. (3.1),
for the field expectation value (e') turned out to be quite
a dificult task. The energy was calculated for several
small values of the coupling p around p = 0 and the
derivative at p = 0 was obtained by interpolation. In ap-
proaching the critical region this method did break down
quite early, because the numerical "dirt" becomes com-
parable to a tolerably small p. There are two related rea-
sons for this behavior: The energy changes more rapidly
with p. Also, it becomes impossible to obtain a numer-
ical accuracy of better than 10 as required for small
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FIG. 1. Vacuum energy as function of coupling strength A.

Solid line: S6 approximation; dashed line: S4 approximation.
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FIG. 2. Field expectation value as function of coupling
strength A. Solid and dashed lines, respectively: S4, S ap-
proximations. Top: Using the Feynman-HeDmann theorem.
Bottom: Using series expansion of (3.2). For notations see

Fig. l.

U. RESULTS AND CONCLUSIONS 0,5 '

The results are given in Figs. 1—4. Note that all plots
end at A = 18, since, for larger coupling strength S4
and S6, approximations rapidly become indistinguish-
able. The energy in Fig. 1 shows excellent convergence.
This is not surprising. The (standard) CCM is known
to be at its best for this quantity, because the energy is
computed via a formally exact expression and not as an
expectation value. Wave functions do less well. Thus,
as to be expected, the 6eld expectation values shown in
Fig. 2 do not come out quite as good. Both the Feynman-

1
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FIG. 3. Average over Ss in S6 approximation (sohd line)

and in S4 approximation (dashed line). Average over Ss
(dash-dotted line).
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FIG. 4. Average over S4 in Ss approximation (solid line)
and in S4 approximation (dashed line). Average over Ss
(dash-dotted line), enlarged by a factor 10 in smaH A region.

Hellroann theorem [Eq. (3.1)] as well as the expansion in
powers of S„based on (3.2) have been applied within the
S4 and the S~ approximation. Because of the problems
discussed before, the region where (3.1) could be applied
successfully was somewhat smaller than the overall acces-
sible region. In both cases the S6 approximation leads to
a more rapid decrease than does the S4 approximation.
The curves &om the series expansion show more structure
than the old plot of Ref. 2. This is due to the appearance
of more terms carrying dHferent signs. Comparison with
the Fey~man-Hellman results suggests that the neglected
higher order terms will make the curves smoother. Ex-
cept for this, the agreement between both methods as
well as both approximations is quite reasonable, the dif-

ferences being at most of the order of 20%. In Figs. 3 and
4 the averages over S3 to S6 are shown. %herever the
amplitudes S„are large, and therefore important, the dif-
ferences between S4 and S6 approximations for S3 and S4
are reasonably small. In the region around A = 11,where
the averaged S4 is small, there is a larger but tolerable
deviation between both approximations. The averaged
S5 and S6 behave as expected, being small far away &om
the critical region and large near to it.

It seems that the critical region has been moved to-
wards larger coupling strength and that it has been in-
creased slightly. The latter fact is somewhat disappoint-
ing since one might have expected that this region be-
comes smaller instead. Possibly this feature is not gen-
uine, but merely due to the limitations of the iterative
computational methods applied to solve the equations
for S5 and S6. This interpretation is supported by the
observation that the symmetrical phase behaves better.
Naturally, in this case numerical stability is somewhat
better than in the symmetry-breaking phase.

Thus, again the CCM in its simplest ("normal" ) form
successfully has passed a test. This may not seem surpris-
ing since an enormous number of terms has been taken
into account. The surprise originates &om the fact that
many of the individual terms are quite large. Thus, there
must be very effective cancellations between them. The
success of the approximation schemes suggested by the
CCM equations derives from this feature. It is not well
understood why this is so. There are some plausibility
arguments for it and no proofs.
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