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Scalar Casimir effect for a D-dimensional sphere
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The Casimir stress on a D-dimensional sphere (the stress on a sphere is equal to the Casimir
force per unit area multiplied by the area of the sphere) due to the confinement of a massless scalar
Seld is computed as a function of D, vrhere D is a continuous variable that ranges &om —oo to
oo. The dependence of the stress on the dimension is obtained using a simple and straightforward
Green's function technique. We Snd that the Casimir stress vanishes as D -+ +oo (D is a noneven
integer) and also vanishes when D is a negative even integer. The stress has simple poles at positive
even integer values of D.

PACS number(s): 11.10.Kk, 11.10.Jj, 12.39.Ba

I. INTRODUCTION

In recent papers [1—4] it was proposed that the dimen-
sion of space-time could be used as a perturbation param-
eter in quantum field theory calculations. The advantage
of such an approach is that analytical (nonnumerical) re-
sults can be obtained which are nonperturbative in the
coupling constant. This procedure was used to obtain
the Green's functions of self-interacting scalar quantum
field theory in the Ising limit [5,6]. One can also per-
form dimensional expansions in inverse powers of the di-
mension. Such expansions have proved useful in atomic
physics calculations [7].

These perturbative investigations have led to and mo-
tivated analyses of the dimensional dependence of various
physical systems. Such investigations are useful because
by identifying the singularities in the complex-dimension
plane one can predict the radius of convergence of a di-
mensional expansion. The dimensional dependence of
some elementary quantum-mechanical and field-theoretic
models is described in [1—3]. The dimensional depen-
dence of classical physical models has also been investi-
gated; for example, in [8,9] the dimensional dependence
of probabilities in models of random walks was eluci-
dated.

In this paper we investigate the dimensional depen-
dence of the Casimir force per unit area, F/A, on a spher-
ical shell of radius a in D space dimensions. Specifically,
we study the Casimir stress (the stress on the sphere is
equal to the Casimir force per unit area multiplied by the
area of the sphere) that is due to quantum fiuctuations of
a free massless scalar field satisfying Dirichlet boundary
conditions on the shell.

An interesting investigation of the dependence of the
Casimir force per»~it area upon the spatial dimension
is already in the literature [10]. Ambj@rn and Wolfram
examined the case of infinite parallel plates embedded in
a D-dimensional space and separated by a distance 2a;
that is, there is one longitudinal dimension and D —1
transverse dimensions. Their result is

F/A — —D—~2—sD —2 —( + )& Dl'
~

(D+11
2 r

x((D + 1), (1.1)

which we have plotted in Fig. 1. Note that F/A has a
simple pole (due to the I' function) at D = —1. However,
F/A is not infinite at the other poles of the I' function,
which are located at all the negative odd integral values
of D because the Riemann ( function vanishes at all neg-
ative even values of its argument. One interesting and
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FIG. l. A plot of the Casimir force per unit area F/A in
(1.1) for —5 & D & 5 for the case of a slab geometry (two
parallel plates).
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well-known special case of (1.1) is D = 1:

F/A]ii=, =—
96a2 ' (1.2)

II. MATHEMATICAL FORMALISM

where the negative sign indicates that the force is attrac-
tive. We mention this case here because the spherical
geometry considered in the present paper coincides with
the slab geometry of [10] when D = 1; we recover the
result (1.2) as a special case in Sec. III.

This paper is organized very simply. In Sec. II we
review the Green's function formalism required to ob-
tain the Casimir stress. Then we apply this formalism
in D-dimensional space to obtain an expression for the
Casimir force per unit area on a D-dimensional spherical
shell. This expression takes the form of an infinite sum
of integrals over modified Bessel functions; the dimen-
sion D appears in the orders of the Bessel functions. In
Sec. III we examine this expression for the Casimir force
per unit area in detail. We show that each term in the se-
ries exists (each of the integrals converges) and we show
how to evaluate the s~m of the series numerically for all
real D. When D & 0 the Casimir force per unit area is
real; the stress is finite except when D is an even inte-
ger. When D & 0 the Casimir stress is complex; there
are logarithmic singularities in the complex-D plane at
D =0, —2, —4, —6, . . . .

G(x, t; x', t') satisfies the inhomogeneous Klein-Gordon
equation

t' 82
1
G(x, t; x', t') = —b (» —x') b(t —t')

q (9t2

(2.4)

We will solve the above Green's function equation by
dividing space into two regions: I the interior of a sphere
of radius a and II the exterior of the sphere. On the
sphere we will impose Dirichlet boundary conditions

G(x, t;x', t') i„i
——0. (2 5)

In addition, in region I we will require that G be finite at
the origin x = 0 and in region II we will require that G
satisfy outgoing-wave boundary conditions at 1»1 = oo.

The stress-energy tensor T""(x,t) is defined as [14]

T""(x,t) = 8"rp(x, t)(9"p(», t)

g"-"B-i,rp(x, t)(9 rp(», t). (2 6)

The radial Casimir force per unit area F/A on the sphere
is obtained &om the radial-radial component of the vac-
uum expectation value of the stress-energy tensor [11]:

The calculation in this paper of the Casimir stress on
a spherical shell relies on the use of Green's functions
to represent vacuum expectation values of time-ordered
products of fields. The Green's function is used to obtain
the vacuum expectation value of the stress-energy tensor,
&om which we will derive the Casimir stress. The formal-
ism used here was developed in [11—13]. We summarize
the formalism below.

A &ee massless scalar field y(x, t) satisfies the Klein-
Gordon equation

F/A = (OIT T f10), (2.7)

F/A = — —,G(x, t;x', t);„8 0
2 Dr Br'

To calculate F/A we exploit the connection between
the vacuum expectation value of the stress-energy ten-
sor T""(x,t) and the Green's function at equal tiines
G(x, t;x', t):

( g2 —V 1y(x, t) = 0,(Bt2 )
(2.1)

0 0
, G(x, t; x', t) „,

m=m', )~(=a

(2.8)

[(p(x, t), (p(x', t)] = ib~ ~(x —»'). (2.2)

The two-point Green's function G(x, t; x', t') is defined
as the vacu»m expectation value of the time-ordered
product of two fields:

G(x, t; x', t')—:—i(0[Ty(x, t)y (x', t') 10). (2.3)

By virtue of (2.1) and (2.2), the Green's function

where x is a D-dimensional position vector. (Initially, we
will think of D as a positive integer; however, once we
have derived the radial equation for the Green's function
we will be able to regard the parameter D as a continu-
ous variable. ) The quant»m nature of the Casimir stress
arises from the constraint that y(x, t) satisfies equal-time
commutation relations:

(x;x') = j dte ' t' '
(tGt;xtx').

The difFerential equation satisfied by Q is

( '+&')&-( ') =b' '( — ') (2.10)

To solve this equation we introduce polar coordinates
and seek a solution that has cylindrical symmetry; i.e.,
we seek a solution that is a function only of the two
variables r = 1»1 and 8, the angle between x and x' so
that x x' = rr' cos 0. In terms of these polar variables
(2.10) becomes

To evaluate the expression in (2.8) it is necessary to
solve the Green's function equation (2.4). We begin by
taking the time Fourier transform of G:
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gr2 r gr r2 g8 g8) 2~(D 1)—/2r& i . D 2—8
(2.ii)

Note that the D-dimensional b function on the right
side of (2.10) has been replaced by a cylindrically sym-
metric b function having the property that its vol-
ume integral in D dimensional space is unity. The D-
dimensional volume integral of a cylindrically symmetric
function f (r, 8) is

(~—y)/2 oo

dr r d8 sin 8f(r, 8). (2.12)

ultraspherical (Gegenbauer) polynomial [15]

B(z) =C' " "(z)
(n=o, i, 2, 3, . . .). (2.16)

A(r) = r ~ J„i+o((ru~r). (2.17)

The solution in region I to (2.15) that is regular at r = 0
involves the Bessel function [16]

g.(., ",8) = A(r)B(z), (2.13)

where z = cos 8. The equation satisfied by B(z) is then

We solve (2.11) using the method of separation of vari-
ables. Let

In (2.17) we assume that D & 2 in order to
eliminate the linearly independent solution A(r)
ri +~2Y„ i+a(~u~r), which is singular at r = 0 for all
n. The solution in region II to (2.15) that corresponds to
an outgoing wave at r = oo involves a Hankel function of
the first kind [16]:

2 d
(1 —z ) —z(D —1)—+ n(n+ D —2) B(z) = 0,

dz dz
A(r) = r' ~~2H~'~, (((u~r). (2.18)

(2.14)

where we have anticipated a convenient form for the sep-
aration constant. The equation satisfied by A(r) is

d' D —i d n(n+D —2)+ +u Ar =0
dr~ r dr r2

(r gr'). (2.i5)

The general solution to (2.11) is an arbitrary linear
combination of separated-variable solutions; in region I
the Green's function has the form

g (r, r', 8) = ) a„r ~ J„i+a(~u~r)C& + ~ l(z)
n=o

(r & r' & a) (2.19a)

The solution to (2.14) that is regular at ~z~ = 1 is the and

g (r, r', 8) = ) r' i b„J„,+o(i(sir)+c„J„+,a(iu)ir) Ci '+ i l(z) (r' & r & a). (2.19b)

[Note that J„(z)and J „(z)are linearly independent so long as v is not an integer. Thus, (2.19b) assumes explicitly
that D is not an even integer. ] The general solution to (2.11) in region II has the form

and

g-( '8) =) d-"-"'H"'„=(i-i)C!-'""'() ( »".)
n=O

(2.20a)

g (r, r', 8) = ) r' ~ e„Hi'~, ~(((u~r) + f„H~l, ~()ur)r) C~ '+ l(z) (r' & r & a).
n=o

(2.20b)

The arbitrary coefficients a, b, c„,d, e, and f
are uniquely determined by six conditions: namely, the
Dirichlet boundary condition (2.5) at r = a,

and

e„H~ ~
~(~id~a) + f„H~ l ~(((a[a) = 0, (2.21b)

b„J„i+a ([u)(a) +c„J+i D ([&u)a) = 0 (2.21a) the condition of continuity at r = r',
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a-J. i+o(l~lr') = b-4 i+o(l~lr')

+c-J-.+i-- (l~lr') (2.2lc)

d„H~ l (lulr') = e„H~ l (l~lr')

+f-H„'",+ o (l~lr') (2.21d)

and
and the jump condition in the Grst derivative of the
Green's function at r = r',

(2n+ D —2)I' (, ')
z+o (laulr') + c„J'+z o (l~lr') —a„J„',+o (l~lr ) =

4(xr') ~ lu) l

(2.2le)

2+D —2I' D'
(l l

')+f H"'„(l
l

') —d-H„''„o( (2.2lf)

Here we have used the orthogonality property of the ul-
traspherical polynomials [15),

f
1

ds(1 —z ) 'i2C&~i(s)C~ l(z)

".(n-1+ D)r(n+D-2)F A;„a-
2D~ ~ aDn! I (D-')

X
l~laJ„' „o(I~la)

+1——J. i+, (i~la)

(2.24a)
2' 2~el'(n+ 2a)

f ( )p2( )
~ratn (~ 8 o)t (2.22) The contribution to F/A from the exterior region (region

II) is
the value of the ultraspherical polynomials at z = 1,

( )
I'(n+ 2n)

( ).r(2 )
(2.23)

and the duplication formula I'(2z) = 22 ~ I'(x)
xl'(z + 1/2)/~n.

Having determined the coefBcients in the expressions
for the Green's function, we can immediately evaluate
the right side of (2.8). The contribution to F/A from the
interior region (region I) is

.(n —1+ D)I'(n+D —2)FA „,=i
aDn! I' (D ~)

X
l~l Ha„"', +(i~la)

H!'i, (l(ala)

(2.24b)

The integrals in (2.24) are oscillatory and therefore
very difBcult to evaluate n»merically. Thus, it is advan-
tageous to perform a rotation of 90' in the complex-~
plane. The resulting final expression for F/A is

(n —1+ —)I'(n+ D —2) &I„',o (&) &~„'„,(&)

2D 1~ g aD+—ln) I' (
D )0 ln ——1+o (x) Itn —1+o (x)

(2.25)

The D = 2 result, where the n = 0 term appears with
weight 2, was derived in [13]. This result can be recov-
ered by setting D = 2+ e and letting e tend to 0.

XXX. NUMERXC&X, EV&X.U&TXmr aF S/A

Our objective now is to evaluate the formal expression
in (2.25) for arbitrary dimension D. Recall that this
expression was derived under the assumption that D ) 2
and that D is not an even integer. Homever, we will now

I

seek an interpretation of (2.25) that is generally valid; to
do so we mill apply a s»limation procedure that enables
us to continue (2.25) to all values of D.

The expression in (2.25) does not exist a priori for all
D. Furthermore, as me mill see, the individual terms in
the series, which are integrals in x, do not exist. For-
tunately, it is possible to modify the terms in the series
so that the integrals do exist; this mo+6cation requires
a delicate and detailed arri!~ment. However, there is one
simple case, namely that for which D = 1, where the
series (2.25) is well defined and easy to evaluate. We
examine this case in the next section.
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A. Special case D = 1

I'(n+ D —2)
lim ~

——--b„o+ -b„g.r ~, ') 2" 2" (3.1)

When this identity is inserted into the sum in (2.25) we
obtain

When D = 1 the series in (2.25) truncates after two
terms. This happens because of the identity

96a2
(3.4)

to reduce (3.2) to the (convergent) integral

]. d f cosh z sinh z'1
F A~ —g ——— dz z—ln +2

4was o dz ( z2e2* )
d —4edzz —ln (1 —e )4ma2

O dX
OO

dx
7l G 0 ~4+

zI', (z) zI', (z)

I;(*) I ;(*)
zK', (z) zK', (z)
Kx (z) K ~ (z)

(3.2)

This result agrees with the well-known result given in

(1 2)

Next we use the identities

Ki(z) =

cosh'I x(z) =

K ~ (z) = (3.3)

B. Convergent reformulation of (2.25)

In this section we modify the form of the series (2.25)
so that each term in the series exists and we apply a
si~mmation procedure to evaluate the resulting series nu-
merically. We begin by rewriting (2.25) in the form

"
(n —i+~)r( +D —2)

F/A = —) o~, dz z—in[I„~+a (z)K„~+o(z)]+2 —D
2&-&~ "~&+~~!r ~

—
~

m=O 2 I
(3.5)

In this form it is easy to investigate the convergence of
the individual integrals in the series. To do so we recall
the asymptotic behavior as x ~ oo:

~ .I'(n+ a)
n&

n, =O
(3 9)

1I„(z)K„(z) — (z w +oo). (3.6)

From (3.6) it is clear that the integrals in (3.5) do not
converge except for the special case D = 1. However, as
we will now argue, one can replace the quantity 2 —D in
(3.5) by 1 without changing the value of F/A, provided
that D & 1. This replacement will render the integrals
convergent.

Consider the series

One can also show that the identity (3.9) holds in the
limit as a approaches a negative integer —¹ To do so
we let o, = —N+ e, where N = 1, 2, 3, . . . . %e then
decompose the series into two parts, the first whose terms
are finite and the second whose terms diverge as e ~ 0:

The first sum in (3.10) can be easily evaluated as".r(n+ a)
n&

(3 7)
1

NN! (3.ii)
This series converges so long as a ( 0 and a g N, —
where N = 1,2, 3, . . . (so that individual terms in the
series exist). This series can be summed in closed form
because it is a special case of the binomial expansion

If the second sum in (3.10) is expanded in a Laurent
series in e, the coefficient of 1/e vanishes. However, the
coeKcient of e is given by

). „I'(n+a)
n=O

(3.8)

, ).(—1)"
~ ~

@(n + 1).
& ")

(3.i2)

Note that if we let x -+ 1 we obtain the identity Finally, using the integral representation
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g(m+1) = —q+ dh
0 1 —t

(3.13)
where t = (1+x ) i~2. This asymptotic behavior implies
that the integral, which we will abbreviate by Q„,in the
nth term in (3.15) grows linearly with increasing n:

we show that (3.12) cancels (3.11).
This argument shows that if the integral in (3.5) is

replaced by 1 then the sum vanishes:

n=O

(n —1+ D)I'(n+ D —2) —= 0 {D& 1). (3.14)

(n —1 + —)I'(n + D —2)'- ---.'.--- (--)
x dx ln[2zI„,+n (z)K„,~ a (x)].

0
+2 (3.15)

It follows that in the region D ( 1 (if we sum first over

n) we can add any constant to the integrand in each term
in the series (3.5) without changing the value of the sum.
We conclude that we may replace 2 —D by 1 in (3.5).
Our new improved expression for the Casimir force per
unit area is thus

Q„:—— dx ln[2xI„(x)K„(x))
Q

v 1
Ti —+

2 128v
35

32768v3 + . A~GO

{3.17)

(~i —1+ D)r(n+ D —2)

2D —1~=z ~D+l.~t I' D —1

where v = n —1+ 2. Because of this linear growth in nD

it is apparent that the series in (3.15) does not converge
if D ) 0 except for the special case D = 1, where the
series truncates.

To solve this problem we introduce an analytic summa-
tion procedure based on the properties of the Riemann

( function. Specifically, we consider the leading large n-
behavior of the summand in (3.15):

For D & 0 each term in this series exists for all n (For.
D & 0 there is yet another subtlety that we will address
shortly. ) Before we proceed, we must emphasize that
while (3.15) has a different and more compact form than
that in (2.25) we have not changed the value of E/A; we

have in effect added zero to the series representing E/A.
Unfortunately, the formula in (3.15) is still not satis-

factory because the series does not converge. To examine
the convergence of this series we need to know the asymp-
totic behavior of the integrals for large n. We make use
of the uniform asymptotic approximation to the product
I„(vz)K„(vz):

t ( t' —6t +5t'
1„(vz)K„(vz)- —

~

1+
2v 8vz

(v i oo), (3.16)

1 - (nD '+ ) (n —i oo).
2&~ . 'o&+ir (~-')

(3.18)

Then, regarding the parameter D as being less than 0,
we sum the expression on the right side of (3.18) over n
from 1 to oo. This gives

(1 —D),
2 z' 2=a + I'( )

(3.19)

which is a well-defined function of D. We now add (3.19)
to (3.15) and correspondingly subtract the right side of
(3.18) &om each term (except the n = 0 term) in the
expression for E/A in (3.15). This produces a new series
for E/A that is convergent for D ( 1:

p(D )
oo

E/A = ~, , dz ln[2xI, + a (x)K,+ D (z)]
gD+1~ 2 4~ 2 0

{n 1+ D)r(—~+ D —2)
+ n'+—-

2&-i&1 (&-i) n!

x dx ln[2xI„,+ a (x)K„,+ ~ (z)]
0 2op (D—l)~( ) I' {3.20)

We have finally achieved our objective; we have obtained a convergent series representation for E/A for a finite range
of pos1tyve D, namely, 0 & D & 1. Each term in this series exists. In the next section we will use this series to
calculate analytically the Casimir stress on a sphere in zero dimensions.

C. Casimir stress on a aero-dimensional sphere

If we substitute D = 0 in (3.20) we find that E/A = oo; this is because the Riemann g function I,"(1—D) is singular
when D = 0. The divergence in E/A is a consequence of that fact that the surface area of a zero dimensional sphere
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is zero. Hence, we will compute the Casimir stress, rather than the Casimir force per unit area. The equation for F
is obtained by multiplying (3.20) by the surface area of a D-dimensional sphere of radius u, A = 2aD ~zD~2/I'(D/2):

1 OO

E = dz ln[2zI ~+o (z)K ~+a(z)j
2vra2

(n —1+ —,)I'(n+ D —2)

I'(D —1) - 2 n!

OO 7r
x dz ln[2zI„,~ (z)K„,~ o (z)] —

~ ((& —&)).
0

(3.21)

We can now let D tend to 0 in (3.21). We obtain the
result

suit F = 0 at D = 0 is incorrect because the series in
(3.15) does not converge.

1
F)c)=o =—

2a
(3.22) D. Numerical results

where we have used ((z),~
z as z ~ 1.

Note that we could not have obtained this result from
(3.15). Indeed, if we naively let D -+ 0+ in the formula
obtained by multiplying (3.15) by the surface area A of
the sphere we appear to get the value 0. This is because
only the n = 0 and n = 2 terms survive in this limit
and these two terms cancel as a result of the identities
I „(z)= I„(z)and K „(z)= K„(z).However, the re

The expression in (3.20) may in principle be used to
compute F/A numerically for D ( 1; to wit, we may eval-
uate the integrals for a large number N of terms in the
series, compute the Nth partial sum, and extrapolate the
result to its value at N = oo. However, this procedure is
rather inefficient because the sum in (3.20) is very slowly
converging. Therefore, to prepare for evaluating E/A we
subtract not just the one term in (3.18) but many terms
in this asymptotic expansion. The first three terms are

(n —1+ —,)I'(n+ D —2)
Q

2 ~z ~ a +n!I'{ )

1 z) i (D —1)(D —2) z-2n '+ n
2D~ q oDy1P (D 1)— 2

24D —176D + 504D —688D + 387
192

(n -+ oo). (3.23)

If we use K terms in this asymptotic expansion we then
have K corresponding Riemann ( functions appearing
in the final form of the series. The series converges more
rapidly (the nth term in the series vanishes like n~ ~

)
and it also converges for a larger range of the dimension:
D & K. We have used this method to graph F/A and E
as functions of D (see Figs. 2 and 3).

From Figs. 2 and 3 it appears that F and E/A are
singular at D = 2 and D = 4. If fact, as we will now

explain, the Casimir stress is singular at all even positive
integer values of D; E and E/A have simple poles at
D = 2N, N = 1,2, 3, . . . . To verify this, we examine
the generalization of (3.20) obtained by making many
subtractions of the asymptotic behavior in (3.23). This
formula for F/A will contain many Riemann t,

' functions,

one for each subtraction. The kth ( function will have the
form g(k —D). Furthermore, if k is even the coefficient
of g(k —D) contains the factor (k —1 —D) (No such.
factor occurs if k is odd. ) Thus, when D = k —1 and
k is an even positive integer the simple pole of the zeta
function is canceled by this factor and when D = k —1
and A: is an odd positive integer, the simple pole persists.

As explained above, the Casimir~ stress is finite at all
odd-integer dimensions. For example,

F~D s ———0.0028168. . . ,
1

(3.24)
a

where the positive value indicates that the stress is
repulsive (tends to inflate the sphere). The numeri-
cal value in (3.24) is much smaller than that obtained
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0.0

2N+1
hm

~(~ + D 2) - iv+i+g—1a~i 2—iv I' (&—i)2 j=0 ¹!
2(2N+1 —q)!

"'

+
CI

-0.2

LL

-0.4

0.0 2.0 4.0

(N = 0, 1, 2, 3, . . .), (3.25)

which is the generalization of (3.1). If we use this identity
at N = 1 we obtain the following integral representation
for F/A at D = —1:

sinhz )
zcoshz j

FIG. 2. A plot of the Casimir force per unit ares E/A for
0 ( D & 5 on a spherical shell.

by Boyer [17] for the case of an electromagnetic field
confined in a three-dimensional spherical cavity (F
0.046176. . . a z) and that obtained, by Milton [18] for
the case of a spinor 6eld connned in a three-dimensional
spherical cavity (F = 0.0204. . . a 2).

Although we have not proved it, it does appear &om
Fig. 3 that I" -+ 0 as D -+ oo. This is probably associated
with the fact that the volnine and surface area of a D
dimensional sphere of radius a tend to 0 as D tends to

E. Casimir stress for negative d,imension

For all odd-integer D & 1 the series in (3.15) truncates
and thus it is not necessary to subtract oK the large-n
behavior. This truncation occurs because of the identity

coshz )
z sinhz)

(3.26)

where we have inserted the expressions for the half-odd
integer modi6ed Bessel functions. An interesting aspect
of this integral representation for F/A is that the argu-
ment of the logarith~ has a zero for a positive real value
of x. This zero may be traced to the positive zero of the
function I s~2(z) Thus, . F/A)D i is complex. Because
the contour of integration passes under the zero, we find
here F/A~D i ——0.65—3 82 + i1.884 45.

In general, for all D ( 0, D g 2N with —N
1,2, 3, . . . , the argument of the logarithm in the in-
tegrand of (3.15) always has a zero. Hence, the an-
alytic continuation of F/A to negative values of D is
complex. The zero of the argument of the logarithm
comes about because I„(z)has a real positive zero when
—2m & v & —2m+1, where m is a positive integer. Only
a finite number of integrals in the series in (3.15) are com-
plex. However, as D becomes more negative, there are
more and more complex integrals in the series. In partic-
ular, each time D decreases past a negative even integer
one additional integral in the series (3.15) becomes com-
plex. Thus, in the complex-D plane, F/A has branch cuts

0.0-
0.0—

-2.0

+4

0.0
I

2.0
I

4.0

-3.0

-5.0
I

-3.0
I

-1.0
I

1.0
I

3.0 5.0

FIG. 3. A plot of the Casi~i~ stress E for 0 ( D ( 5 on a
spherical shell.

FIG. 4. A plot of the Casi~i& stress E for —5 & D & 5 on
a spherical shell. For D ( 0 the stress E is complex and ere

have plotted Re E.
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emanating &om the points D = —2k, k = 0, 1,2, 3, . . . .
It is remarkable, however, that exactly at the negative

even integers, it is possible to evaluate the Casimir stress
F; we 6nd that at these points F = 0. This is because
the series (3.15) truncates after a finite number of terms
for these values of D, and the remaining terms cancel in
pairs. In Fig. 4 we plot ReE for —5 & D ( 5. Figure
4 illustrates one interesting aspect of the Casimir stress,
namely, the erratic Huctuations in the sign of F. The sign
of the Casimir stress is extremely difficult to understand

intuitively —we know of no simple physical argument that
predicts whether the stress is attractive or repulsive.
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