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The quantization of a particle which moves in the neighborhood of a Newtonian path is investi-

gated as a model with typical characteristics of a field theory with classical finite energy configura-

tions. The transformation to collective and Suctuation coordinates results in a singular Lagrangian.
It is shown that the associated first class constraints generate a gauge group under which the first-

order Lagrangian is invariant. It is then shown that in the BRST extension also the Hamiltonian is
invariant and allows the complete quantization of the theory. Finally various gauge-fixing conditions
are discussed as well as the integration of the path integral and the derivation of Schwinger-Dyson
equations.

PACS number(s): 11.10.Ef, 11.10.1,m, 11.15.Kc

I. INTRODUCTION

In very general terms a gauge field theory can be looked
at as a theory with constraints. But the converse seexns
also to be true: A theory with constraints is a gauge
theory in the sense that it possesses a gauge symmetry
which is generated by the constraints. Constraints arise
naturally with a large class of field transformations. In
particular, the quantization of a field theory in the neigh-
borhood of some classical configuration with finite action
or energy (depending on whether time is Euclidean or
Minkowskian, respectively) requires a transformation to
collective and Buctuation variables and thus to a larger
number of degrees of freedom, which has the consequence
of the immediate appearance of constraints. Since in-
stantons, solitons, bounces, and other such topological or
nontopological classical configurations play an important
role in many field theoretical considerations, the quanti-
zation of such theories is of considerable interest. Quan-
tization in the background of a classical con6guration im-
plies also a perturbation expansion in its neighborhood
and specifically the loop expansion if the path integral
method is exnployed. One is therefore confronted with
the problexn of developing such a perturbation theory for
a system with constraints. It is well known that this
is a coxnplicated task which involves in particular also
the problem of gauge fixing. One way to achieve the ef-
fects of gauge 6xing without breaking the invariance is to
reformulate the gauge transformation as a Becchi-Rouet-
Stora-Tyutin (BRST) transformation [1], the symmetry
of which is now generally regarded as a fundamental re-
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quirement of any theory with local gauge invariance [2].
Frequently, there is a considerable difference between

what can be done in principle and what can be done
in practice. In the following we therefore consider in
detail as a prototype of a theory with 6nite action or
energy classical configurations the manageable problem
of the quantization of a particle which is constrained to
move in the neighborhood of a classical Newtonian path
(or orbit). We later indicate brieBy how an analogous
procedure of gauging a theory by using collective fields
can be applied to solitonlike or Skyrxne-like models with
topological vortex solutions.

The problexn of a particle which is constrained to move
in the vicinity of a classical path has been considered pre-
viously with the intention to develop a Schrodinger-like
theory as an alternative to the path integral method [3,4].
Its formulation as a gauge theory has not been consid-
ered previously to our knowledge. There are, of course,
some similarities with the treatment of the circular path
in Ref. [2].

In Sec. II we de6ne the basics of the theory of a parti-
cle which moves in the neighborhood of a classical orbit,
and we exnphasize the importance of starting from the
first-order Lagrangian. In Sec. III we discuss the ne-
cessity of gauge fixing and evaluate the Dirac brackets
[5] for a convenient choice. We also point out the rela-
tionship to the method of Faddeev and Jackiw [6]. In
Sec. IV we de6ne the gauge transformation generated by
the constraints and point out the noninvariance of the
Hamiltonian. In Secs. V—VII we define the BRST trans-
formation and show that even with gauge 6xing both the
Lagrangian and Hamiltonian are invariant. We also show
that with BRST and anti-BRST invariance of the Hamil-
tonian the physical states are precisely those which are
projected out by the constraints. In Sec. VIII we discuss
various choices of gauge-fixing conditions. In Sec. IX we
go to the path integral and derive the Schwinger-Dyson
equations. In Sec. X we make some concluding remarks
and point out how the method described here may be
applied to the quantization of Beld theories with, e.g. ,
classical soliton or vortex con6gurations.
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We consider the Lagrangian [3,4]

L = 2R —V(R), (2.1)

II. PARTICLE NEAR A CLASSICAL ORBIT
AND ITS FIRST-ORDER LAGRANGIAN

and

where

BL BL BR;
Bq BR; Bq

(2.9)

' = —(e'ln Q-) = f'(e'ln-, x)Q- (2'0)
OR O

Oq Oq
where R is an N-dimensional Euclidean vector with
canonical momentum P = R. We assume that the path
R of the particle of mass m = 1 can be approximated
by some path r(f(q)), e.g. , a classical trajectory, where

f (classically time) is a given arbitrary function which
fixes the parametrization of the curve and q is an ap-
propriate parameter which plays the role of a collective
coordinate. R itself is then written

Since

V:=S —S ~'&'=0.

BQ
Oq

= W-T' = (n-Ie')f (e'lnp, ~)Qp

(2.11)

where n y = Bn /Bf From (2.8) we obtain P;
p W;. Inserting this into (2.9), we obtain the constraint

R = r(f (q)) + ):n-(f(q))~
ex=2

(2.2) where

= f'r pQp,

r-p = (n-lnp, x) = -rp-,

(2.12)

(2.13)
where {n (f)j together with ry (f ) = dr/df form a mov-
ing local reference frame at the point r(f), i.e. ,

we can write the constraint

v =p —f'p r pQp. (2.14)

This is a primary constraint [5] which is indicative of the
singularity of the Lagrangian [7] expressed in terms of col-
lective and auctuation coordinates. Since the constraint
involves momenta, we have to start &om the first-order
Lagrangian expressed in terms of coordinates and mo-
menta and not &om the momentum-integrated second-
order form in the path integral formulation. In the orig-
inal variables the first-order form is given by

L=PR; —H, (2.15)

where H = 2P; + V(R) = ~p p + V(R), with R;
in (2.15) given by R; = BK/BP; in the first-order La-
grangian. Now

~aQs Da I f 0 (2.3)

(2.4)R = R;(f(q))e; = Q n (f(q)),
where {e,j are the unit vectors of the fixed frame and
{n ) those of the moving reference frame, with i, o. =
1, . . . , N, and nq ——ry/ry Then. OR; OR, .R'=BQ*Q + B'q

R;=(e,lR)=M; Q
so that

2.5

In perturbation theory it is particularly convenient to
choose gq ——0 so that the independent variables are q
and g and their respective conjugate momenta. In the
following, perturbation theory is not our immediate aim,
so that we shall make a different choice below.

It is essential to use a convenient notation. We write
therefore

where

Q =(n lR)=W;R;,

and so

P;R; = P;(M; Q +T;q)
=p Q +pq (2.16)

and

BR;
M; =(e;ln )=

O

BQW;=(n le;)=
OR;

W,Mp ——b p, M; 8'~=b~,

(2.6)

(2.7)

L=pq+p Q —H, H= 2p p +V(Q) . (2.17)

This is the new first-order form of the Lagrangian on
which all subsequent considerations will be based. It may
be observed here that H = H(p, Q ) is independent of

q since V = V(R) = V(/Q2) and

dQ2 dQ dQ dR;

= 2Q W,T, = 2f'Q I' pQp ——0. (2.18)
the latter being the normalization and orthogonality rela-
tions of the unit vectors in the moving and fixed reference
&ames, respectively. Now

p:= . = . =PM; =(Pln ) =P'=PBL BL BR;

BQ BR; BQn

(2.8)

III. CAUCE FIXINC AND DIRAC
QUANTIZATIGN

The canonical quantization of the theory is achieved
with Dirac's method [5]. In Dirac's terminology, p of
(2.14) is a primary constraint. Before one can proceed
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one has to check the presence of further constraints. We
define therefore the total Hamiltonian

(3.1)

and evaluate the Poisson bracket {rp, H~}. A somewhat
lengthy calculation yields

p —p ~o'&' p —f'pol'o Q
~xP' . f'1'ieQe

In the reduced physical subspace of the independent vari-
ables p, q, p, Q, a = 2, . . . , N, there are only the normal
type of Dirac brackets. As usual, quantization is efFected
by the replacement

{(p,Hp} = 0, (3.2) {A,B}g) -+ [A, B)/ih,

X:=Qi =0. (3.3)

Demanding that this condition be maintained in the
course of time, i.e.,

(3.4)

we obtain, for the Lagrange multiplier,

P1
f'1'ioQo

(3.5)

Since {rp,y} = fT& Q, the constraints {g;},@q = p,
Q2 = y, are second class. The Dirac bracket of any two
quantities F and G is defined by

so that y = 0; i.e., the constraint is stable, and there
is no new, i.e., secondary, constraint. The first-class na-
ture of p (and, in fact, pg = BL/BA = 0) is indicative
of the gauge symmetry of the theory and implies, in the
procedure of Dirac, that the symmetry has to be bro-
ken by i.mposition of a further constraint or gauge-fixing
condition which makes the set of constraints and gauge-
fixing conditions second class. In the present context it
is convenient to choose, as a gauge-fixing condition,

i.e., (with 5 = 1),

lpq]= —i (3.10)

The method of quantization advocated by Faddeev and
Jackiw [6] is based on the idea of using the constraints
in order to go to a reduced phase space. Thus, if
bL(q, Q; q, Q ) is expressed in terms of bq, bp, hQ, bp
(where p and p are the momenta associated with q and

Q ), one would use the constraint (2.14) in order to elim-
inate, e.g. , hpq. SL will then be expressed in terms of
2N + 1 h quantities, i.e., an odd number of phase space
variable increments. If one now proceeds as in the usual
derivation of Hamilton's equations, one encounters a new
problem: The inverse of an odd-dimensional antisymmet-
ric matrix does not exist. It is therefore necessary to de-
mand a further condition (e.g. , Qq

——0), the gauge-fixing
condition, in order to cure this problem. In the present
problem with one constraint, this condition suffices, and
the canonical commutation relations of the (then) inde-
pendent variables can be read ofF the inverted matrix.
The same results are obtained with Faddeev's arg»ment
[8], which is based on the initial conditions of the equa-
tions of motion. This method of going to a reduced phase
space difFers considerably from the method to be dis-
cussed in the following sections, which is based on the
consideration of an enlarged phase space.

(3.6)

{q p}a = 1 {Qo J s}c)= 4s (3.7)

and the abnormal ones

Evaluation of this expression for the canonical variables
q, p and Q,p, o. = 1, . . . , N yields the normal relations

IV. GAUGE TRANSFORMATION

We have seen above that the theory possesses one pri-
mary constraint and no secondary or higher-order con-
straints. We incorporated this primary constraint into
the Hamiltonian by forming Hg of (3.1). We now con-
sider the corresponding first-order Lagrangian in the en-
larged phase space:

{q,pi}a = f,~, {p,pi}z = f'p 1'
13,yQI9

1o a la n

r.. .{Ql)pl }D —0) {Qa)pl}D—I'1,
I'p~p

{po pi}o =
I'1

(3.8)

L(qq Qa) ~i p& pay pA) = pq + paQa
Hi(q Q &'p —p p~)

(4.1)
Hp = —,'p' + V(B(f(q))) + A(p .

This new first-order Lagrangian now has two constraints,
1.e.,

We observe that the abnormal relations are related to
p1, the dependent variable. Especially, the bracket
{Qq,pq}~ = 0 shows that the canonical variables Qq, pq
can be simultaneously determined in quant»m theory.
The Dirac brackets of Qq with any variable are zero, so
that Qq is a classical quantity. Qq and pq can be fixed
by the conditions y = 0, y = 0:

A:=p~=o,
and we see that they commute: i.e.,

{g;,Q~} =0, i,j =1,2. (4.2)

Thus &PAL and @2 are first class, and (4.2) expresses the
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fact that the gauge tr~n~formatioa can be constructed
from gi and v)2. We define the generator of this time-
dependent gauge transformation by

Qg .——ig(t)p —g(t)p„,

where g(t) is an arbitrary real function of t and the cor-
responding unitary operator is

physical states must be gauge invariant, we must also
have a Hamiltonian which is gauge invariant. This is
exactly what we shall achieve with the BRST transfor-
mation below. Equation (4.10) allows us only to infer
that in the subspace of physical states ~Q) with y]g) = 0
we have bHq~@) = 0, but Qs is not a conserved charge.

Ug = exp(Qs) —1+Qg . (4 4) V. BRST TRANSFORMATION

hA = UsQUs —0 = [Qs, 0] . (4.5)

With this we can compute the variations of all dynamical
variables. One obtains

~p = [Qs, p] = ig[q, p—] = gM, —
~q = [Q& q] = —ig[v» q] = —g,

bQ = [Qs, Q ] = —ig[y, Q ] = gR

The infinitesimal transformation of an operator 0 is then
given by

As is well known, the BRST extension of phase space
allows one to maintain the gauge iavariance in the sense
of BRST invariance in spite of the addition of a gauge-
fixing term to the first orde-r Lagrangian. The generator
of the BRST transformation is essentially de6ned such
that the function g(t) in the generator of the gauge trans-
formation Qs, i.e., (4.3), is replaced by the Grassmann
variable or anticomxnuting ghost field operator c(t). This
procedure then guarantees the BRST invariance of the
first-order Lagrangian. Thus the BRST charge Q~ is
taken to be

where

hp- = [Q& p ] = ig[q» p ]
—= gN—

hA = [Qs, A] = —g,
bpp =0,

(4.6)
Qgy .= —ic(t)rp —ic(t)pg + i(x; —c)b, (5.1)

where c(t) and c(t) are ghost and antighost variables,
respectively, and b(t) is the bosonic Nakanishi-Lautrup
variable. The momenta canonical to c and c are m, and
m, , which we de6ne by directional derivatives: i.e. ,

We also have

M = f' F p, yQppa )

R = f'F pQp,
N = f'I'p pp .

(4 7)
8

x, :=L—.,
19c

8
Bc

Qp ——0,

The generator Q~ is nilpotent: i.e. ,

(5 2)

[(p, q] = —i, [(p, p] = iM, —

[V % Qa] = iRa) [V ) pa] = iNa

(4.8)

and, since V(R, (f(q) ))is a scalar depending only on R2 =
2

with (c, c) = 0.
We also ass@me here in the BRST quantization proce-

dure that all bosonic operators have canonical commuta-
tion relations and all fermionic operators have canonical
anticommutation relations. Thus, in particular, we as-
sume

hL' = [Q I'] = dt[g(t)&] (4.9)

i.e., the action is invariant under the gauge transforma-
tion (4.6). However,

bHp = [Qs, Hg] = —g(t)y . (4.10)

BV BV BQp

Bq BQ2 Bq

dV
2Q f'I' pQpbq

=0,
in view of the antisymmetry of I'. It is now straightfor-
ward to verify that

[p q]= —' [p Qpl= '~ p (5.3)

for a, P = 1, . . . , N and

~c& C ~) ~cl C Z (5.4)

Thus s.; in (5.1) has ghost number +1 like c, and hence
Q~ has definite ghost number +1. Since we do not (here)
choose c to be Hermitian and c to be anti-Hermitiaa as
is often customary in the literature, the anticommuta-
tors f~„c)and (w;, c) here will not be independent (the
convention chosen here makes the Ham~&toaian formalism
below more transparent), though c and c are independent
canonical variables.

The in6nitesimal try~formation of any Heisenberg op-
erator 0 uader the BRST traasforxnation generated by
Q~ is given by

Thus the Hamiltonian is only invariant for time-
independent gauge trensformations. Of course, since the bO = [Qgy, O)~, (5.5)
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depending on whether 0 is bosonic or fermionic.
We then find (with [,]+ = (, ))

From (5.8) we obtain the Euler-Lagrange equation of b;
i.e.,

bq = [Qa q] = —c

hp = [Q~,p] = —cM,
bQ =[QaQ]=c&
hp = [Q~,p ] = cN—

bA = [Q~, A] = —c,
bpi = o

b = —(A+ hq),

so that

~B = pq +paQa 2papa V Ap

+ ~~ (A + hq) + cc —hcc .

From L~ we obtain

(5.10)

(s.11)

bc= (Q~, c) = 0,
bw, = (Q~, x,) = y,

hc = (Q~, c) = 5 —i(c, c)(pg + 6),
bee ——(Q~, ~;) = 0,

so that, in (5.6),
(s.6)

and, in (5.1),

pp ——A+ hq = —6,

bb = [Q~, 5] = 0,
bps = [Qa, ps] = —(~.——c) .

Lap = —b[c(A+ hq+ 2tt)]

= —b(A+ hq) —25 + cc —hcc, (s.7)

where h is a constant with appropriate dimension, and
in the last line we dropped a total time derivative after a
partial integration in the action integral. Of course, one
could make a difFerent choice, e.g. , Lap = —h[c(A —p+
25)], but then, in view of hp = —Mc, one would arrive at
s much more complicated Euler-Lagrange equation for c,
i.e., c —cM = 0, with further complications in the argu-
ments below. In fact, the choice (5.7) which corresponds
to the covariant gauge in /ED results in free equations
of motion for the ghost fields c and c, which then allow
one to build the physical states on a particular state of
the &ee ghost sector.

It is now a simple matter to verify that the overall
Lagrangian, i.e.,

Here M, R, N are the quantities defined by (4.7). It
will be seen below that with the use of the equations of
motion hc = 5 and be = 0.

We now add to the first-order Lagrangian I of (4.1)
a trivially BRST-invariant gauge-fixing contribution,
which we choose as

Qgy = —tel@ —tcpp .

In (5.11) the gauge-fixing part 2 (A+ hq) clearly violates
the invariance under the original gauge transformation
(4.6). We also observe that the ghost sector completely
decouples and its fields satisfy the free field equations

c+ hc = 0, c+ he = 0 . (s.12)

We can therefore write the Heisenberg operators c, c as

c(t) eiutB + imtD

(5.13)
c(t) = e * Bt+e' D

with

VI. THE HAMILTONIAN AND ITS
DIAGONALIZ ATION

As in the standard procedure, we now pass &om L~ to
the corresponding Hamiltonian H~ by defining the latter
as the complete Legendre transform of L~, i.e.,

where, of course, B,D, Bt,Dt are again fermionic oper-
ators.

LB = pq +paQa 2papa V —Ap1

—b(A + hq) —25 + cc —hcc, (5.8)
H~ = pq + p Q + ppA + x,c + cs'; —I& . (6.1)

is invariant under the BRST transformation (5.6); i.e.,

big) ——0 .

Applying the directional derivatives of (5.2), we obtain
cc+ hcc = 2ar (BtB+DtD), It—:ur )0, (6.3)

Inserting L~, we obtain

Ha = 2p p + V+ Ay —hpqq+ 2p„+ cc+hcc. (6.2)

With (5.13) we can check that Hn is Hermitian. In fact,

so that, in (5.6),

c —C 7lc C )

bpg = 0 .

(s.9)
because (D, Dt) = 1/2~, ~ real, so that ~ ) 0. We
observe also that this expression is time independent.

Considered as independent canonical variables, c and
c must satisfy the anticommutation relations
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(c,cj = 0 = (vr„vr;) = (c,c),

so that also

dt
—(c, c) = 0, (c,c) = (c-, c) .

(6.4)

(6.5)

(1)c = 0 giving

B2+ (B,D) + D2 = 0,

(2)c = 0 giving
B' —(B,D) + D' = 0,

c) c = —m'c, c

This is consistent with (5.4) if

chic = z, c)c (6.6)

(3)cc+cc = 0 giving
B' —D' =O,

(4)cc+ cc = 0 giving

(B,Bt) + (D, Dt) + (B,Dt) + (D, Bt) = 0,

We can also check the consistency of these relations with
Hamilton's equations for ghost fields. Setting

Hgh~st cc + hcc
= m c+hcc,

we have, with (5.12) and (5.9),

(5)cc + cc = 0 giving

(B,B') + (D, Dt) —(B,D') —(D, Bt) = 0,

(6)cc+ cc =i giving

(B,Btj —(D, Dt) —(B,Dt) + (D, B ) = —— (6 9)

Of these, (1)—(3) give

B =D =(B,D) =0
BH . BH
Bx, Bc

= —hc=c=ir, . ( ) and (4)—(6) give

[H, c] = —(c, c)c = i c . —(6.8)

We shall require the physical states ~g} to be BRST in-

variant: i.e.,

&~l&) = o

or

i[e* 'B—(y + i(upg) + e ' 'D(rp —iurpg)] ~/) = 0 .

These are the equal-sign Hamilton equations for
fermionic variables. One can also check the consistency
of these equations with the Heisenberg equations: e.g. ,

(B,Bt) + (D, Dt) = 0,
(B,D')+(D, B') =o,

(B,B')+(D,B'j =
2w

(D, Dt) + (B,D') =—
The last set of equations has the solutions

(B,Dt) = 0,

(D, Dt) =—
2(d

(6.1o)

(6.11)

The set of states {]@})satisfying this condition contains
states with p[g} = 0 and pq ~@ = 0, but also states ~g} —=

]0), for which, instead,

With ~ & 0 and ]0} as the vacuum state, for which as
above c(0)~0) = 0 and c(0)]0) = 0, i.e. ,

B[0}= 0 and D[0) = 0

we have

Bio}= Dio} = o, (6.12)

l.e.)

(B + D)]0) = 0,

c(o)lo} = o c(0)lo} = o .

(0]DDt]0)= — —(0]0),

(OIBB'lo)= ——(olo)

(6.13)

Since c, c, c, c obey a ru~mber of relations, we can use
these in order to obtain relations between the operators
B,D, Bt,Dt in (5.13). There are six different conditions.
Imposing these at t = 0, we obtain

For (0]0} positive, Dt]0} is a state with positive norm
and Bt[0) one with negative norm. As a matter of conve-
nience, we could take {0]0)negative, in which case Dt]0}
is the lowest (negative norm) state. We also have, from

(6.11),
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and so

(OIBDt + DtBIO) = 0

0 = (0(BDt[0) = —(0[DtB[0) . (6.14)

i.e., states [0) multiplied by any functions of the bosonic
variables q s ps Qa y pa r A

& pp.
However, the Hamiltonian is also invariant under the

anti-BRST transformation generated by the antighostlike
generator

Thus Bt~O) is orthogonal to Dt~O). Moreover,

(0[BHsg~gtD )0) = 2(u (0[B(BB+D D)D )0)

= —2co (0[DtBDDtiO)

Q~ .. —ic(t) rp + ic(t)pp
= ie ' Bt(y —imp~) + ie* Dt(&p+ imps), (7.4)

which generates the variations

=0, (6.15)

since (O~Dt = 0. Thus the ghost part of the Hamiltonian
does not lead to transitions between the states Dt ~0) and
Bt(0).

The occurrence of the negative norm states here is
quite similar to their occurrence in /ED when a gauge-
fixing term of the form (BpA")2 is added. It is clear that
since the ghost sector is &ee and completely decouples
from the rest of the system its negative norm states lie
in that part of Hilbert space which is orthogonal to the
subspace of physical states. Thus, in view of (6.14), if we
choose Dt~O) at t = 0 we completely exclude the Bt~O)
states for all time t.

bq

bp

EQ

bp

bA

bx,
bc

C q

cM,
—cR
cN

0,
6,
0,
0,
0.

VII. ANTI-BRST TRANSFORMATION
AND PHYSICAL STATES

[Qg, Hg] = 0 (7.2)

and Q~ is conserved.
We require physical states ~g) to be BRST invariant:

1.e.)

We can verify that H~ of (6.2) is invariant under the
BRST transformation; in fact,

bHgy = bV —c(y —b) —Acl —Ab(f'I' pQpp )
= bV —c(y —b)

=0, (7.1)

since 6V = 0 and &p
—b = 0 is the Euler-Lagrange equa-

tion which results &om variation of L~ with respect to
A and on using (5.10). Thus here H~ is fully invariant,
which is di8'erent &om what we observed in the case of
the gauge transformation. Hence

Again, one can show that H~ is anti-BRST invariant so
that Q~ is conserved, i.e.,

SHAN)
——0, [Hg, Qg] = 0 . (7.6)

One can easily verify that the trivially BRST-invariant
gauge-fixing term L~F of (5.7) is, in fact, also anti-BRST
invariant, i.e.,

bLGF = b[ b(A+ h—q) —2b —hcc+ cc]

b(bA + hbq)—+ hcbc —cbc
= —bc+ cb

=0.
The operator Q~ is, of course, the adjoint of Q~. Hence
we have to demand not only (7.3) for physical states ~@),
but also

(ie ' Bt(y —iurpp) +ie+' Dt(rp+ iurpg) j~Q) = 0 .
(7.7)

Since the states B~Q) = 0, D~g) = 0 obviously do not sat-
isfy this condition, the only way both (7.3) and (7.7) can
be satisfied is by states projected out by the constraints,
i.e., those satisfying

V IC) = o and pi(@) = o

or

( ie' B(p+ ice—p~) —ie *
D(&p —i~pq))~@) = 0 .

(7.3)

Hence the additional anti-BRST symmetry is needed here
in order to recover only the physical states projected out
by the constraints.

This condition is obviously not only satisfied by rp~@) = 0
and pp~@) = 0, but also, as mentioned earlier, by states
built from ~0), for which

B[g) = 0, D~@) = 0,

VIII. COMMENTS GN CAUGE-FIXINC
CHOICES

A particular choice of the gauge-fixing term which has
occasionally been favored in the literature [9)—[11] is de-
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LGF = —b(cq) = (—bq+ cc) . (8.1)

scribed as gauge fixing the collective coordinate to zero.
An advantage of such a choice would seem to be that
when it is inserted into the appropriate partition func-
tional, it is easy to recover the original theory after in-

tegrating out the auxiliary 6eld b. The gauge-fixing part
of the Lagrangian is taken to be

LGF = —b[c(A+ Qg + 2b)]

= —b(A+ Q, ) —2b + cc+ Spec,

where

l9+= f f'la Qa = = (v 1 x)Poisson
Bpy

{8.6)

(8 7)

The BRST-invariant Lagrangian is

L~ = L —(bq + cc), (8.2)

This expression is equal to the Poisson bracket of p and

g = Qq
——0. Thus it corresponds to the gauge-fixing

condition Qq ——0. Then

where L is given by (4.1). However, it is necessary to
reexamine the BRST transformation itself. Thus we now
consider the BRST generator in the form

La = L+LGF
= Jq+ paQa —,papa——& —&V

1

b(—A+ Qg) —2b + cc+ cSgc . (8.8)

Then

Q~ .= icp ——'Rcpt + i'll' bo. (8.3)
The BRST transformation is again given by (5.6). Now

&c —c) xc —c

bc = (Q~, c) = —i(c, c)p~ + i(m;, c)b
= —i(c, cjpp + b . (8.4)

Also, BL~/Bb = 0, and so

b = —(A+ Qy) . (8.9)

We cannot identify c with m; since now The equations of motion of c and c are

vr.-=0, vr, =0.
From the equations of motion of c, c, we obtain

—Sgc=0,

c —Sgc = 0.
(8.10)

c=0, c=0,
and so

c=0, c=0.

Thus c and c are not even dynamical variables, but as
before

We also have

OL
p) =

t9A

These equations express a coupling of the ghost and
antighost fields to Q and q. Thus the ghost sector does
not decouple as in the earlier case. One can now quan-
tize the theory in terms of the &ee part of the Hamil-
tonian and consider the eEects of interactions perturba-
tively. Then one begins &om an eigenstate of the free
part of the ghost Hamiltonian and builds all states [g)
with Q~~@) = 0 by tensoring this with arbitrary func-
tions of q, p, Q,p, A, p~ as described in Ref. [2].

For perturbation theory the gauge-6xing condition
Qq

——0 is not the most convenient. In that case the
calculations become easier and more transparent if we

use the gauge-6xing condition

and now

Further,

bA = [Q~, A] = —ic[pp, A]

—C

(8 5)

where

We set

X Ql r1 gl 0

rq ——r ry

(8.11)

8q = [Q~, q] = i [p, q]c = —c =0—
and similarly bp = 0 = bp = bQ . Thus, without the
dynamics of velocities of c and c in LGF, the transforma-
tion becomes trivial. The choice (8.1) therefore is mean-

ingless in the present example.
Another interesting choice of the gauge-fixing part of

the Lagrangian is which gives

ryy = —V'V(r),

and treat g as small perturbative Buctuations about r.
The derivative ry = dr/df is the zero mode of the prob-
lem as can be seen by di6erentiating the classical equa-
tion
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(a'v l
Cf2 &i +

I yg g~ l (rf)i (s.12)

We choose the normalization

so that

Fy. Fyy =0. (s.13)

For the Poisson bracket {y,y}which determines the mass
of the ghosts e and c, we now obtain (from difFerentiations
with respect to q, p and Qq, pq)

{y,X}po~scn = f'(rg—y .no)(no .r)

+f —(r rg)+O(rl) .I d

d
(8.14)

Using (8.13) and the completeness relation ~n )(n ~

=
1 —~ry) (ry ~, we obtain

{~.~} --- = f' '+ &(~) =1+O(~) (8.15)

0 ~

Z = dqdp d dp dAdp~ dcdvr, dcdh& exp —S~

with appropriate normalization. Thus the efFective mass
of the ghosts is determined by the lowest-order approx-
imation of the Poisson bracket {y,y} and this is, efFec-

tively, the Faddeev-Popov determinant. In lowest order
this determinant is given by the normalization of the as-
sociated zero mode as is well known in the context of
soliton considerations. This normalization, of course, can
also be looked at as the finite kinetic energy of the clas-
sical particle with zero total energy. The gauge-fixing
condition (S.ll), i.e., g ry = 0, means that the fiuc-
tuations g are orthogonal to the zero mode. This, of
course, is precisely the condition for the existence of the
Green's function required for the perturbation expansion.
We can conclude from the above that if we consider the
functional integral

identities for arbitrary functionals (specifically Green's
functions) which provide quant»m mechanically exact
statements about a theory, so that the theory is given
equivalently completely by the solutions of these equa-
tions. Schwinger-Dyson equations as the Ward identities
associated with BRST symmetry have been considered
previously in Refs. [9—ll]. Here our approach is some-
what difFerent, and of course, we apply it to our present
example.

We started with variables (Q, p ), o. = 1, . . . , N. In-
troducing the collective variables (q, p), we increased the
n»mber of degrees of &eedom to 2N+ 2. Considering the
Lagrange multiplier A and its canonical momentum pp as
dynamical variables, the number of degrees of freedom
becomes 2N+ 4. The four ghosts (c,s,;c,ns) precisely
cancel the spurious degrees of keedom so that the orig-
inal n»mber of 2N is recovered. Thus the canonical dy-
namical variables are (q, p; Q,p; A, pp, c,~,; c, s';). The
auxiliary variable b is related to pg (as we shall see be-
low), so that Cb does not appear in the path integral.

The path integral or partition functional for the theory
with first-order Lagrangian (5.8) is given by

~[q~ pi Qa& pai ~& pAi ci~cj c, +e]

dq dp d dp dA dpi' dc dh, dc dh;

xexp —S+ — Ch[—b(A+ hq) —152 + cc —hcc]2

(9 1)

where

S= dtL, L =pq+p —K p, —py. 92

The expression L~ ——L+ IGF, where LGF is the gauge-
fixing part given in (9.1), is the first-order Lagrangian
expressed in terms of coordinates q, Q, ... and momenta

p, p, ... . The velocities appearing in L~ are to be re-
placed by the expressions given by Hamilton's equations:
e.g.,

and if we write

LGF = —b[c(A+ y)],

BH BH
Bp

'
Bp

(9.3)

the integration with respect to A gives h(y), the integra-

tion with respect to pq gives b(g), g = A+y, the integra-
tions with respect to c and c give det{g, rp} =det{y, p},
and the integrations with respect to m and 7r- give a
constant. One then obtains the well-known form [8]

W

Z = dq dp d dp y det y p b y exp —S

IX. RESIDUAL BRST INVARIANCE
AND SCHWINGER-DY'SON EQUATIONS

H~ = pq+ p Q + pgA+7r c+ hr; —L~ . (9.4)

Here we first replace A by b and pp using

pp = . = b, 0= — = 5 —(A+h—q),
BLg BLg

BA

Then

BL
pg= . ——0 .

Bb

(9.5)

The Hamiltonian K~ associated with the first-order la-
grangian L~ is defined by the appropriate Legendre
transform: i.e.,

Schwinger-Dyson equations are equations which (when
supplemented by appropriate boundary conditions) are Kg) ——K + Ay + 2p~ —pphq + cc+ hcc . (9.6)
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Thus, with (9.3),

q = A and Q = p —Af'I' pQp .

Inserting these expressions into L~, we obtain

(9 7)

bQ = f'I' pQpc, bc = 0,

1bS gbc=b= — ' f'I' pQp.

(9.13)

Z = dqdp d dp didym dcdvr dcdx-

e
xexp — dt(2p —V+ 2pq + cc —hccj . (9.8)

The Ward identities which follow &om this symmetry
are the Schwinger-Dyson equations. Thus, for averages

( .) with respect to the path integral (9.9), the most
general Schwinger-Dyson equation for an arbitrary func-
tional F[Q ] can be taken to be given by

With Wick rotations and various integrations and drop-
ping the appropriate phase space vob~me factors, we ob-
tain

(g g)

where (with S,ir[Q ] = f dt( —Vj)

(9.14)

where b means the variation (9.13). Inserting the varia-
tions (9.13), integrating out the ghosts, and remembering
that bQ are independent since the collective coordinate
has been integrated out, we obtain the Schwinger-Dyson
equation

S t =Be[a ]
—hf dtcc. (9.10)

bF(Q ) 1 bS,„t
bQ h bQ

(9.15)

Under the BRST variation (5.6) we obtain

X. CONCLUDING REMARKS

bS,„t —— '"
bQ + '"

bc
b b'c

'" f'I' pQpc —hbc .
b

(9.11)

This vanishes and demonstrates the residual BRST in-
variance after the integrations if

1 bS,„,
h bQ

(9.12)

In order to obtain such an equation, we consider the in-
variance of the action of (9.8) under variation of the in-
dependent variable q: i.e.,

——bI =0,bS
bq

1.e.)

1bS 1bSs 1bSs bQ

hbq h bq hbQ bq

Since, from (2.12), t9Q /Bq = fT pQp, this verifies
(9.12). In view of the assn~ed fiat measure of the path in-
tegral (i.e., its variance under arbitrary local shifts of the
variables), we see that the entire path integral is invariant
under the residual BRST symmetry. In the present case
this result may be trivial, but the reasoning is applicable
to more complicated 6eld theory examples.

The residual BRST algebra is given by the variations

In the above we considered a quantum mechanical ex-
ample in order to demonstrate in a relatively simple con-
text how a theory with constraints, speci6cally field the-
ories in the neighborhood of some classical configuration,
may be quantized in a way which is very similar to meth-
ods applied to theories with gauge fields. The constraints
of the theory which result in a singular Lagrangian de-
termine the generators of a gauge group under which
the first-order Lagrangian is invariant (it is essential to
consider the 6rst-order Lagrangian in terms of coordi-
nates and momenta and not the second-order Lagrangian
with the momenta integrated out since the singularity of
the Lagrangian has its source in a constraint of the mo-
menta). This shows clearly that a theory with constraints
becomes a theory with a gauge symmetry. The BRST
extension of phase space preserves the invariance of the
Lagrangian, but in addition allows the Hamiltonian to
become invariant. One can then diagonalize the Hamil-
tonian and demonstrate that with the help of the anti-
BRST symmetry it is only the constraints which project
out the physical (BRST and anti-BRST invariant) states
of the theory.

The considerations presented here can be applied to
theories with classical con6gurations with 6nite energy.
Thus, in the (1+1)-dimensional scalar Beld theory for a
double-well potential, one has the well-known static kink
solution P (x —xe). Here xe is the position of the kink
which becomes a dynamical collective coordinate if we
allow it to depend on time t. Thus the transformation
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where g is the Buctuation is a transformation to a larger
nn~ber of degrees of &eedom. This transformation leads
to a constraint very similar to (2.11); for detai&s, we refer
to Ref. [12]. In the case of a vortex theory in 1+2 di-
mensions, one has three collective coordinates and hence
three constraints; for details, we refer to Ref. [13]. It is
clear that all such theories including those with Skyrme
interactions or with topologically unstable sphaleron con-
6gurations can, in principle, be quantized in a way anal-
ogous to the method developed here.
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