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A bouncelike solution with nonzero energy is used for the explicit calculation of the decay rate
of an excited state of the inverted double-well potential. Three negative eigenvalues are associated
with the second variation of the action at the nonvacuum bounce which is diferent &om the case of
the vacuum bounce. The imaginary part of the energy results only from the sy~~etry of the bounce
itself, and the additional negative eigenvalues do not present difRculties. In fact, it is shown explicitly
that only one negative eigenvalue contributes to the tunneling. The calculated imaginary part of
the energy of the excited state is in agreement with that of &KB calculations. The tunneling
efFects are investigated for high and low energies compared with the barrier height. Finally the
Bogomolny-Fateyev relation is established, thus checking our results.

PACS number(s): 11.10.Ef, 11.10.Lm, 11.15.Kc

I. INTRODUCTION

The instanton method is by now well known as a pow-
erful tool for dealing with quantum tunneling phenom-
ena. Most of the calculations which have been given in
the literature are based on vacuum instantons, namely,
ki~k~, with nontrivial topological charge, and these kinks
are responsible for quantum t»~~cling between neigh-
boring degenerate vacua [1] of the double-well or sine-
Gordon potential. It was demonstrated long ago by Cole-
man and Callan [2] that the quantum tunneling process
for the decay of a metastable ground state (or "false vac-
uum") as in the case of the inverted double-well poten-
tial, is, however, dominated by a nontopological pseu-
doparticle configuration named "bounce, " which is not
a minimum of the action but a saddle point. The sec-
ond variational derivative of the Euclidean action at the
bounce has one negative eigenvalue which leads to the
imaginary part of the energy. An explicit calculation of
the imaginary part of the energy based on such vacuum
bounces has recently been given in [3].

Instanton transitions which relate to the possibility
of baryon- and lepton-number violation in electroweak
theory have attracted widespread attention [4]. It has
gradually been realized that vacuum instantons and vac-
u»m bounces which prescribe vacuum boundary condi-
tions xnay not be adequate for the description of tun-
neling at finite, nonzero energy [5]. The investigation
of quantum tunneling with a new type of instantonlike
configurations which are characterized by nonzero energy
and satisfy manifestly nonvacunm boundary conditions is
therefore of great interest [6—11].Previously we extended
the calculation of quant»m t»&~cling between vacuum
states by means of periodic instantons; this was the case

of the double-well potential in which the Hamiltonian is
bounded &om below and self-adjoint [8]. In this case the
tunneling efFect gives rise to the level splitting. In the
present work we develop a procedure for dealing with
quantum tunneling away &om an excited state of the in-
verted double-well potential, this being the case in which
the Hamiltonian is not bounded &om below and is not
self-adjoint, so that the energy eigenvalues are complex.
In this case the t»~~cling is dominated by nonvacunm
bounces and leads to the decay of the excited state in-
stead of the metastable ground state as in the situation
with vacuum bounces [3]. The periodic case to be consid-
ered here is that related to a finite-temperature process.

The case considered here differs &om the vacuum case
[3] in that the operator associated with the second vari-
ation of the Euclidean action at the nonvacuum bounce
(which one can also call a periodic bounce) has more than
one negative eigenvalue [ll]. At a first glance this seems
to present a difhculty. However, we show explicitly that
the ixnaginary part of the energy results directly &om
characteristic properties of the bounce itself, namely, the
antisymmetry of its first time derivative under time re-
versal. This is in agreement with a general argument
given by Coleman [9] that if there exist two or more neg-
ative eigenvalues of the second variational derivative of
the action at the bounce only one has to do with tunnel-
ing.

In Sec. II we recall &om [ll] the bounce with nonzero
energy for an inverted double-mell potential, and the as-
sociated equation of small fIuctuations about it. In Secs.
III and IV, we present the major part of the procedure
for the path-integral calculation of the t»~IIeling process.
The tunneling behavior for the cases (a) of energy far
below the barrier height, and (b) of an energy approach-

0556-2821/94/50(10)/6519(12)/$06. 00 50 6519 Qc 1994 The American Physical Society



6S20 J.-g. LIANG AND H. J. W. MULLER-KIRSTEN 50

ing the barrier height is studied in Sec. V. Finally in
Sec. VI, the Bogomolny-Fateyev relation is established
for quantum tunneling through the central barrier of the
double-well potential.

II. BOUNCES WITH NONZERO ENERGY
FOR THE INVERTED DOUBLE-W'ELL

POTENTIAL

The other k-dependent parameters in (2.3) are given by

P(k) = —s+(k),

a(l + k) ( 2

The Jacobian elliptic function dn[P(k)7 ~p] has period

The Lagrangian for a scalar field P(t) in one time and
zero-space dimensions is

1 f'dPl —V(4')
2 gdty

(2.1)

using unit mass and h = 1 throughout. The potential
V(P) we use is the inverted double-well potential with a
local minimum at P = 0 given by

V(&) = — (&' —a')'+ -'u'a' = V'4' —-' —4'

(2.2)

The solution P, is the trajectory of the classical pseu-
doparticle. The integration constant E,~ & 0 can be
regarded as the energy of the classical particle. If one
wishes, one can look at the solution as describing the
motion of a real particle with energy —E,~ in the poten-
tial —V(P). It is convenient to set

where p, and a are real parameters. The classical solution
P, which minimizes the action with Euclidean tixne r =
it, satis6es the equation

P(k) 7 = n2K(q), n = 1, . . . , (2.4)

where K(p) is the elliptic quarter period or complete el-
liptic integral of the Grst kind. The pseudoparticle oscil-
lates from turning point a to a' and back in the barrier
as shown in Fig. l. Setting 7 = 2T and taking n = 1,
we have

P(k)T = 1C(p)

P, (7 ) i a~2sech[p~2(r + ro)] .

For the sake of a better distinction we dub the new so-
lution of Eq. (2.3) a "nonvacuum bounce" or periodic
bounce. On the other hand, as the energy approaches
the top of the barrier, i.e., E,~

——
2 p a, with k -+ 0, the

solution becomes the trivial configuration P, = a since
[12] dn[u[p] = 1 for p = 0. This trivial solution is called
a sphaleron [10,11]. The nonvacuum bounce thus inter-
polates between the vacuum bounce and this sphaleron.

The small Huctuation equation about the classical so-
lution P, (r) is

where T is half the period of the motion of the pseu-
doparticle as indicated in Fig. 1. As the energy tends
to zero with k -+ 1, solution (2.3) reduces to the usual
vacuum bounce: i.e.,

1 —k2 M@=(u g (2.5)

This substitution de6nes the parameter k which varies
from 0 to 1 as E,~ varies between its extreme values: i.e.,

with

d2 2( 6M= — +y, /2 ——@,
/d72 q

a2

We demand that P, (w) be periodic with period 7 so that

~ (~) = ~ (r+7) .

The solution of (2.2) is then given by

n=1

&.(r) = s+(k)dn[P(k)(~+ ro)l~] (2.3)

where dnu (like snu, cnu) denotes a Jacobean elliptic
function, ~0, an integration constant, de6nes the posi-
tion of the bounce, and p is the modulus of the elliptic
functions which is related to k by

4k

(1 + k)2 '

I2 1 2

(I —k'l 1 —u'

~& 1 + k&j 1+~ '
FIG. 1. Inverted double-mell potential and trajectories of

bounces for n = 1 and 2.
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and can be reexpressed as the Lame equation

d2 —67 sn2[z)p])vP = 0,
dz

(2-6)

4; = P(Ty) = $f ~ a. The Fey~man propagator from P;
to Py resulting from the bounce motion is defined by

4y
K(gg, 7y, P;, v;.) = 17(P)exp( —S),

where z = P(k)r. It will be seen later that I is simply
the second variational derivative of the Euclidean action
at the bounce P . The discrete eigenmodes Qq, Q2, . . . , @s
of (2.6) are given in [11] as

sn[z)p]cn[z[p], sn[zJp]dn[z(p],

cn[zfp]dn[z Jp],

and

where

1 (dPlS = —
~

—
~

+ V(4') d
2 gd7. )

is the classical action. Here, i.e., in (3.2),

&~(A) = (HIE) and @~(&') —= (&'IE)

are wave functions to be speci6ed later.

(3.4)

sn'[z[q] — [1+q' + gl —q2q 2]37' (2.7a)

IV. THE IMAGINARY PART OF THE ENERGY

with eigenvalues (expressed in terms of k):
2 2 2~~) ~2). . . ) ~5 given by

3y,2(1 —k)2 3@2(1+k)2

g + fg2 g + jfg2

and

, pl+14k'+ k'P+ P 1+I2 (2.7b)

respectively. For k F (0, 1) there are three negative
eigenvalues, their respective eigenmodes having periods
7 = 4nK(p)/P(k). The topological charge of P, is zero
(as a consequence of the periodicity of P,) and therefore

is an unstable, nontopological pseudoparticle configu-
ration.

We derive the imaginary part of the energy by consid-
ering the amplitude A as the sum of contributions &om
any number of bounces. The 6rst contribution A( ) in
the sum is that of no bounces, and so of no tunneling. In
this approximation the shoulders of the inverted double-
well potential are in6nitely high and the eigenenergy E of
(3.1) is the energy of that excited state of the harmonic
oscillator with minimu~ at P = 0, which is closest to the
classical energy E,~. Remembering that we assume»~it
mass of the pseudoparticle and 5 = 1 this implies

g(0) —2E,IT

with E,~ (2n + l)(p/~2), n = 0, 1, . . . . Next we con-
sider the various bounce contributions.

III. QUANTUM TUNNELING FROM AN
EXCITED STATE

We let ~E) be an eigenstate of the Hamiltonian H with
energy E. Because of tunneling and escape to infinity, E
becomes a complex number in the case under discussion,
with the imaginary part characterizing the rate of de-
cay of the state. The quantity we wish to calculate is
precisely this imaginary part of the energy E.

To begin with we consider the transition amplitude
from the state ~E) to itself due to quantum tunneling in
Euclidean time 2T. When there is no tunneling this is

A. The one bounce contribution

The Feynman propagator or kernel X defined by
(3.3) can be evaluated with the standard path-integral
method. Considering Suctuations about the bounce
P, (v) we set

O(~) = 4.(~)+ x(~) (4.1)

where y(r) denotes the small deviation of P from the
classical trajectory with end points held 6xed. Thus nec-
essary boundary conditions for y(7) are

(E)
—2HT)E) — —2KT (E~E) —I

~(~f) = ~(~*) = o .
(3.1)

Substituting (4.1) for P(v ) in Eq. (3.3), we obtain

(4 2)

In general the amplitude can be calculated with the help
of the path-integral xnethod. We rewrite it K = exp[—S (P)] - I, (4.3a)

A — @ f Q i K f)Tf) iyTi 8 fd i
where I is the functional integral

(3.2)

with Py = P(7.y), P; = P(v; ), and ~f T =2T.. '

Thus P, and Py denote the end points of the bounce
motion which tend to the turning point a with P(~;)—: Here

g(~y) =0
I = 17{g)exp[—hS] .

~(~;)=o
(4.3b)
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Tf

S,(P) = dr
T$ 2 redry

' 2a2

(d4" ij E
g dr )

(4.4) = —s+(k)P(k)p sn[P(k)r~p]cn[P(k)r ~p], (4.6)

where M is the operator de6ned by (2.5). Choosing the
bounce position rs ——0 and inserting into (4.4) the deriva-
tive of P, (r), i.e.,

and up to terms of O(y ) (for weak coupling) b'8 is given
by we can evaluate (4.4) with the help of tables of integrals

[12] and find with r; = T,—ry = +T, and T = K(p)/P(k)
3@2 2't+»I ~'—

2 . d7'2 ( a2 ')
Tf

d7. yMy,2;
~.(&) = ~(&( x) &(r') E ~) + 2E ~T

(4.5) where for P(r;) ~ a, P(ry) ~ a (cf. Fig. 1)

(4.7)

&(&)
~(4'(ry) W(r') E.i) ~ ~'s+(k)P(k) «sn'[ul~]cn'[ul~]

—K(p)
= ss+(k)P(k)((2 —~')E[K(~)] —2~"K(~)) . (4.8)

y(r) = y(r) + N(7.),y(r')dr',N(r')
(4.9)

Here E[K(p)] is the complete elliptic integral of the sec-
ond kind.

The traditional way of deriving the imaginary part of
the energy as described by Coleman and Callan [2] is to

~h

expand y in terms of the eigenfunctions of M, i.e., those
of (2.5). The evaluation of I then leads to a divergent
Gaussian integral as a result of an associated negative
eigenvalue. By continuation into the complex plane the
integral acquires an imaginary part. One therefore needs
one and only one negative eigenmode. In our case, how-
ever, there are three negative eigenmodes. Nonetheless,
this does not lead to a difhculty here, since, as will be
seen, the boundary condition (4.2) selects precisely one of
these modes, namely the third of (2.7a), cn[z~p]dn[z~p],
which together with the zero mode sn[z]p]cn[z]p] con-
tributes to the path integral.

Instead of expanding y(r) in terms of the eigenmodes
of M, we resort to an alternative method in evaluating
the functional integral I for our purposes. We perform
the transformation to y(r) given by

We observe that the bounce solution P, given by (2.3)
is symmetric under time reversal [since dn(u) = dn( —u)]
whereas its derivative N(r) = dP, /dr given by (4.6) is
antisymmetric [since an( —u) = —sn(u) and cn( —u)
cn(u)]. The square root of N(T)N( T) therefo—re implies
that I is imaginary. In Appendix A, we show that in fact
only one of the three eigenmodes with negative eigenvalue
actually contributes to the quantum tunneling.

The propagator (4.3a) for motion from the turning
point P = a and back to a (i.e. , r = +T) is divergent
because of the vanishing velocity at turning points [i.e.,

cn(+K) = 0 in (4.6)]. This is unlike the case of vacuum
bounces which can reach the turning points asymptoti-
cally.

The transition amplitude, of course, has to be 6nite,
and hence the singularity of the propagator has to be
smoothed out by the end-point integrations of dP; and
dPy. To this end we use the following relations estab-
lished in Appendix C:" Ng, )

" a2S (y y" T)
"

2~ N(P;) BqP~

where

N( )
d4" (r)

d'T
where

«(A &') (4.11a)

is the unnormalized zero mode of the small Quctuation
equation (2.5). The evaluation of the path-integral I of
Eq. (4.3) can then be carried out by direct integration
[8,13,14]. The result is (as we show in Appendix B)

82S,(gy, P;; T)
A/2

- Z/2-
1

2'
1

N(ry)N(r;)

- 1/2 - Tf, - —1/267¹(r) (4.10)
82

(4.11b)
N(gy) Br2 N(Pg) J' ~[dr/N2(7)]
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&((tf 4')

82S,(gf, P;; T) 2
~ dT

c)$2 N2 (T)

- -X/2

(4.12a)

These turning points are shown in Fig. 1. The WKB
approximations of the wave functions are given by

exp
I

—J' ~ PdP
~

@E(6)=C

with

lim b.(Qf, Q;) = i . —
Pyma
P;~e

(4.12b) ~xB
I, f.—B-&'B)

QE((t';) = C

(4.15)

Equation (4.11a) follows, of course, from (4.10), (4.11b),
and (4.12a).

We evaluate the amplitude A of (3.2) by replacing the
wave functions @E(gf), @E(P;) by their leading WKB
approximations, and by expanding the action S in (4.12)
(which is a function of the endpoints p, and pf ) in powers
of pf —p, (T) up to the second power for the Gaussian
or one-loop approximation. Thus we write

1j2
P d4]

v 2[ —V(4')]

- X/2

(4.16)

The normalization constant C is defined, as usual, by

S,(P) = S.(gf, g;, T)
= S.[&(T) &(-T) T]

1 8 S
+2 g~(T), [6 —4(T)]'+ "

We define

o=—y( T) = y(T-), a'=—y(0)

as turning points. Inserting (2.3) here we obtain

a(1 —k) , a(l + k)

(4.13)

(4.14)

~(1 + k)

4/1 + k2K(p')
(4.17)

[using integrals given in [12] and the relation I' [m j2, p'] =
K(p')]. The end-point integrations in Eq. (3.2) can now
be carried out for the one-bounce contribution A~ ~. We
have, for Tf -+ T, T; -+ T, using (4—.3), (4.11), (4.12),
and (4.15) and writing dP, = P;dT,

where the integration extends &om turning point to turn-
ing point across the nontunneling domain (i.e., the region
of the harmonic-oscillator approximation). Evaluating C
one obtains

f @E (~f )@E(~B)+(~f~ Tf ~ O'B ~ TT) d~f d~T

f@E(Ttpf)@E(p;)Iexp[ S,(p)]dpf dp—;

g2~ P; g&4(T)2)
C2 t' c)2S,

&~4(T)'&

exp[—S,(P)]

( ) ( )I ] exp [y y(T)]
1 82S,
2 8$(T)2

$2TC2 —W —2EcIT

where in the last step we used (4.12b) and (4.7). Inserting (4.17) this becomes

g(1) ( B)2T
—W 2E,)T 0( + )—1+&

4/1 + k2K(p')

(4.18)

(4.19)

B. Summing over an in8nite number of bounces

The path integral implies a s»m over all possible paths. The one-bounce contribution is that of the classical
con6guration (2.3) with period 7 = n2K(p) jP(k) [Eq. (2.4)] with n = 1. For n = 2 we have (since 7 = 2T)
P(k)T = 2K(p), and so there are two bounces moving from T to +T with "pos—itions" Tp = kK(p) jP(k) as shown
in Fig. 1. The contribution A~ & to the transition amplitude arising &om two bounces can be calculated in analogy to
the contribution of an instanton —anti-instanton pair to the leading instanton contribution as discussed in [1]. Thus
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d7- d7- ( j)
7 (4/1+ k2K(p'))

= (-~)"&2T&' —2W —2X IT
2I

p(1+ k)

4/1+ k2K(p')

The generalization to n bounces is now straightforward. We have

(4.2O)

~(-) (,)- ('T)"
n!

+( + ) nW —2E, (T—

4/1 + k2K(q')
(4.21)

The total transition amplitude A which results &om quantum tunneling dominated by bounces is obtained by sum-
mation: i.e.,

A{~) g 2@ I T exp
p, ~l+ A:&

4/1+ k2K(p')

Comparing this expression with (3.1) we see that the imaginary part of the energy is given by

iu, (1+k) —w
4/1 + k2K(q')

where W is given by (4.8): i.e.,

ImE = y(1+ k) 2 ~ pa2

4 1+k'K(p') 3 1+p" '~'P,2 s/ ((2 'Y )E[K('7)] 2& K(&))

(4.22)

(4.23)

This expression is nothing but a %KB formula which is
similar to the well-known level-splitting formula [8,15,16]
for a double-well potential.

V. LOW- AND HIGH-ENERGY LIMITS

f

dic
—dP = (n+ —,')~-- dg

and keeping only terms up to those of O(p'2). In either
case one finds

E,) = (n+ q')(u, (u = @~2 (5 3)
It is interesting to investigate the low- and high-energy

limits of Eq. (4.23). By "low" and "high" energies we

mean energies far below or near the barrier maximum,
respectively.

(a) For the energy far below the barrier maximum

Ecl (( 2g p and therefore k -+ 1 or p ~ 1. For

p -+ 1 the quarter period K(p) ~ oo and [12] E(K =
oo) = E(k = 1). The expansions of E(p) and K(p) in
this domain (or correspondingly for p' ~ 0) are [12]

2'i'p, a' 3 3 f 4 &
1 ——p' ——p' ln

/

—,
/3 (5 4)

Setting

andn=0, 1, . . . .
Inserting E(p) and K(p) into the exponent of (4.23)

we obtain, for TV,

and

/41
E(~) =1+-

3 (4l 13
in[ —

/

——p +
16 gp'p 12

(5.1)

g

(a dimensionless coupling constant) then, since

i'4» &4l
K(p) = ln

/

—
/
+ — ln

/

—
[

—1 (5 2)
we obtain in the domain of weak coupling, i.e., for g (& 1,

The parameters k or p parametrize the energy E ~. The
latter is quantized either by reference to the harmonic
oscillator at the central well (with mass and 5 = 1) or by
usjng the Bohr-Sommerfeld condj tron

4~2 3, 3, (8&W= 1 ——u ——uln
3g2 16 8 iu)

Since E,~
= ~~a2p2u2, we obtain, with (5.3),

u = 2~2(n+ 2)g

(5 5)

(5-6)
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Inserting this into (5.5) implies

4 g9/2
W = —(n+ —,') —(n+ —,') ln (5.7)

Looking at (4.22) one might conclude that the transition
amplitude is then not suppressed by the typical vacu»m
tTTTT~eling factor exp[—4~2/3gz]. However, the prefactor
in (4.23), i.e.,

Inserting this into (5.7) [where in the domain under dis-
cussion k 1 and K(p') K(0) = zs] we obtain

p(l + k) p
4/1+ k'K(p') 4»(4/p)

(5.11)

- n+1/2

E P 4~x/sg (5 8)
g&(n+ —,')

The exponential suppression factor is seen to be iden-
tical with that for vacuum bounces [3]. An interesting
observation is that for the case of weak coupling under
discussion the tunneling effect described by (5.8) indeed
grows with energy (i.e., n) exponentially, of course in
the domain of validity of the expansions used in deriving
(5.8), i.e., for

2v 2g (n + q ) = il (( 1 .

This observation is in agreement with common belief [17]
in the analysis of baryon- and lepton-n»mber violation at
high energies or high temperature in models possessing
instantons. Using Stirling's formula in the form

+i/2

I,n+ —,') nl

[obtained with the help of e' = lim„~ (n+ z/n)"] we
can rewrite (5.8) as

also approaches zero as k or p -+ 0, and thus the tran-
sition amplitude is again suppressed (though not by the
vacuTTm tunneling factor). This phenomenon might ap-
pear as a new observation for quantum tunneling at high
energy (where, one could think naively, the tunneling is
not suppressed), but this interpretation originates ob-
viously &om a semiclassical point of view. When the
energy is very high the effect of anharmonic oscillations
becomes important for the inverted double-well poten-
tial, and the effective &equency, namely the number of
impacts per unit time at the turning points approaches
zero.

We close this section with a comment on the relation
of the present work in the high-energy limit to that of
[17]. We consider here principally the inverted double-
well potential. The uninverted double-well potential was
discussed in [8]. There we considered N to N transitions
between the wells whereas the authors of [17] consider
vacuum (0) to N transitions so that their penetration
length tends to half of that for the vacuum to vacuum
transitions as the energy approaches the barrier height.

VI. THE BOGOMOLNY-FATEY'EV RELATION

ImE =
- 8+1/2

p 16~2 4~g/se
nf g2

(5.9)

This result agrees with the complex energy eigenvalue
of the Schrodinger equation for the inverted double-well
potential obtained by Bender and Wu [18] using a WEB
analysis, and by others [19] with an alternative method.
It also reduces to the result obtained &om a calculation
with vacuum bounces for the metastable ground state [3].
(In the comparison with the literature, e.g. , [19], it must
be remembered that here we take the mass of the particle
to be one, whereas in quantum-mechanics calculations
one &equently takes one half; thus in the comparison
with [19] E there is 2E here, hz there is 2~2p, here, and
Cz is 2pz/az here. )

(b) If the energy approaches the barrier height, i.e.,
E ~ 2a p with k or p —+ 0, the complete elliptic in-
tegrals E(p) and K(p) in (4.23) have to be expressed as
power series in ascending powers of p, i.e.,

- 2

V(P) = -A (6.1)

Bogomolny and Fateyev [21] find the relation

In discussions of the large-order behavior of perturba-
tion theory in gauge theories Bogomolny and Fateyev [20]
estimated the behavior of the coeKcients of the perturba-
tion expansion around a non»pique vacu»m state. It is
pointed out that in general the classical vacuum state
does not coincide with the true quant»m-mechanical
ground state. Therefore although the exact ground
state is stable, the perturbation theory vacuum is only a
metastable one due to the possibility of tunneling to the
other vacuum state. If one considers perturbation theory
around a local minimum, the perturbation theory state
is metastable. The imaginary part of the energy of the
metastable ground state can be calculated by the method
of steepest descent. For the double-well potential

E[K(~)] = -[1——.'~'+ ] ~2

K(~) = —[1+ 4~'+ ".]2

and the argument of the exponential in (4.23) is

—R' = 0 with p -+ 0 . (5.10)

b,E = 2si(bE)z, (6.2)

where LE is the discontinuity of the ground-state en-

ergy at the cut A & 0, while bE is the instanton con-
tribution to the real part of the ground-state energy,
namely, the level shift due to quantTTm tunneling [8]. Re-
lation (6.2) has been reconsidered [19] recently by solv-
ing Schrodinger equations using modi6ed WKB methods.
Since there is no real decay in the system, the calculated
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imaginary part is the probability of t»~~cling away Rom
one minim»m only. Therefore the potential is considered
in two forms in [19]. The flrst form considered, (6.1),
leads to the level splitting bE, while the second, shifted
form bE = B exp[—W'], (6.7)

nonvacu»m instanton (or periodic i»stanton in [8]) is in-
dicated by the solid line in Fig. 2. The level shift (i.e.
half of the level splitting defined in [8]) is obtai»ed as

( )
-'A (gP ——„,) fo
—-', X'(y' —„') for y & -„',

(6.3)
where the prefactor B is given by

[1 + u]'~2

2iC(k')

as shown in Fig. 2, results in the imaginary part of the
energy, JmE, for a "real" metastable ground state. Since
EE = 2i ImE, one has the equivalent relation

and R" by

W' = (1+u)i~ [E(k) —uK(k)] . (6.8)

ImE = vr(bE) (6.4)

which has been verified and extended to excited states
(low-energy case) in [19] by comparing ImE and bE for
the two systems. Formula (6.4) serves as a crucial test
of the validity of calculating quantum tunneling effects
with nonvacu»m instantons [8] and bounces. In our ear-
lier paper [8] the level splitting for the excited states of
potential (6.1) was obtained with nonvacuum instantons
which we also called periodic instantons. The classical
solution which extremizes the Euclidean action is [11]

P, (7.) = sn[b(k) (7. + ~p) + iC(k)] .kb(k)
(6.9)

This motion is allowed for a physical system with poten-
tial (6.3). The imaginary part of the energy is obtained
the way we obtained it in this paper. We then have

If we regard the con6guration over the full period as a
bounce configuration which returns to its original posi-
tion as indicated by the dotted line in Fig. 2 (for n = 1
and vo ——0) we can write it

where

& (~) =
q

s~[b(k)(&+ &o)lk]
kb(k)

(6.5)

and so

ImE = B exp( —2W') (6.10)

- 1/2
k =, u = Av'2E, b(k) =1+u' ' 1+k2

ImE = (bE)' . — (6.11)

The Jacobian elliptic function sn[z~k] has period

7 = 4nK(k) . (6 6)

The small fiuctuation equation about P, (7) of (6.5) is
also a Lame equation and the eigenmodes are the same
as for nonvacuiim bounces (cf. Sec. II) but with difFerent
eigenvalues [11]. In the calculation of the level splitting
the solution for a half period is regarded as an instanton
con6guration, whereas the solution for a full period is a
pair of instanton and anti-instanton configurations. The
trajectory [for n = 1 and ~o ——0 in Eq. (6.5)] of one

In the low-energy limit 1/B = n, and the Bogmolny-
Fateyev relation holds exactly. In conclusion we point
out that many of the considerations given here could be
repeated with the method of complex paths [21—24] as
our agreement with %KB results alarms.
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APPENDIX A

- T -2T 2T

Here we show that of the three discrete Huctuation
modes with negative eigenvalues, only one contributes to
the tunneling. The five discrete eigenmodes @, of the
fiuctuation equation and their respective eigenvalues are
given by (2.7a) and (2.7b). The boundary conditions
which the fiuctuations field y has to satisfy are

y(~ = +T) = 0 or y[z = +K(p)] = 0 .

We set

FIG. 2. Motion of a single nonvacuum instanton (I) and
a single nonvacuum bounce (II) in the central barrier of the
d,ouble-well potential.
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Using sn[ ulp] = sn[u Ill sn[K(p) lp]
cn[K(p) )p] = 0, and dn[K(p) [p] = p' the two conditions

(Al) imply

Thus only gq with Eq ——0 and gs with Es ———3p (1 +
k) /(1+ k ) contribute to the tunneling.

APPENDIX B

—C ' C ii — ' 'i C
i3&' )

+C 'ic
~

1 — ' ' ~+C ~1 — ' '
~

=0
y(~') = o

Here we evaluate the functional integral I de6ned by

(A3) (4.3b) and derive the result (4.10). From (4.2) and (4.9)
we see that y(7;) = 0, y(vy) = 0 and

where

b, g ——1+p, 62 ——Ql —p2p'2 . y(~x) + N(~))

(Bl)

These conditions immediately imply C2 ——0 and Substitution of (4.9) into (4.5) yields

Now

C4 —— y 4dz

+K
gsn [z)p]dz—

+K
ysn [z~p]dz

Ag+ 62 +
gdz

—K

(A5)

Using

3y,'
, +&(&) y(&) =21 ~'-,, 4.'i,

Tf
hS = — d7yMy

2

1 N 7 ) I

s

N(+) u Nt (B2)

(B3)

C4 ——C5 ——0 . (A6)

since f & gdz = 0 as a consequence of the periodicity of
Similarly C5 is found to be equal to the same result

(A5). Thus, C4 ——Cs. From (A4) we therefore conclude
that

MN =0, N =gN (B4)

and partial integrations, and dropping total derivative
contributions which vanish because N(7;) = 0 = N(7)),
we have

1bS=—
2

1
2

N2)

d ( ~ d ~Nyl
Ny ~ —yN—

d~( ) d~(N )
N2y2

N2

Tg 2N2 d
d7 y+ N ~ ~ ~ —y+ gy — y —N-

N2 d~

Tf
d7 —yy —yN ~ ~ ~ + y2g + Ngy

Ts

1 f .. . ( Nyj
dw —yy' —y N + + y2g+ Ngy

2 N
'2

ee 2N 2d& —yy —yN -. . —y +y g+NgyN2

N2 N d t N t
dv —yy —y 2 ——+ N-

N2 N dv. N2)

d~[—yy]

Niy2 d fN t N.—y —yN2 dw (N2) N

d &Nl¹y y d ¹ )

d7. [y ] . (B5)

Thus, the corresponding path-integral reduces to that of a free-particle propagator subject to the constraints (Bl).
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We insert (85) into I defined by (4.3b) with the help of the identity

where

1 = dyf8 yf + 7f

1
dyf — da exp( —ia[yf + f(rf)]),2'

yf = y(rf)

(86)

and (87)

&(rf) =—N(rf), , y(r')«' .

With a partial integration we can write

1 dy
yf + f(rf) = N(rf) —dr . (88)

We can therefore write I of (4.3b) in the form

dyf

dyf Bg
27l By &(~, )

—p

Bg I 1 t'dy) '
&y) daexp — —

i

—
I

«exp( —ia[y(rf)+ ~(rf)l)y 2 (dr)
1 f dy N(rf) a 2

' dr
17(y) exp —— —+ ia dr exp — N(rf) —

2 da .
2 d7. N(r) 2 N2(r)

We can write this

lyf BgI=
27r By

&p(yf rf y(r') = o r')

a~ ~ d~
x exp ——N 7f da,

2 ¹ r (810)

- -li2
I = N(r;)N(rf)

)

This establishes (4.10) of the text.

APPENDIX C

(813)

where Ko is the coxdiguration space representation of the
&ee nonrelativistic Green's function with Here we establish relations (4.lib) and (4.12b). Our

derivation is based on the following formula which we
therefore prove 6rst: i.e.,

ogBy, N'(r) (811)

In the literature [14] it is shown that the Jacobian of the
transformation (4.9) is given by

[recall that for a free particle with energy E = zmv2,
momentum p = hk, con6ned between walls a dis-
tance a apart, the eigenvalues are given by k
2nm/a so that ET/5 = 2nm and the Green's function

e' " f"@ (yf)g (y;) = b(yf —y, )]. Hence

1 fd2$ t 1+
N(6) «r'i. N(6) 1'"[«/N'(r)]

(Cl)

For w;, 7.f ——~T —+ goo the corresponding formula was
derived in the Appendix of [8].

In demonstrating (Cl) we start from

Thus,

Bx (N(rf) l
By i N(r;) )

(812) where

S(gf, P;; T) = W(gf, P;; E) + 2ET,

E —= E(gf, g;;T) .

(C2)

(C3)
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From (C2) we obtain

and

BW
BE (C4)

Now

so that

d~= d—~ (d4) ~' dP
(C10)

BS BW BW BE BE+ + 2T
Bgy Bgy BE Bgy Bgy

BW(gy, P;;E)
Bgy

BW

Bgy
= (&)~g

= V'2(V —E)Iy, .

(C5) It follows that

(C11)

with the help of (C4). Anther,

83S 83W 83W BE
ByP~ BEBPy Bgg

'

Now from (C2) we see that

(C6)

B2W 1

Bgy BE
4y

BBR' ~ d7.

BE2 I|I2

(c12)

(C13)

so that, with (C5),

S
8(2T) 8'W (BV/By) ~,

84', v 2[V(P, ) E]— (C14)

BE 8 ( BS
84 g Bgy (8(2T) )

8 (BS&
8(2T) (84 g )

8 (BW)
8(2T) (Bgy)
8 (BWi BE

BE (Bgy ) 8(2T)
B2W 1

BEBPg 8(2T)/BE

Using (C4) we can rewrite this

lim
4; ~y(—T)
y& -+ y(r)

(C7)
From (4.6) we obtain

f f
dr dr3 N3(r)

(C15)

= -s+(k)P(k)~"n[P(k)r]~]~[P(k)r I~]

where in the last step we used the equation of motion.
Inserting (C12)—(C14) into (CQ) and setting P = N(r),
Py = P(ry), we obtain (Cl).

We now consider the relation (4.11) which we rewrite
in the form

BE 82W

Bgt BEBOP y

83W
BE3

Inserting this into (C6) we obtain

(cs) (c16)
d2

, = —s+(k)P3(k)p3(cn'[P(k)r~p] —sn3[P(k)r]p])

83S 83W t' 83W )
8$~& 8$~& qBPyBE&

B2W
BE3

xdn[P(k)rip] .
C9

Using formula 361.10 of [12] we obtain

f d7.

(dP, /dr)
1 Pry

(k)p3(k)4 duns [u]7]nc[u]p]

. „[»"u—(1+~")E(u) + dn[ul~l(tn[ul~] —~"cs[ul~]Hp. ,
' (c17)

where tn = sn/cn and cs = cn/sn In the limits r;. + T, ry -+ +T, i.e—., pr; m —K(p), pry —+ +K(p) the
contribution of tn[u]p] diverges owing to the property cn[K(p)]p] = 0. However, the limit b, is finite and since in this
limit

and we obtain

dr 2dn[K(p)]p]sn[K(p)]p]
(dgc/dr)3 s3+(k)P3(k)747I3cn[K(~)]~]

(c16)
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- -X/2

1+ s+(k)P (k)p sn[u]p]cn[u]p]dn[u[p]2 3 4 (cnz [u[p] —snz[u[p]) 2sn[u[p]

=[1—2] 'i = i—
since dn[K] = p' and sn[iC[p] = 1.

u=K(p}

(C19)
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