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Applications of membranes in the Abelian Higgs model
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The membrane description is used to investigate small perturbations of vortices with a winding
number bigger than one. The new kind of vortex excitations, looking like a bubble of arbitrary
shape moving along the vortex with the speed of light, is found.

PACS number(s): 11.27.+d

I. INTRODUCTION

Recently there has been wide interest in the study of
nonlinear 6eld equations, motivated by the existence of
vortex solutions which appeared to be connected to such
phenomena as the superBuidity of helium described by
the Goldstone model [1],superconductivity described by
the Ginzburg-Landau model [2], and by the hypothesis
that confinement in /CD can be understood in terms of
/CD-strings which are represented by a kind of vortices
called fiux tubes [3]. Many conjectures have been made
about possible astrophysical phenomena that may be ex-
plained by the presence of large cosmic strings. Massive
strings, w'hich appear in grand unification models, may
have served as seeds for galaxy formation [4], and provide
an explanation for quasars [5], and may act as gravita-
tional lenses [6].

One of the widest known, for its very interesting fea-
tures, is the Abelian Higgs model. Apart &om being a
textbook example of the Higgs phenomenon, it contains
sectors with a nonzero topological charge which is the
winding n»mber of the Higgs 6eld.

Nonlinearity is a reason for our poor knowledge about
solutions of this model. Only a few exact solutions are
known. The static cylindrical vortex solutions in this
model were obtained by Nielsen and Olesen [7]. Although
no closed-form solutions have been found, the solutions
are known to be smooth and to approach vacuum values
fast with a distance from the center of the vortex.

Nielsen and Olesen have proposed to view such solu-
tions as stringlike structures [7]. The above statement is
based on the property of the vortex solutions that when
we approach some values of parameters of these solutions
the width of the vortex (understood as the width of the
region in space where the density of the energy signif-
icantly differs from its vacuum value) decreases, finally
reaching zero width. In this limit, the vortex tube co-
incides with the line of zeros of the Higgs field. This
is the reason for regarding the vortex as a string in the
above mentioned limit. This idea has been generalized
by Forster to describe the nontrivial time evolution of
the vortices [8].

The string description, although not exact as it is in the
zero width limit, is possible for vortices with a nonzero
width. If we define a string, for example, as a line of
zeros of the Higgs field, we will obtain and approximate

string description of a vortex.
During the time evolution, the line of zeros of the

Higgs Geld sweeps out a two-dimensional manifold which
is called the world sheet of the vortex. Such a de6nition
of the worldsheet has the same difficulty as the de6nition
of the phase speed in the description of a moving wave.
It has been shown that when two vortices interact with
each other the speed of the lines of zeros of the Higgs
field can exceed the speed of light [9]. As we know the
physical aspects of a moving wave have a better descrip-
tion by the group speed which never exceeds the speed of
light. If we de6ne the worldsheet of the vortex as a sur-
face swept out by a set of points where the density of the
energy of the vortex has its maximal value E,we will
obtain characteristics similar to the group speed in the
problem of a moving wave. Such a physical description
works very good for one-quantum Bux vortex solutions,
but for solutions with a winding number bigger than one
it can be saved only in the case when we define a string as
a collection of "centers of mass" of the vortex [10]. This
difficulty is a consequence of the fact that for a vortex
with n ) 2 the maximum of the density of the energy E
does not lie on a line as it does for a vortex with n = 1
(see Fig. 1), but lies on the surface enclosing the line of
zeros of the Higgs field [see Figs. 2(a) and 2(b)] [11].

Although the string description of the vortex solutions
with n & 2 exists, it seems that in this case a more suit-
able and more precise description could be a membrane
description. The higher precision in the case of vortices
with a winding number bigger than one has a purely ge-

FIG. 1. The density of the energy E in the tangent section
of the vertex with n = 1 which lies along the OZ axis.
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ometncal nature —a mexnbrane has a richer geometrical
structure than a string.

I would like to point out that this paper does not aim
at giving a comprehensive description of vortices with
n & 2, but only gives a description of a special, although
very important &om a physical point of view, property of
the field configuration; namely, the density of the energy.
The membrane description proposed in this paper could
be compared with a string description of vortices based
on a surface of the zeros of the Higgs field. As is known,
a surface of the zeros of the Higgs 6eld, independently of
the finite thickness of the vortex, is a well-defined geo-
metrical object in space-tixne. Similarly, the hypersurface
of the maximum of the density of the energy is also well
de6ned. The difference between the surface of the zeros
of the Higgs 6eld and the hypersurface of the maximum
of the density of the energy lies in the fact that only the
latter has a well-defined physical meaning.

The description of arbitrarily deformed vortices by the
membrane approximation is possible [12], but in this
work we would like to use the membrane description of

E

a)

the field theoretical model only in the sector containing
small perturbed straight-linear vortices to show on par-
ticular examples the usefulness of the membrane descrip-
tion.

The paper is organized as follows. In Sec. II we
fix our notation and introduce the geometry of a three-
dixnensional hypersurface in four-dixnensional space-time.
The 6eld theoretical model is defined in Sec. III. The
same section contains a derivation of the efFective mem-
brane theory of slightly perturbed straight-linear vortex
solutions. Section IV is devoted to considerations of small
perturbations of the Abrikosov-Nielsen-Olesen-type solu-
tions with n & 2 and its membrane representation. Sec-
tion V contains remarks.

II. GEOMETRY OF THE %WORLD
HY'PERSURFACE OF THE VORTEX

The membrane we identify at each instant of time with
a surface E = E~. By time evolution of this surface we
obtain a three-dimensional manifold in four-dimensional
space-time. A radius vector of the arbitrary point on
the world hypersurface X"(0' ), where p = 0, 1,2, 3 are
Lorentzian indices, can be paremetrized by the timelike
parameter ~, lengtbbke parameter 0., and the parameter
8 which can be identified with an angle of cylindrical co-
ordinates (see Fig. 3). The coordinates (v, 0, 8) = (o )
are variables on the three-dimensional m~~ifold. The co-
ordinate on the straight line perpendicular to the world
hypersurface E at the point X"(~, o, 8) we mark (. Hav-

ing all the variables (( ) = (0,f) in the neighborhood
of the world hypersurface E we can write

TO x" = X"(~,rr, 8) + n"(,
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where n" is four-vector normal to the hypersurface Z in
the point X"(0 ). Tangent four-vectors X" = l9 X",

FIG. 2. (a) The density of the energy E in the tangent
section of the vortex with n & 2 which lies along the OZ axis.
(4) The surface E = E

„
in some instant of time.

FIG. 3. A surface which in each instant of time has the
shape of tube can be parametrized by an angle 8 and the
length of the tube cr.
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and the normal four-vector n;~ to the hypersurface Z
obey the conditions

n"n„=—1, n„X" = 0, g g
——X" X„g,

X~,.&
——a.x~

& = r .,X~.+ K.,n~, (3)

where g"" is Minkowski metric with signature
(+, —,—,—). The last equation is a definition of the
intrinsic xnetric on the world hypersurface Z. When
we move from one point of the hypersurface to another
one in its neighborhood the normal and tangent vectors
(n", X" ) can change in the normal direction as well as
in the tangent directions:

respond to the Gauss-Weingarten formulas for the two-
dimensional surface.

It is easy to verify that K s obey some additional iden-
tities. Commutativity of derivatives 8 @,n„=8s8 n„to-
gether with the Gauss-Weingarten formulas (9) and (10)
and orthonormality relations (2) for ni' and X" gives
the identity

V Kg =VgK

which corresponds to the Peterson-Codazzi identities for
two-dimensional surface. The symbol V denotes a co-
variant derivative with respect to the reparametrization
of the hypersurface. In the same way from 8 BgX," =
Bg8 X,"we get

8~A~ = K ~gX~' + 4)~A~. (4) R ~g ——K,K~ —K~K~g, (12)

In principle the coefBcients of the above decompositions
could be completely independent, but the geometry of
the hypersurface imposes on them some restrictions. To
find these constraints we project [3] on n„nad then use

[2] to obtain the coefficients K s.

Kag — X,ag+p.

where R os, = 8gl', —8,1'"os + I"o I' .s —I" sl' .,
is the tensor of the intrinsic curvature. Equation (12)
corresponds to the Gauss identity for surfaces.

The coordinates introduced in this section (1) are well
defined in the region of space-time where there exists an
inversion of the metric tensor in curvilinear coordinates
a.

This relation can be transformed to the form

K~/ = BQApX ~) (6)
S S,g 0

G~~ —7/++8~+ 8~X —
0 1

K ~Q = BQApX (7)

Comparing (6) and (7) we conclude that K' s = K s.
The same procedure [projecting (4) on n„and using (2)]
gives

where we used the relation of orthogonality n& and X"
(2) difFerentiated with respect to 0 . In addition, from

(6) it follows that K s are symmetric with respect to the
change of indices K g

——K~. On the other hand if we
project Eq. (4) on a vector tangent to the hypersurface
Z and use (2), we will obtain

(S—1)ac(S—1) b 0
0 —1 (13)

where S s = g s+ (K s. The inverse of G p exists if the
xnatrix S g is invertible. The matrix S g is invertible in
the region where det]~S s~] = g[1+(K + z$ (K Ks
K Ks )] is not equal to zero (here g = det]]g~s(]). Thus
the coordinates ( are well defined only in the region
constrained by the minimal (; for which det]]S s~~

=
0. Now we are prepared for construction of an effective
mexnbrane theory of the vortices with a winding number
n & 2.

Now if we come back to the normalization condition (2)
for n„and difFerentiate it with respect to 0, we will ob-
tain n"8 n„=0. Equation (8) together with n"8 n„=0
gives u = 0. Finally we have transformed (3) and (4) to
the forxn

III. EFFECTIVE MEMBRANE DESCRIPTION
PERTURBATIONS OF THE VORTEX WITH

A & 2 IN THE ABELIAN-HIGGS MODEL

We start from the Lagrangian density of an Abelian
Higgs model:

X" g
——I' gX", + K gn",

0 n„=KX„", (10)

2m2 '
L = (D„P)'(D"P)——A

~

P'P —
~

— F„„F"", —
4 A ) 4

(14)
where K g are called coefficients of extrinsic curvature.
From formula (10) we can see that n~ do not change in
the normal direction to the hypersurface, which is a sim-
ple consequence of the fact that its length is constant.
The coefficients I' s can be found by projecting Eq. (9)
on X~, and they turn out to be defined completely by
the metric tensor g g. Thus, I" ~ are the ChristoKel sym-
bols for metric tensor g s. Equations (9) and (10) cor-

where F„„=8~A„—8„A„is the field strength, D„P=
8„P ieA„Qis covariant de—rivative, P is a complex scalar
field, and A„is a gauge potential. The corresponding
gauge invariant energy-mementuxn tenser has the form

T„„=2 [(D„$)'(D„p)+ (D„p)'(D„Q)]
—E„pF„"—g„„L.
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The static solutions of the corresponding equations of
motion which are invariant under translations along
the third axis have the form [in cylindrical coordinates
(t, r, 8, z)]

P=e * F(r), Ae =As(r), A~ =A, =A„=o,
where As and F(r) are not known in closed form but
have been found numerically. They are called Abrikosov-
Nielsen-Olesen solutions. The energy density E = Tpp for
an Abrikosov-Nielsen-Olesen solution with n ) 2 poses
its maximum on a cylinder enclosing the line of zeros of
the Higgs field [see Fig. 2(a)]. Thus the equation which
defines this cylinder has the form B„El„„,=—0. This
equation allows us to find rp. When we are concerned
with more complicated vortex solutions which depend on
t as well as on z and 8 (for any finite r vortex solutions can
depend on t, z, 8, r, only for ~ oo does the function F(r)
approach its asymptotical value +2m2/A) we can take
the condition B„El„=„,~~., sl = 0 as a definition of a mem-
brane world hypersurface. In coordinates (1) this defini-
tion takes the from BtE]t p ——0. Although the above
proposed definition of a membrane world hypersurface
seems to be reasonable, it contains one serious difficulty
which is the lack of invariance with respect to the Lorentz
transformations. We can avoid this difficulty using in-
stead of E a scalar function m = g X "X~"T„„,which
is projected on a membrane world hypersurface Z energy-
momentum tensor. The function m seems to be a nat-
ural Lorentz invariant generalization of E, which means
that for Abrikosov-Nielsen-Olesen solutions the condition

Bye]t—p ——0 (T„„projectedon the cylinder) defines the
same rp-like condition BgE]g p

——0 (m does not have the
same values as E but the maximum of m lies on the same
hypersurface Z as the maximuin of E). Moreover, for so-
lutions which are slightly perturbed Abrikosov-Nielsen-
Olesen solutions the difference between hypersurfaces de-
fined by both conditions is also small.

Because we have decided to define the membrane world
hypersurface by the condition Btmlt p ———0, we need m

for the Abelian Higgs model, i.e. , for T„„givenby (15).
Using relations (2), (9), and (10) and the definition of m

we obtain

ur = —4G [G' Fo,F~ + 2F tFbt + 2(D P)'(Dbg)]
+30„ (17)

where we have denoted H, =
2 (Dt P)'(Dtg) + 4A(P'P-

2m2/A)2. The field strength tensor F b = V Ab —VbA
because of the symmetry of the ChristofFel symbols re-
duces to the form E g

——0 Ag —BgA . The covari-
ant derivatives have the form D P = V P —ieA P and
Dtg = BtP —ieAgg. Because P is a scalar function with
respect to the reparametrization D P = B P —ieA P.

We intend to construct a membrane theory describing
the sector of the Abelian Higgs model containing small
perturbations of any fixed vortex solution with n & 2.
We will start &om the Euler-Lagrange equations for the
Lagrangian (14). A curved vortex is in a natural way ob-
tained as a solution of the equations of motion in coordi-
nates on the curved hypersurface (we assume the Lorentz
gauge condition):

G [V Vbp —((S ) (V K~)V,p —S,Kb'Bgp] —Bt p+ 2ieG A Vbp

2 ab 2 1 * 2m
2ieAgB—gg —e G A Abg+e AgAgP+ —A P'P — / =0, (18)

2 ( A )

G {V~[VbAb —((S )'"(VbKbg)A, —Sb,Kb'Ag] —((S )"(V.Kb, ) [VbA, —((S )s (VbKs, )Ag —S~K,"Ab]

—((S ')"(V.Kb, )[V,AP, —((S ') "(V,Kbs)Ag —Sg,Kb Ag]

—S.,Kb'[V bA~ —K~(S )'~A, ]
—S,Kb'[BgAp„—Kbs(S ) "Ag])

—Kb (S ) '[B A, —K, (S ) As] —Bje[B(Ab —Kp,g(S ) A, ]

+ie(QVbgP —p'Vbp) + 2e Abpp' = 0, (19)

G {V~[VbAg —K~(S ')' A, ] —K~g(S ')' [V'bA, —f(S ')s'(VbK, s)A, —SbsK, sAt]

—$(S ')' (V Kb, )[Vga —Ksg(S ') ~A, ]
—S.,Kb'B~Atj

—B~ At + ie(QB~Q' —P'Bt $) + 2e At PP' = 0. (20)

The metric g b+ G big —p describes the hypersurface swept out by a static cylinder. The static cylinder is an example
of a fiat hypersurface (in the sense of vanishing coefficients of internal curvature I b = 0) but the embedding
into space-time described by the coefficients of extrinsic curvature K b is not trivial (i.e., not all K b vanish). The
membrane world hypersurface for a curve vortex is given by the equation Ogm = 0, which in the case of m given by
(17) reads

[g Fo Fbd + 2F $Fb(+ 2((Day)'(Dby))]lg=p

4g'[ 2K "F«Fb~ +—g'Bq—(F«F~) + 2'(F~Fbt) + 2Bt ((Do4) (Db4'))] It=p + &BgII~lg=p = 0 (21)
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P= P[r, o, 8, rp(r, o, 8) + f] e '" F((),
A = A (r, o, 8, rp(r, o, 8) +(),
Ag= Ag (r, o, 8, rp(r, o, 8) + () (22)

are unknown vortex solutions (with n & 2) of Eqs. (18)—
(20). The radius rp(r, o, 8) of a membrane Btto~g=p = 0

We base the construction of membrane theory on the
ass»mption that we know the straight-linear vortex solu-
tion, which we can consider in arbitrary curvilinear coor-
dinates defined around the cylinder of the maximum of
the function m. Then we allow for small perturbations of
straight-linear solutions to obtain membrane theory of a
curve vortex. We will obtain the geometric constraints
which describe how the straight-linear vortex can be de-
formed for the perturbed function to be a solution of Eqs.
(18)—(20). Let us assume that

[which for the above solutions is defined by the Eq. (21)]
can be split into the radius of cylindrical membrane ro
(describing the straight-linear vortex) and the small per-
turbation s(r, cr, 8), i e ,.r.p(r, o, 8) = rp+s(r, o, 8). In the
next step, assuming that a small perturbation of func-
tions causes the same order perturbation of the shape
of the cylinder (i.e., coefficients of extrinsic curvature
K b), we expand Eqs. (18)—(21) with respect to pow-
ers of e. Before we start the perturbative calculations
we rescale the mass m -+ m/M and length z" ~ Mz"
by some mass factor (rescaling t -+ Mt and z m Mz
causes rescaling r -+ Mr and o' -+ Mo). According
to formula (1) rescaling the length causes a rescaling of
( -+ M( and X" -+ MX". The rescaling operation we
made enables us to consider our theory as completely di-
mensionless (particularly coefficients of expansion s and
k b are dimensionless). In the calculations we will use
the expansions

K b = K'"'
b + k b, S b = S'"'

b + fk b,

(S
—1)ab (S

—1) ab ((S—1) ac(S—1) bek +

G = G l —((S ') l '(S ') "[(S ')'"'d'k + (S ')'"' 'k d] +

P(r p + s + () =
g (rp + () + P (rp + ()s + ~

A (rp + s + () = A (rp + f) + A' (rp + ()s + (23)

where (o.) = (a, g) and k b describes the small (of order s) deformations of the cylinder. A zero order perturbation of
Eqs. (18)—(21) gives

Gcyl '[VaVb4 —((S ') cyl "(VaK'"'bd) Vc4 —S'y'ocK'y'b'Bg4'] —Bt'4

+2ieG,„lA Vbp —2ieAtBtp —e G,„lA Abp+ e AgAgp+ —A
~

p'p —
~ p = 0, (24)

~ ab t 2m'l
2 ( A )

G,yl {V [VbAp, —$(S ),„l'(VbK'"'bd)A, —S'"'~K'"'b'A(]
—((S '),„l"(VoK'y'b, ]VbA —((S ') l (VbK'"' )A —S'y'bdK'y', dAt]

—((S ),„1'(V K'ylb )[V Ab —((S )
& (V,K'y )Ad S»d K'» dAt]

Scyl Kcyl e[V A Kcyl (S
—1) cdA

]-S"'..K ylb [B,A. -K"'.,(s-') ls'A. ])-K"' (S-') -[B A. -K'",(s-') lgdAd]

Bt[B(Ah K bd(S ),yl' A, ] + ie(QVbp' —Q'Vbp) + 2e Abpp' = 0, (25)

G,yl (Va[VbA~ —K'y'~(S ),„,'"A,]
—K'".d(S ').,l [V'bA. —$(S ').„"(V'K y' )A.$(S-').„,P (V,K '.,)A. —S'y', K y' A ]

((S—1) ed(V Kcyl )[VdA~ Kcyl (S—1) lcQA ]
Scyl Kcyl eB A )

Bt Ag+ie(QB~Q' —P'Btg—) + 2e A~PyF = 0. (26)

cyl [g FacF~ + 2Fa(F& + 2((Dap) (Dbp))]~( —p g[ 2Kcyl F F~—+ g—B((F F~) + 2'(F pe)
+2'((D p)'(D p))b]~g p+ QBgII ~g p 0 (27)
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Bgg~g pk =0, (28)

By ass~~~ption the above equations are satis6ed by the
functions (22) for rp(7 o 8) = v'p = const.

The 6rst-order equations generally have a much more
complicated form then the zero-order Eqs. (24)—(27).
Although first-order (in s) equations are satisfied in the
whole space-time [in the region of space-time where co-
ordinates (n, () are well defined], in order to make the
analysis simpler we contract them to hypersurface ( = 0.
Contraction of complete 6rst order in e field theory to the
theory on the hypersurface g = 0 means that in expansion
of these equations in powers of ( we keep only zero-order
terms as an approximation of the complete theory. If we
want to have a better approximation of the Beld theo-
retical model (in sector localized around some particular
vortex solutions) by the membrane theory we should con-
sider higher-order terms, but the purpose of this paper is
to show the advantages of using a membrane description
in the Abelian Higgs model, not a detailed study of an
effective membrane theory.

The first-order equations on the hypersurface ( = 0
take the form

Equations (33)—(36) define the effective membrane theory
which has internal degrees of &eedom given by the A g,
AP, Ai, P~, P . If vortex solutions for which AP~ =
A = A = gP = 0 exists then the effective theory is a
simple Nambu-Goto membrane K = 0.

The construction presented in this section works
equally well for a sector of the field theory localized
around the straight-linear vortices as for a sector local-
ized, for example, around torus shape vortices (the only
change we need to do is put Ki, instead of K,„i).

In the next section we will 6nd the correspondence
between membranes and strings for the simple Abrikosov-
Nielsen-Olesen solutions.

IV. EXAMPLES

From (33)—(36) we can see that the shape and evolution
of a membrane depends, in a very strong way, on an
analytical form of the solutions Ag, A, P. In the zero
order (with respect to () approximation the evolution of
a membrane depends only on the 6rst few coeKcients
(APg, AP, Ai, PP, Pi) of expansion in powers of (.

Let us consider a particular vortex solution

(g"V (ks A.) —2k 'K'i"
bA&)~& p = 0, (29) P = e '" F(rp+f), As = (rp+() A(rp+(),

(g V~(kssAg) —Bg(ks "Aq) + kh, 'F,
g + [2k'„K,~i'"

+k~"K.„i'+ 2K K'"'
h, ]A~j~t=p ——0, (30)

k s[g'~F,F~+ F~F~ + (D p)'(Dsp)]~t=p = 0 (31)

where we used (24)—(27) on hypersurface ( = 0 to make
them simpler. If we expand A~, A, and P in powers of

4 =4'+8'+('4'+ ",
A =A' +ISA' +('A' +
A( =A (+ISA (+$ A (+

[where coefficients of expansion are functions of (0 )] and

put them into (28)—(31) we will see that in these equa-
tions appear only coefficients APg, AP, Ai, PP, and Pi:

Pk =0,

g V (k 'A, ) —2k K'"' A. = 0 (34)

g gV (kgb, A g) —kp, "A g+ kg'(B, A g
—A', )

+[2k,.K.»'+ k„"K.» + 2k'K'~'. „]AP,= 0,

(35)

A;=Ay ——0,

where rp ——const, F(rp + (), and A(rp + () are some
functions of (, and (0') = (v, a) are stringlike coordi-
nates. The above solutions are called Abrikosov-Nielsen-
Olesen solutions. Although the particular choice of so-
lutions makes Eqs. (33)—(36) not look covariant with
respect to the reparametrization, it allows us to Bnd im-

portant features of the model. We will start the analysis
of this particular case from straight Abrikosov-Nielsen-
Olesen vortex solutions.

A. Straight vortex solutions

The membrane equation for these solutions has the
form

(K,yi h —2g Bgh+38gH, j~g p ——0,

where h = (BgAs)2+ (n+ eAe)2F2 and H, = z(8gF) +
A(F2 —2m2/A)2. On the other hand from considerations
of Sec. I (see Fig. 2) we know that the maximum of the
function m lies in each instant of time on a cylinder of
radium ro ——const. If we parameterize the cylinder by
parameters (t, z, 8) we will obtain that the gss component
of the metric on a cylinder of radius rp is equal to 1/rp-
and K 'ee = rp(K.yi" = —1/rp—'). Thus from (38) we

have

k [g'"(8 A —B,A )(BsA g —BgA g) (—2h+ rpBgh+ 6rp OgH)ig p
——0. —(39)

+(8 A g
—A' )(BsAP( —A'g)

+(0 gP —ieA P )'(@,P —ieA sPP)] = 0. (36)
If the maximum of the function m is close to the line of ze-
ros of the Higgs 6eld we can presume asymptotic behavior
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of F and As, i e ., .F —a(rp+()" and As b(rp+$) .
In the opposite regime, i.e., when rp + ( is very large,
functions Ag and F approach their asymptotic values
As -+ —n/e and F -+ /2mz/A ~ mv A. Thus, in a
regime where e ~A, we have As 1/e and F m/e.
Assuming that dependence on constants m and e is the
same for any rp + ( (dependence on inversion of cou-
pling constant is typical for any soliton solution) we in-
troduce new constants by the formulas a = (m/e)a and
b = (1/e)b. If we had had the theory before rescaling
of mass and length it would have been better to have
dimensionless constants a and b defined by the formu-
las a = (m/e)am" and b = (1/e)bm2. Because we
rescaled mass and length we have all fields and con-
stants dimensionless. If we put F (m/e)a(rp + ()"
and As = (1/e) b( rp+ ()z into (39) we will obtain

Kg@ ———ro, K,e = 0& Ktc = Kzi. (44)

Let us find some hypersurfaces satisfying constraints
(44).

(a) (i) Straight cylinder solution. Conditions (44) have
obviously the trivial solution which is a cylindrical hyper-
surface [see Fig. 4(a)]:

[X"]= [t, rpcos(8), rpsin(8), z]. (45)

Conditions (43) mean that the hypersurface obtained by
deformation of the cylinder (Bgm~g p—= 0 s = 0) which is
defined by K~g ——K & ~~+ fg~~ has to obey the conditions

2 4 m+13—mzna z"+i+ [b a (n+ 1)]2: + [2na (nb —3m )]x

+[2n (n —2)a ] = 0, (40)

where the new variable is x = ro . To approximate
roughly the dependence of the solutions of Eq. (40) on
the winding number we ass»me that self-interaction of
the Higgs fields is much weaker than the interaction of
the Higgs field with electromagnetic fields (A/e is very
small). In this limit Eq. (40) simplifies to a simple square
equation which has two solutions:

3 2

(n+ l)b' [

nb +—/9m4 —6nbm2 + n2b& —2(n+ 1)(n —2)b2]

(41)

If mz is large but much smaller than A/e2 (i.e., A/ez

approaches zero value faster then m2 approaches infinity
so as (A/e~)m2 approaches the zero value) we have

6m'5 n ~
b' (n+1~ (42)

Thus in considered limit the radius of a cylinder ro groves
with n from 2m/b for n = 2 to ~6m/b for n ~ oo.

B. Curved vortices

kgg —k;g —0, k~, ——k.. (43)

We considered the connection between parameters
characterizing the field theoretical model and the ra-
dius of the membrane defined by the straight Abrikosov-
Nielsen-Olesen solutions. Let us turn to consideration
of slightly curved Abrikosov-Nielsen-Olesen-type vortex
solutions. If we put functions of type (37) into Eqs. (28)—
(31) and pararneterize the cylinder (B~tp~t p ——0 s = 0)
by (t, z, 8) [in this parametrization Ii'"i;s = K'ri;~
O, K'" ss = rp and g;z

——g;z,—gss = 1/rp where-
(+*) = (t, z)] we will obtain

FIG. 4. Straight-linear vortex configurations (a) and (b)
are indistinguishable for the string description.
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The coefBcients of extrinsic curvature for the cylinder are
equal Kgg = —To, K~@ = Kg& = 0.

(ii) Vachaspati solution. The other solutions are those
found by Vachaspati and Vachaspati [13]; they are de-
6ned by the hypersurface

[X"]= [t, rpcos(8) + y(t + 2:),rpsin(8) + Q(t + z), z],

(46)

which is a deformed cylinder of radllls rp [see Fig. 5(a)].
The deformation of this type moves with the speed of
light in the Z direction The coefBcients of extrinsic curva-
ture for this hypersurface are Kg@ = —ro, K'g = O, Kgg ——

K„=Kt, ——y"cos(8) + g"sin(8) where the prime de-
notes the derivative with respect to t or equivalently z.

(b) For solutions (a) (i) and (a) (ii) we have com-
plete correspondence between the membrane and string
descriptions (axis of constant radius membrane is just
the Nambu-Goto string K = 0). At this point we will
present a new type of vortex excitations. The radius

of membranes describing these solutions is not just con-
stant as it was for the solutions presented in point (a),
but it has its own dynamics (can change in space and
time). The existence of such solutions is a good reason
for involving a complete membrane theory approximately
describing Abelian Higgs model [12].

(i) Bubble moving solution. The interesting solution
(because it shows use&i&riess of the membrane descrip-
tion) is a bubble of arbitrary shape moving along the
cylinder with the speed of light. This solution is pre-
seated on Fig. 4(b) and is given by

[X"]= [t, rp(t+ z)cos(8), rp(t+ z)sin(8), z]. (47)

[X"]= [t, rp(t+ z)cos(8) + y(t+ z),
xrp(t + z)sin(8) + Q(t + z), z], (48)

The extrinsic curvature constants are equal to Kgg ——

rp(—t+ z), K;s = 0, Ktt ——Kt, —K„=rp'

(ii) Bubble excited Vachaspati-Vachaspati solutions.
There exists possibility to excite Vachaspati-Vachaspati
solutions in the way presented in point (b) (i) [see
Fig. 5(b)]. Solutions of this type have the form

and their extrinsic curvature coefEcients have the form
Kss = —rp(t + z), K;s = O, Kgt ——Kt, ——K„=rp +
y"cos(8) + Q"sin(8).

Thus the deformed Abrikosov-Nielsen-Olesen-type
functions are solutions of the field Eqs. (18)—(20) (in
consider approximation) if they are deformed in a way
described by the membrane equations (33)—(36). Con-

(b)

FIG. 5. Curved vortex configurations (a) and (b) are indis-
tinguishable for the string, description.

FIG. 6. The arbitrary order membrane approximation of
a field theoretical model is better for Seld con6guration (b)
which has sharper peak of the maximum of the function m.
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straints (44) we can understand as necessary conditions
for the existence of deformed Abrikosov-Neilsen-Olesen
type solutions (for example, Vachaspati or bubble mov-

ing type) of equations (18)—(21). The membrane theory
(44) defines, in the case of deformed Abrikosov-Nielsen-
Olesen —type functions, the Vachaspatis solutions as well
as new bubble moving solutions.

V. REMARKS

Based on the existence of the maximum density of the
energy for nonzero distances from the line of the zeros
of the Higgs Beld ro ) 0 we have obtained for vortex
solutions with n & 2 the eHective membrane theory. The
membrane description makes sense only in the case when
vortices with n & 2 are stable. In the Abelian Higgs
model, vortex solutions with n & 2 are stable in the sector
where the range of the matter self-interaction exceeds
that of the electromagnetic one A & 2e~, in this case
vortices with n = 1 attract each other forming vortices
with n ) 1. In the opposite case A & 2e2, it is found
that the system is»notable against decay into separated
vortices and that vortices n = 1 repeal each other [14].

We have considered only the stable vortices with n & 2
(e.g. , A ( 2e ). The membrane theory obtained in Sec.
III is a zero order approximation of a starting field theo-
retical model, but proposed method allows us to obtain
arbitrary order approximation. The arbitrary order ap-
proximation is a better one if the maxim»m of the density
of the scalar function ts is sharp and thin (see Fig. 6).

We could see on the simple example of Abrikosov-
Nielsen-Olesen solutions correspondence between mem-
brane and string description of vortices. For Abrikosov-
Nielsen-Olesen solutions the membrane is a cylinder
which axis is bent like Nambu-Goto string (K = 0),
but the radius of the hypersurface obtained by the defor-
mation of a straight cylinder has it own dynamics. The
radius of the cylinder have been estimated for straight
vortex. It appears that this radius is larger for solutions
characterized by a larger winding n»mber which agrees
qualitatively wit, h the figure content in Ref. [11]. Non-
triviality of the membrane description can appear in this
sense that string description does not distinguish between
situation presented on Fig. 4(a) and on the Fig. 4(b)
which is a bubble excited vortex. Simple Vachaspati-
Vachaspati modes [13) [see Fig. 5(a)] and bubblelike ex-
cited Vachaspati-Vachaspati vortices [see Fig. 5(b)] in
the string description are indistinguishable also. It seems
that the excitation found in [15],because of the existence
of nonvanishing electromagnetic fields A;, can provide
even more nontrivial examples of membrane solutions.
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