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Using the algebraic Hanu&tonian approach, we derive the exact to all orders (Abelian) O(d, d)
transformations of the metric and the dilaton Seld in WZW and WZW coset models for both compact
and noncompact groups. This is obtained in spite of the fact that the algebraic Ha~i&tonian method
does not enable us to derive the exact to all orders antisymmetric tensor (thus, we cannot use it
to derive the exact transformations of the antisy~~etric tensor). It is shown that under the exact
O(d) xO(d) transformation only the leading order of the inverse metric G, is transformed. The
quantity ~G exp(4) is the same in all the dual models and in particular is independent of k. We
also show that the exact metric and dilaton field that correspond to G/U(1)" WZW models can be
obtained by applying the exact O(d, d) transformations on the (ungauged) WZW model, a result
that was known to one loop order only. As an example we give the O(2,2) transformations in
the SL(2, R) WZW model that transform to its dual exact models. These include also the exact
three-dimensional (3D) black string and the exact 2D black hole with an extra U(l) &ee field.

PACS number(s): 11.25.Pm

I. INTRODUCTION

O(d, d) symmetries, originally discovered in fiat d-
dimensional toroidal compactification of closed string
theories, provide the moduli space of the corresponding
vacuum [1]. The global structure of the moduli space re-
veals the following property. Points corresponding to dif-
ferent backgrounds are related by a duality group of dis-
crete symmetries, isomorphic to O(d, d, Z) [2]. In other
words, O(d, d, Z) symmetries identify equivalent models
in the moduli space. This is the generalization of the
familiar R ~ I/B symmetry in conformal Beld theory
(CFT) [3).

These duality transformations are generalized to string
theories with curved background. It was shown by
Buscher [4] that duality symmetry of conformal back-
grounds with one isometry transforms from one CFT to
another (to one-loop order). Subsequently, it was no-
ticed [5] that if we start with the low-energy effective
action in string theory and restrict to space translation
invariant but time-dependent background, the effective
action exhibits an O(d, d) symmetry. The generalization
of the O(d, d) symmetry in curved backgrounds with d
isometrics [6] and in the heterotic strings [7] was proven
to be an exact symmetry of string theories by means of
string field theory. The corresponding O(d, d) transfor-
mations could be derived to one-loop order in o.' only.
Giveon and Rocek [8) have used the o-model approach
and showed the one-loop order O(d, d) transformations
for a general CFT background with d isometrics. Dual-
ity symmetries &om non-Abelian isometrics were consid-

ered later [9] where it was found that this new duality
transformation maps spaces with a non-Abelian duality
to spaces that may have no isometrics at all. Such sym-
metries were also discussed in [10].

O(d, d) symmetries are powerful and intriguing. In ad-
dition to providing a better understanding of the mod-
uli space of a given solution, O(d, d) symmetry leads to
striking cosmological consequences which we do not fully
understand, such as those discussed in [ll—14].

The duality symmetries of Wess-Z»~ino-Witten
(WZW) and WZW coact models were discussed in [15].
The exact underlying symmetry responsible for semiclas-
sical duality was identified with the symmetry under
affine Weyl transformations. This identification shows
that in the compact and»n~tary case they are exact
symmetries of string theory to all orders in a'. Dual-
ity transformations were shown [16,17] to be equivalent
to integrated marginal perturbations by bilinears in the
chiral currents.

In a previous paper [18] we have shown the exact to
all orders O(d, d) transformations of the metric and the
dilaton field for WZW coset models with d isometrics
which have a certain type of a background. The aim of
this paper is to generalize this result to general WZW
and WZW coset models with Abelian isometrics. We
shall be using the algebraic Hamiltonian approach [20]
to derive the exact metric and dilaton field. In spite of
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In the case of SL(2, R)/U(l) and SU(2)/U(l) there is a
regularization scheme where the semiclassical background re-
ceives no higher-order corrections in n' [19]. In such a case
the semiclassical O(d, d) symmetry transformations are also
exact [13].
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the fact that it is not possible to derive the exact anti-
symmetric tensor with this method (thus we cannot use
it to derive the exact transformations of the antisymmet-
ric tensor), it is shown that we can still derive the exact
transformations of the metric and the dilaton field. .

The paper is organized as follows. In Sec. II, we just
give the expressions for the 0(d, d) transformations in
one-loop order for the general case with d isometrics. In
Sec. III we derive an expression for the exact metric and
dilaton field for G/U(1) ~ WZW coset models by using the
algebraic Hami&toman approach. In Sec. IV, we derive
the exact 0(d) xo(d) dual models of the coset models
in Sec. III and compare with the one-loop order trans-
formations. In Sec. V, we derive the exact dual mod-
els to ungauged WZW models. In particular, we show
that the exact coset models can be obtained by exact
duality &om the ungauged WZW models. In Sec. VI
we demonstrate the exact duality transformations in the
case of the SL(2, R) WZW model and get also familiar
models, such as the exact three-dimensional (3D) black
string. In Sec. VII we derive the transformations in
the case of noncoxnpact groups where n isometrics cor-
respond to coxnpact coordinates and d —n correspond
to noncompact coordinates. The duality in this case is
generated by 0(n, d —n) x0(n, d —n) (in addition to con-
stant coordinate transformations and a constant shift of
the antisymmetric tensor). Section VIII is reserved for a
summary and remarks.

II. O(d, d) TRANSFORMATIONS
IN ONE-LOOP ORDER

D -+ D' = [(0, + 02)D+ (Oi —02)]
x [(Oi —02)D + (Oi + 02)] (2.3)

E m E' = -'[(Oi + 02) —D'(Oi —02)] 'E, (2 4)

E i E' = 2E[(Oi —02)D + (Oi + 02)] (2.5)

F ~ F' = F —E[(Oi —02)D + (Oi + 02)]
x (Oi —02)E, (2.6)

O -+ O' = 4 + —ln
~

1 (detG l
2 qdetG') ' (2.7)

where G' is the transformed target space metric. In the
above Oi and 02 are two constant O(d) matrices. These
symmetry transformations can be derived by gauging a
U(1)" subgroup in a "larger" background with D + 2d
target space dimensions with 2d isometrics [8] and are
correct to one-loop order only.

(b) Coordinate transformations: Y' ~ A'Y~ where A
is a GL(d, R) constant matrix. The transformations with
AA+ = I are already included in (a).

(c) A constant shift of the antisymmetric tensor B;~ ~
B;~ + C,~, where C is a d x d antisymmetric matrix.

Notice that the transformations in (b) and (c) are ex-
act to all orders in a' since the equations of motion to
all orders are covariant and depend only on the torsion
8 p~.

Consider a general u model with d isometrics that cor-
respond to a CFT:

d o[F„„(X)8+X"8X"+ E„;(X)8 Y'8+X"2'
+E;„(X)8+Y'8 X"+ D;~(X)8+Y'8 Y~]

d ovhR 4(X),8x
(2.1)

G=—I fF+F T

2 gE +E D+D~ )~'

where the background has D target-space dimensions
with y, = 1, . . . , D —d and i = 1, . . . , d. ~h and R(2)

are the determinant of the metric and the curvature in
the Riemann surface, respectively, and 4 is the dilaton
field. This background corresponds to the target-space
metric G and the antisymmetric tensor B with

III. EXACT METRIC AND DILATON
IN WZW COSET MODELS

In order to find the exact to all orders metric and dila-
ton field we shall be using the algebraic Hamiltonian ap-
proach for G/K coset models. This approach was derived
in [21]and systematized in [22].2 However, this method is
not helpful in calculating the exact antisymmetric tensor.
Therefore, we shall not discuss the exact transforxnations
of the antisymmetric tensor in this paper.

Let us first brieBy describe the method for coset mod-
els G/K. (For a review see [20].) Denote by JP
(a = 1, . . . , dimG) and JP (i = 1, . . . , dimK) the cur-
rents of the group 0 and its subgroup H, respectively
and J „,J;„are their "Fourier" components in the Kac-
Moody algebra. Lo is the zero generator of the Virasoro
algebra. Then the ground state T (the Tachyon) satisfies
the conditions

F —F~ E —E~ l
2g —E +ED —D

(2.2) (Lo + Lo —2)T = 0, (3.1)

The background (2.1) exhibits the O(d, d) symmetry
whose generators correspond to the following symmetry
transformations [8].

(a) O(d) x O(d) symmetry transformations, under
which

In the SL(2, R)/U(1) mode it wss shown [23,24] that the
background obtained by this method sstisjes the P-function
equations at least up to the fourth order in a'. In the
SL(2, R)xU(1)/U(1) coset it was shown [25] that the exact
background satisfies the P-function equations at least up to
second order.
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(J() + J() )T = 0, (3.2)

J~r= J~T=O, n&1. (3.3)

Here

S(T) = f S Xe'—Ge [Ge"S TS T —V(T)) (3.5)

, L,, = ~ — , (3.4)
k —cH k —c~ k —cH

and D~, L~ are the Casimir operators in G and in H,
i e g JG JG g JG JG g JH JH

J . J, and c~, c~ are the coexter of G, H
respectively. In the language of the group elements g
and the left and right gauged subgroup elements hL, and
hR, condition (3.2) is a remnant of the gauge invariance
T(hl, gh& ) = T(g) which demands that the tachyon is
a singlet under the action of the subgroup H. Now we
parametrize the group elements of G with the coordinates
X„, p, = 1, . . . , N = dimG, and express the currents in
terms of first-order differential operators of X„which sat-
isfy the Lie algebra of the group (so that L and Ls become
a difFerential operator). Finally we define gauge-invariant
coordinates X„, p, = 1, . . . , D = dimG —dimH, so that
when the tachyon is T = T(X) it automatically satisfies
the condition (3.2). Now we write the Casimir operators
in terms of X„,by simply using the chain rule. As is well
known, the efFective action for the tachyon is

(. '
g = exp i ) 8~T* g(X) exp i ) 82T'

) )
(3 6)

so the action can be written as

S = — d o[8+8i8 8i+8+828 822'
+2M;s(X)8 8~8+8sz + 2N„;(X)8+X"8 8i

+2N„;(X)8 X"8+82+F„„(X)8+X"8X"],

(3.9)

with y, = 1, . . . , D —d and i = 1, . . . , d. This action (3.9)
is invariant under U(1)~L xU(l)~R symmetry generated by
the conserved holomorphic currents that correspond to
translational symmetry in 8~ and 8&.

This approach agrees with the fact that (ungauged)
WZW are exact to all order in 1/k up to a shift of the
level k -+ k —c~. To get the one-loop order background
one should put ct- ——cH ——0 in Lo+ Lo of the gauged
model, which is equivalent to taking astronomically large
k and neglecting c~ and 2~.

Now, consider a general (D + d)-dimensional target
space that corresponds to a (ungauged) WZW model
based on a group G with level k which has a subgroup
U(1)~. We pick a basis T', i = 1, . .. , d in the Cartan
subalgebra with [T', Ts] = 0 and trT'Ts = 8's. Now we
parametrize the group elements as

where 4 is the dilaton field and V (T) is the tachyon po-
tential. On the other hand, since the tachyon is com-
pletely defined through the action of the zero modes, its
action is equivalent to

J' = 8+8~ + M;s8+8s2 + N„;8+X",

J' = 8 82+ Ms;8 8~~ + N„;8 X".

(s.10)

(3.11)

S(T) = f d v Ge e[T(Le+ Ie—)T —V(T)]. (36)

From actions (3.5) and (3.6), expressed in terms of X„,
we obtain

Now we want to describe the coset model G/U(1) in
the algebraic Hamiltonian approach. The group G is
parametrized so that the left and the right U(1) currents
are the commuting diff'erential operators

(3.7)Lo + Lo ———e 8„(e g GG""8„)—1 Jj SBQJ ~ Jg SBQJ p p 1
p

~ ~ ~ ) cue
1

(3.12)

&om which we find the exact metric and the exact dilaton
field.

We can choose the rest of the generators to correspond
to action (3.9) (since the WZW is exact). Now we gauge
the axial symmetry. In the gauged model,

I„+L„=— '
[z (x)8 .+ r;(x)8,. + r*,(x)8,. y G "(x)8 .8 .+ 2G", '(x)8 .8,.

d

+2G2*(X)8x,8s, + L", (X)8s, 8s, + L", (X)8s'8~ + 2P*'(X)8s;8s, ] + —) (8s2i + 8~;), (s.1s)

where G"", G~', G2', L~~, L2, and P' are the components of the inverse of the metric in the WZW action, i.e.,

( G

(G~ P~ L, )

( '(F+F~) N' -N'
[[

Nl
NT M+ I )

(3.14)
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and Z, rq, r2 are obtained from (3.7) with 4 = 0. (Notice that we have written all matrices with upper indices for
convenience. This has nothing to do with covariant raising indices. )

Now we should de6ne d gauge-invariant coordinates which we denote by Y and in addition to X", which are
not transformed, the target space of the gauged action is D dimensional. In the axial gauge the gauge-invariant
coordinates should satisfy d conditions:

(J; + J;)Y' = 0, i, j = 1, . . . , d. (3.15)

Taking

Y' = 8» —82 (3.16)

we obtain

Lo+ Lo =— z„(x)a .+(r,'. -r,')a;+G"a .a .+2(G",'-Gp)a .a,.

+(L',~ + L2' —2b" —2P'~)ay;ay, + „h*~ay,ay, (3.17)

De6ne I to be the D x D matrix,

it
0 0&i

(0 I)' (3.18)

and I is the d x d unit matrix. From expression (3.17)
we see that

where TI, TR are the generators of the left and right
gauged subgroups. Instead of looking for all the anomaly-
&ee gaugings we shall use the following method, which
is an application of the idea used in [8] for the o'-model
action. The ungauged action (3.9), or equivalently, the
Casimir operator of the ungauged model, is invariant un-
der the transformation

1 ( ~ 2c~ -l
exact =

~ - I classical +
k —c~ i, ic )

(3.19) 8» m 8» = O»8», 82 ~ 02 —026P2)

L» M L» O»L»O» ) L2 M L2 02L202

IV. EXACT DUALITY TRANSFORMATIONS

All the O(d) xO(d) dual models to the gauged model
in the previous section can be obtained by all the dif-
ferent anomaly free gaugings (generators) of the U(1)
subgroup. The condition for the anomaly cancellation is
[26]

trTI, TL, ——trT&TR) a) 6 = 1, . . . , dimH, (4 1)

Here we omitted the prefactor k in &ont of G,~ „;,~. We
could, of course, choose different gauge-invariant coordi-
nates Y' = C'(8& —8~&), where C is a constant Gl (d)
matrix, but thos is simply a coordinate transformation of
the Y' coordinates. In this case the 1/k correction to
the semiclassial metric becomes (C C)c~/k in the (ij)
directions.

P + P' = O»PO2,

G» m G» —G»O» ) G2 m G2 —G202,

r, ~r', =r,o~, r, ~r', =r,o, ,

(4.2)

where Oq, 02 are two O(d) matrices [or O(d, Z) if we
want to preserve periodicity]. Now we write Lp + Lp in
the WZW action with respect to the transformed coordi-
nates 8~, 82 and gauge the U(l)" subgroup generated by
the currents J, = i8&, and J; = iO&, , which is still an

1 '. 2
'

anomaly-Bee gauging. Using trT'T~ = b'~ it is easy to
see that the new generators, which are linear combina-
tions of the T"s satisfy the condition (4.1). The result
(in the 8 coordinates) is a rotation of the Casimir oper-
ator of the ungauged action while the gauged subgroup
is unchanged. Therefore, we get an expression for all the
O(d) xO(d) dual models:

1 ( G G»O, —G20,
k —c~ ( OiG~ —02G2 O&LiO~ +02L202 —O&PO2 —02P 0, —2I+ i, I )

(4.3)

for two general O(d) matrices. The important point to
notice is that the 1/k correction to the inverse metric
with respect to the semiclassical one is invariant under
the O(d) xO(d) transformations [also when it takes the

form C C(c~/k)]. Finally, we recall that all the one-loop
order metrics that are obtained by O(d) xO(d) transfor-
mations can also be obtained by diferent gaugings of the
ungauged WZW model. Therefore, under the O(d) x O(d)
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transformations the exact inverse metric transforms as V. EXACT O(d, d) TRANSFORMATIONS
IN (UNGAUGED) WZW MODELS

1 (detG )
Oexact ~ Oexact = @'exact +

2 (detG') (4.5)

where, G, G' correspond to the exact metric and the
transformed exact metric.

In particular, we can construct the axial-vector duality.
This duality was revealed in the 0'-model approach [27]
and was proven to be an exact symmetry of the CFT
[13]. If we take Oq ———02 ——I we interchange the axial
and vector gaugings.

where I is given in (3.18) and G,&
„., &

is the semiclassi-
cal metric obtained after the one-loop O(d) xO(d) trans-
formations, as is written in (2.3)—(2.6). Thus, to calcu-
late the exact inverse metrics of the models related by
O(d) xO(d) duality we need only to transform the lead-
ing order of the original metric, which involves only the
leading order of both the metric and the antisymmetric
tensor. Hence, we reach the following conclusion. Given
an exact metric that corresponds to a coset model, in or-
der to find the metrics of all the exact O(d) xO(d) dual
models it is enough to know the antisymmetric tensor to
one-loop order.

The transformation of the exact dilaton under the
O(d) xO(d) can be derived as well. Since the matrix G
and the vector Z are invariant under the transformation,
using (3.7) it is easy to see that the quantity ~Ge is
invariant under the transformation. Therefore under the
transformation G,„,t —+ G',„,~ we obtain

The method described above can be used to construct
the exact O(d, d) transformations also in ungauged WZW
models. Consider a WZW model based on a group G
which has a U(l)" subgroup. This means that the 0
model has 2d isometrics. Although the ungauged action
is exact to all orders up to a shift of the level (which is
just a prefactor), the exact O(d) xO(d) transformations
introduce 1/k corrections in the dual models. To apply
the duality transformations we should consider an equiv-
alent model: GxU(l)2s /U(1)&". We use the notations in
(3.13) for the (ungauged) WZW model and parametrize
the extra U(l) generators by the differential operators
iB; and iB+' taken with level k. This introduces the

term —(2/k) P; ~ (8; +8;) to Le+ Le of the ungauged

model. Now we gauge the axial U(1)2&"x U(1)& subgroup
generated by

g» = i Bs' for i = 1, . . . ) d,

g» ——i8;-a for i = d + 1, . . . , 2d,
»ff)x

J; = iBs' for i = 1, . . . , d,

g~ —iB;-a for i = 4+1, . . . , 2d.

Notice that 1/k is simply a redefinition of the U(l) free
Selds but it ensures that the condition for anomaly can-
cellation (4.1) is satisfied after the rotation we shall make.
Thus, we have now

Ls+ Lo ——— [Z"(X)8» + r~(X)Bs. + I'2(X)Bs; + G""8»,8»-
k —c~ 1

d

+L~'Bs;Bs, + L~~Bs;Bs, + P2'~8 Bs]s——) (8; +8;)+
i=1

+ 2G", '8»~Bs, + 2Gf'8»~Bs,

d
—) (Bs; + Bs2; + 82; + 8;).

i=1
(5.2)

To obtain the metric we de6ne the gauge-invariant coordinates

Y1 ——81 —82) Y2
——(P1 —y2) Z = 1).. . ) d (5.3)

and substitute in Lo+ Lo.
Now, in order to see the O(2d) xO(2d) duality we define the 2d-dimensional vector Pq with Pz

—
e& for i = 1, . . . , d

and P~ = rp~ for i = d+ 1, . . . , 2d and similarly we define the vector P2 with Pz
——82 for i = 1, . . . , d and gP2 = &p2

for i = d+ 1, . . . , 2d. Now we rewrite Js + Lo in (5.2) as

Lo+ Lo = —„[Z"(X)8 + I"(X)8~. + i" (X)8~' + G""8 8 - + 2G"*8 B~'

2d

+2G2*8»~8~. + Lq 8~.8~ + L2 Bp' Bp. + 2P' Bp' 8~] + —) (8~, + 8~, ),
i=1

(6 4)

where 11,I'2 are the 2d-dimensional vectors

Gq, G2 are (D —d) x 2d matrices
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and, P, L~, Iq are 2d x 2d matrices

Gi ——(Gi 0), Gg = (G2 0), (5.6)

!P 0) — (L„, 0 ) — t'I„o
0 0 I' i=I 0 2(1 —~)I I

2=~ 0 2(1 ~)I (5.7)

Now we can repeat the steps in Sec. IV. Taking Oi and 02 to be two 0(2d) matrices, the Casimir operator of the
ungauged model is invariant under the O(2d) xO(2d) transformations

pi ~ gV, = Oipi, p~ ~ p2 = 02$2,

Lz M L~ = O&L&O~ ) L2 M L2 = 02L202 ) P M P = 0]PO2

+1 ~ +1 +101 ) +2 ~ +2 +202 &

(5.8)

F mF' =F 0+, I' mF' =F 0
So all the O(2d) x O(2d) dual models to the (ungauged) WZW model have the metrics

k —c~ ( OiGi —02G2 OiLiOi + 02L202 —OiPO2 —02P Oi —2I+
&

I ) (5.9)

Thus, although the ungauged WZW model is exact to
all orders (up to a shift in k), dual models receive non-
trivial 1/k corrections with respect to the semiclassical
backgrounds. To get the dilaton Gelds we simply need to
calculate the determinant of the dual metric, divide by
the determinant of the metric in the WZW action and
take a log. Since ~Ge@ is the same in all the dual models
as in the ungauged WZW, this quantity is independent
of k to all orders. In particular, the coset models with
d extra free U(l) fields are dual to the ungauged WZW
and therefore this property holds also for the coset mod-
els. The coset models that were derived in Sec. III are
obtained by taking Oq ——02 ——I for the axial gauge and
Oq ———02 ——I for the vector gauge. If we take

,5.10)

we obtain the metric of the ungauged WZW in (3.14).
Thus we have produced a result known to one-loop or-
der [28,29], that the backgrounds that correspond to
G/U(1) WZW can be obtained by applying 0(d, d)
transformations on the ungauged %'ZW.

Js ——its, ,

Jp ——ie

Jg ——ie+'"

J3 ——ice„,

~

—B„k . (Bs„—cosh 2rBs, ) ~,
q 2 sinh2r
t'1

B„k . (—Os, —cosh2rOs„)
~

.
g2 sinh 2r

(6.1)

Now we shall follow the procedure suggested in Sec.
V. We introduce two additional U(l) fields, denoted
by yL„p~ and the corresponding U(1) currents (with
level k) are E=i8~, an'd K = iB~, . Next we

gauge the currents J3, J3, K, K. Then, in the model
SL(2, R) x U(1)2/U(1) 2, we have

VI. EXAMPLE: EXACT DUALITY
IN SL(2, R) WZW

To demonstrate the above, we shall consider here the
exact dual models to the SL(2, R) WZW. This model has
raised some interest recently with connection to the 3D
black hole [30]. In one-loop order it is known [31] that
by duality transformations it can be brought to the 3D
black string [32] and to the 2D black hole with an extra
free U(l) field [28,29].

In the case of SL(2, R) WZW there are two isometrics.
We shall demonstrate the O(2)xo(2) duality. First let
us parametrize the currents of the SL(2, R) WZW as

2 (1 1 1
Lo + Io = — 0„+—coth2rO„— —

2 (08 —2 cosh 2rOs~Bs„+ Os„)k —2i4" 2 sjnh 2r

——(0, + 8,) + —(Os, + Bs„+0, + 8, ) (6.2)

where we used c~ = 2 for the SL(2, R) group. We rewrite this expression as

Lo + Lo ——— (-8„+coth2rB„)—2

—(~s. , ~~, )&
I

~" I+(~e. &~, )& I

~'" I+(~s. , &~.)& I

q'"
I

+ „(~e, +~e—„+&,', +&~,), (6.3)
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where

02
(h —2)sinh 2r

0 Xh&

( 4co sh2r 0 )(h —2)sinh*2s
0 0)

(6.4)

Let us now observe this metric. For sinP = cosa = 0 we
obtain the original ungauged WZW.

For cosa = cosP = 1 we obtain the exact metric of
the 2D black hole and an extra free U(1) field (this is
the Lorentzian version of the solution in [21]). Taking
t = 2' for the time and X = 2' the metric with a
prefactor 2 is

In the axial gauge we define the gauge-invariant coordi-
nates as

—i
dS = (k —2)dr (k——2)

~

coth r ——
~

dt +kdX,
k&

(6 9)
Y1 ——81 —8~, Y2 ——(P

Then the dual models can be described with

(6.5)
4' = ln(sinh2r) + —ln

~

coth r ——
~

.
2 g k&

Lo + Lo ——— (-B + cosh 2rB„)
k 2

—(By„By,) OiAOi + 02AO2

01BO2 — I—
k ) (By, &' (6.6)

For cosa = 1 and cosP = —1 we obtain the dual met-
ric of the 2D black hole (that correspond to the vector
gauging):

—i
dS =(k —2)dr —(k —2)

~

tanh r —
~

dt +kdX,
k&

(6.10)

where Oi, 02 are two O(2) matrices. Finally, let us take
4 = ln(sinh2r) + —ln tanh r ——

~

.
2 g k)

cosa sina l
—sin A cos cl

cos sin

g
—sinp cosp

&

'

(6.7)

gt'1'
2(k —2)

'

G = — (cos a + cos P)k —2 sinh 2r

2l—
~

1 ——
~

(sin a+ sin P —1)
k&

2 cosh2r+cosa cosp
sinh 2r

22 2 ~ 2 ~ 2 1
G = — (sin a+ sin P)k —2 sinh 2r

Substituting these matrices in (6.6), we obtain a general
expression for the inverse metric in the dual models:

The exact background that corresponds to the 3D black
string is obtained by a coordinate transformation on
Yi, Y2. We take cosa = sinP and define t = Yj —Y2
and X = Yj + Y2. The metric we obtain is

1 ( 2l@=—ln 1+q+2q
~

1 ——
~

sinh r
2 k&

(6.11)

( 2lx q —q+ qq
~

1 ——
I
cosh r

k&

where q = sin 2a. (These metric and dilaton fields were
derived also in [33].) Notice that in all the models and
in the ungauged WZW ~Ge@ = sinh2r.

dS = (k —2)dr —(k —2) 2 dt
1 + q + 2q(l —2/k) sinh r

h2
+(k —2), dX',

1 —q+ 2q(1 —2/k) cosh r

—
i

1 ——
i

(cos a+ cos P —1)
k&

2 cosh2r+sina sinp
sinh 2r

(6.8)

~II. EXACT O(ra d —qra) xO(rh, d —n)
TRANSFORMATION S

In the previous section we were discussing WZW where
the group elements were parametrized by

G = (sina cosa+ sinP cosP)12
k —2

( 2l cosh 2rx ~, +1——~+sin(a+ p)(sinh 2r sinh 2r

(
g = exp i ) HiT' g(X) exp

(
~ ) gqTq

The results we got hold also when the group elements are
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parametrized by ('
g = exp ) HiT'

~ g(X) exp ) 82T'
) &;=i )

(7.1)

(all the 8 coordinates are noncompact) but requires a
minus sign in front of the (ij) components of the exact
metric in all the dual models. In a noncompact group we
can also parametrize the group by

i
g = exp i ) 8iT'+ ) HiT' g(X) exp

i=1 ;=+i )

tt' n d') 8;T*+ ) 8;T'
i=1 i=n+1

(7.2)

[2n compact and 2(d —n) noncompact fields] where, as in Sec. III, trT'T~ = b;~. In this case the ungauged action
takes the form

n 4L

8 = — d cr 0+810 81 +0+828 82 — 0+810 81+0+828 82
i=1 i=n+1

+2M~&(X)8 HiB+H~i + 2N„;(X)8+X"8 Hi + 2X„;(X)8 X"8+82+F„„(X)8+X"8X" (7.3)

J~ =ice,. fori = 1, . . . , n,

J~ = 8&& for i = n+ 1, . . . , d.
2

(7 5)

Then, in the gauged model we have

n

i=1

and the holomorphic currents J~ = trB+gg T~ and the
antiholomorphic currents J~ = trg 8 gT~ with j ) n
do not have a prefactor i. In the algebraic Hamiltonian
approach we shall parametrize these U(1) currents as

J~ = i Dg, for i = 1).. . ) n)
1

(7.4)
J~ = Be, for i = n + 1, . . . , d)

1

are linear combinations of the generator T'. A rotation
81' = 01281 and 82' = 02282 means that 1n the rotated
action the corresponding U(1) currents are generated by
TI' ——01 T and T& ——02 T . Therefore in order to
preserve the condition for anomaly cancellation (4.1) the
matrices Oi and 02 must be O(n, d —n) matrices (namely
OirIOi = 02r102 ——g). Hence, when d —n of the U(1)
isometrics have opposite sign the result (4.3) for the in-
verse metric of the dual models changes as follows: The
unit matrix multiplying c~/k (the 1/k correction to the
inverse metric) is replaced by g and the matrices Oi, 02
that generate the duality are taken to be O(n, d —n) ma-
trices rather than O(d). In the case of dual models to
the ungauged WZW in Sec. V, we can introduce the 2d
extra U(l) currents with different signature. Suppose we
take d —m pairs of p coordinates with negative signature
and the ungauged WZW has d —n pairs of 8 coordinates
which are noncompact, then the duality is obtained by
O(m + n, 2d —m —n) matrices.

-- ). (~'+~a)
i=n+1

+ k~(~., + ~..)-2A~ 1

k —cg
(7.6)

83. ~ 81 —0181) 82 ~ 82 0282 ~ (7.7)

The generators of the currents J,J in the rotated system

where rI is the d x d matrix rI = diag(1, . . . , 1, —1, . . . ,
—1)

with n entries 1. (We have used A~ = AG.)
Let us consider now the rotation of the 8 coordinates.

The translation of the coordinates 81, 82 with i = 1, . . . , n
is generated by i T' but the translation of the coordinates
81, 82 with i = n + 1, . . . , d is generated by T'. So let
us define the generators of the U(1)" gauge (before the
rotation of the 8 coordinates) by T~ = T~ for j = 1, . . . , n
and T~ = —iT~ for j = n+ 1, . . . , d. Then trTiT~ = g'~.
Now we want to repeat the procedure we were using in
order to obtain the dual models. Consider a rotation

VIII. SUMMARY AND DISCUSSION

In this work we have generalized the one-loop O(d, d)
transformations to the exact to all orders case in WZW
and WZW coset models. A general O(d, d) transforma-
tion can be decomposed to constant coordinate transfor-
mations, a shift of the antisymmetric tensor by a con-
stant antisymmetric matrix and O(d) xO(d) transforma-
tions. The first two are exact and in this paper we
have derived the exact O(d) xO(d) transformations. We
have found that for coset models G/U(1) these trans-
formations operate as follows: writing the inverse metric
as the semiclassical inverse metric plus the 1/k correc-
tions, only the semiclassical part transforms to a dual
semiclassical inverse metric. Therefore, although with
the algebraic Hamiltonian approach we could only de-
rive the exact metric and dilaton field, knowing the an-
tisymmetric tensor to one-loop order, we can find all
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the exact dual metrics and dilaton 6elds. In the un-
gauged WZW model with 2d Abelian isometrics we ob-
tained the dual metrics by considering the equivalent
model GxU(l)z~/U(l)z . Thus although the ungauged
WZW is exact, its dual models receive I/k corrections
with respect to the one-loop order transformation. Our
analysis shows that ~Ge@ is invariant under the exact
O(d) xO(d) transformations. In particular, in the exact
G/U(l) coset models (as well as in the dual models)
~Ge@ is independent of k.

Finally, we want to comment about the generality of
our results to a general exact CFT. It was shown by
Tseytlin [34] that there exist a (D+2)-dimensional back-
ground with a target space metric having a covariantly
constant null Killing vector and a Bat "transverse" part
that is exact to all orders. The corresponding 0 model
is invariant under D + 1 Abelian isometrics. In a recent

work [35] it was shown that a background of this type
is transformed by the one-loop order O(D, D) transfor-
mations (only in the transverse directions) to the same
class of exact solutions. This speci6c example requires a
special analysis, but we speculate that this class of exact
solutions can be obtained by gauging a larger background
followed by redefining the fields so that the I/k correc-
tion is absorbed and disappears. Then the result in [35]
can be considered as a particular example to our results.
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