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Quantum state during and after O(4)-symmetric bubble nucleation
with gravitational efFects
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We extend our previous analysis of the quantum state during and after O(4)-symmetric bubble
nucleation to the case including gravitational effects. We 6nd that there exists a simple relationship
between the case with and without gravitational effects. In a special case of a conformally cou-
pled scalar Seld which is massless except on the bubble wall, the state is found to be conformally
equivalent to the case without gravity.

PACS number(s): 03.65.Sq, 03.70.+k, 98.80.Cq

I. INTRODUCTION

Field-theoretical quantum tunneling phenomena such
as false vacuum decay are considered to have played im-
portant roles in the dynamics of the Universe in its early
stage. One good example is the so-called extended infla-
tion [I], in which the inflationary stage of the Universe
ends with nucleation of true vacuum bubbles and ther-
malization of the Universe by collisions of these nucleated
bubbles.

As another interesting possibility, we have recently
proposed a simple one-bubble scenario of the inflation-
ary Universe by considering the particle creation during
and after the false vacuum decay [2]. Provided enough
entropy is produced, it is possible to have our Universe
inside one nucleated bubble. However, since our know-
ledge of the quantum state after the false vacuum decay
is far &om suKcient, we are unable to argue further for
or against this possibility at present.

In addition to the inflationary universe scenario, what
happens after bubble nucleation is an interesting issue as
a fundamental process relating to the quantum matter
production or the quantification of quantum effects in
general in the early Universe.

Toward a clear understanding of the issue, various at-
tempts have been made. Among them, Rubakov devel-
oped a method of nonunjtary Bogoliubov transformation
to treat particle production during tunneling [3]. Then
Vachaspati and Vilenkin investigated general features of
the quantum state during and after nucleation of an
O(4)-symmetric bubble, paying particular attention to
the symmetry of the state [4]. Meanwhile, we have devel-

oped a method to analyze the quantum state during and
after field-theoretical quantum tunneling by constructing
a multidimensional wave function in a covariant manner
[5) (hereafter paper I), which was originally developed by
Vega, Gervais, and Sakita [6]. Then we have applied it to
the O(4)-symmetric bubble nucleation and investigated
the properties of the quantum state of fluctuating de-
grees of &eedom in detail by constructing an analytically
soluble model [7] (hereafter paper II).

However, all of these previous analyses were based on

several nontrivial assumptions or simplification of mod-
els, the validity of which is not clear. To mention one
such simplification, the effect of gravity was neglected in
all of them. In this paper we focus on this point and
tackle the problem of incorporating the effect of gravity.
More precisely, as a first step, we take into account the
background spacetime curvature induced by the tunnel-
ing field solution and investigate its effect on the quan-
tum state of fluctuating degrees of &eedom. Hence, in
particular, the false vacuum is de Sitter space.

This paper is organized as follows. In Sec. II we ex-
tend our method developed in paper I to the case when
the initial state is excited with respect to the false vac-
uum, which is necessary to incorporate the gravitational
effect. In Sec. III we show that there is an elegant interre-
lation between the quantum states after tunneling with
and without the effect of gravity. As a specific exam-
ple, we then consider a conformally coupled scalar field,
which interacts with the tunneling field on the bubble
wall but is massless elsewhere, and we show that its quan-
tum state is conformally equivalent to the case without
gravity, i.e., the same result as for the Minkowski back-
ground obtained in paper II can be applied. However, we
also point out a paradoxical situation we encounter when
evaluating the regularized energy-momentum tensor. In
Sec. IV we summarize our results.

II. MULTIDIMENSIONAL TUNNELING WAVE
FUNCTION

In paper I we developed a method to construct the
multidimensional tunneling wave function &om the false
vacuum ground state in a covariant manner. As we shall
see in the next section, in order to construct the tunnel-
ing wave function in curved spacetime, it is necessary to
extend the formalism given in paper I to the case when
the initial state is in an excited state. Some basic parts
of this extension have been recently given by Yamamoto
[8]

We consider a system of D+1 degrees of keedom whose
Lagrangian is given by
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L = -G p(4)4 O' —V(4)
1

(o., P = 0, 1, . . . , D; i,j = 1, . . . , D), (2.1)

where qP are the coordinates for the (D+ 1)-dimensional
space of dynamical variables (i.e., superspace) and G p is
the superspace metric. In this section, Greek and Latin
indices run kom 0 to D and &om 1 to D, respectively.
For simplicity, we assume the potential V(4) of the form

V(P) = U(X) + -m,',.(X)P'P, (2.2)

h2 1 2I = ——G ~(X)V Vp+ U(X) + m; (X)—P'qP, (2.3)

where G ~(X) is the inverse matrix of G p(X).
In paper I we constructed the quasi-ymund-state wave

function using the WEB approximation. The quasi-
ground-state wave function is the lowest eigenstate of the
Hamiltonian suKciently localized at the false vacuum.
Let us briefly summarize the method without rigor. The
detailed discussion is given in paper I.

(i) First, we impose the WKB ansatz on the wave func-
tion,

—-', (w(')+aw('&+-. -) (2.4)

which should solve the time-independent Schrodinger
equation,

where the tunneling degree of freedom is represented by
X = PP as a collective coordinate and the fluctuating
degrees of freedom by P', respectively. Further we focus
on the case when the superspace metric depends only on
the tunneling degree of freedom, G p = G p(X), and
has no cross terms between X and gP (i.e., Gp; = 0),
and we assnme that the signature of the metric is pos-
itive definite. The potential U(X) is supposed to have
a local minimum at X = Xy, which is not the absolute
minimuni. We call the point (X,gP) = (Xs, 0) the false
vacuum origin throughout this paper.

The Hamiltoniaii operator in the coordinate represen-
tation is obtained-'by replacing the conjugate momenta
in the Hamiltonian with the corresponding differential
operators. In general, there exists the operator ordering
ambiguity. Here we fix it in such a way that the resulting
Hamiltonian takes the form

FIG. 1. A path on the complex plane of time, which repre-

sents a tunneling process. The segments A., 8, and C corre-

spond to the motion staying in the false vacuum, an instanton,

and the motion after nucleation, respectively.

inary tsme v' = it.
(ii) We consider a solution of the Euclidean equation

of motion which starts from the false vacuum at w =
—oo with zero kinetic energy [i.e., E = Ep '.= U(Xy')]
and arrives at the turning point at v = 0, which is the
boundary of the classically allowed and forbidden regions.
If there are several nontrivial solutions, we choose the one
that gives the minimum Euclidean action. We call it the
dominant escape path (DEP) and denote it by P&~&(v).

In the present case we have

(4&pl(r) 4Ipl( )) = (X(~) o). (2 7)

(iii) Next, along DEP, we introduce an orthonormal

basis, e'(r), lying in the hypersurface E(v) orthogonal

to it; G,~(X(7'))e' (r)eb(r) = b b, where a runs through
the range 1,2, . . . , D. For convenience, we fix the or-
thonormal basis in such a way that e':= e' (r = —oo)
diagonalizes ~b .——u;~eeb, i.e., ~b ——ubb, where. . i

lim m; (X).
XmXp

(2.8)

Then the required orthonormal basis along DEP is con-
structed by solving the equation

—e + —G Gge =0ss '

a 2 2 a (2.9)

which corresponds to a special case of Eq. (2.17) in paper
I.

(iv) Assuming that W&P&(P) is known around DEP we

span the hypersurface orthogonal to DEP by the coordi-
nates g with respect to the basis e' and. define

HC =El. (2.5)
(o)~/b .—~-$y ~ b)=0

(2.10)

G-~v. w&'&v~w-~'-~ + v(y) = z, .
2

(2.6)

By setting G ~vpw~P& = qP, Eq. (2.6) gives the Eu-
clidean equation of motion, i.e., with respect to the imag-

We solve this equation order by order with respect to
h. The energy eigenvalue E is formally divided into two
parts, Ep and Ei, of O(h ) and O(h ), respectively. The
equation in the lowest order of 5 becomes the Hamilton-
Jacobi equation with the energy Eo.

where the semicolon represents the (D + 1)-dimensional
covariant differentiation with respect to G p. %'e also
introduce a matrix Eb, which is determined by solving

Eb =e Kb
D2

2 Kb = [(U + m'&P P) .p X(T) R ppp]Kg

(2.11)

with the boundary condition
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Kb -+ (e ) (7 m —oo), (2.12)
terms of K b as

where D/d7 and R
&

denote the Lie derivative along
DEP and the Riemann tensor of the superspace metric
0 p, respectively. One then finds 0 b is expressed iD

(2.13)n., = K:(K-'),.

(v) With these results in hand, the quasi yro-und 8ta-te
wave function [5] is found to be

X/4
C det(u sruti, e2 0

exp —— dv'2 U X 7. —Eo + —Trp)7 ——Q b'g 'g

(2[U(X(v)) Ro]) )( det K b(v') 2 25 (2.14)

where (do .'——U"(X~), Tru = P i ~, det u = Q
and the normalization constant C is given by

{2[&(X(&)) —Eo])'"
1TW —OO ~ ~ CaPO T vrh

~/4
det ~ mh

4(X, Q') =
detK' 7. G

1 1
x exp —Trav ——B,~A'P) .

2 25
(2.21)

In the present case, the above result can be re-
expressed in terms of the superspace coordinates (r, ()I)'),

as follows. First, note that the hypersurface Z(r) is
generally difFerent Rom the v' =const hypersurface E(~)
off the DEP; the latter is warped if G,~ g 0. Let a
point (7., g ) on the hypersurface Z(r) correspond to
(7, gV) in the original coordinates. Then from the fact
Q(7, g ) = Q(v, 4)') for any scalar function Q and the
equation

(2.16)

which follows &om the definition of the covariant deriva-
tive, where

Further, from Eqs. (2.13) and (2.16) we obtain

0;~ = ) G;),K"K (2.22)

Also, from Eq. (2.11), we find K' satisfies the equation

(2.23)

which is just the classical equation of motion for P' in
Euclidean time. With the help of Eq. (2.23), it is then
straightforward to show that to the first WKB order
(2.21) satisfies

[17 —E',]4 = 0.

V:= G-'~'a. G'~' — G'~a;a, + -m,',y*P,—(2.24)

we find

dw~ol
(2.18)

4 (P ) = O(X)4(X, P*), (2.19)

where 0 is the lowest WKB part,

Now, replacing 7 in Eq. (2.14) with 7 given by
Eq. (2.18, expanding the result around 7., noting the fact
that dW l/d7 = 2[V(X) —Eo], and regarding )7 and P'
as quantities of O(hi~~), we find the wave function to the
first %KB order to have the form

where Ez ——hTru. One sees that this is just the Eu-
clidean time Schrodinger equation for the Quctuating de-
grees of &eedom.

Following the procedure taken in [8], we now construct
a set of generalized creation and annihilation operators,
A~ and 4 whose action on some eigenstate of the Hamil-
tonian produces another eigenstate. In other words, look
for operators that correspond to the usual creation and
a~~ihilation operators at the false vacuum origin, i.e.,

[17,A ] = (d A and [17,At] = —~ At. To do so, first,
we make a set of operators a~ and a~ which commute
with the differential operator 'V. If we assume the forms
of a and a~ as

0(X) =
- X/4

2 (V(X(7 ) ) —Eo)

—K'h, +G;,

h, - 0Q*h . —G;,. Q*gP, (2.25)

xe» —— Z~'2V X ~' —Z, +-~.~,
2

(2.20)

and 4 is the first %'KB correction,

it is easy to see that a~ commute with 'V, and the neces-
sary condition that at commute with 17 is that Q~ satis-
fies the same equation as Eq. (2.23) for K'. Then, as we
have adopted the orthonormal basis e', which diagonal-
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izes u b at 7 -+ —oo, if we set the boundary condition of
as

III. INCORPORATION OF GRAVITATIONAL
EFFECT

Q' ~e e' for r-+ —oo, (2.26)

we find [a,ab] = b b. Hence the relevant creation and
an~ihilation operators At and A are found to be

Aa =e aa~

At =e "ata' (2.27)

An excited sta-te wave function with respect to the fiuc-
tuating degrees of freedom can be obtained by operating
these creation operators, At, to the quasi groun-d state-
wave function (2.21).

Given these results, it is convenient to reformulate the
method to construct the wave function in the following
way. We consider a path in the complex plane of time
as shown in Fig. 1. Along this path, we construct a so-
lution X(t) of the classical equation of motion with the
initial condition X(—oo) = Xs. In the segment A of
the path, the solution stays at the false vacuum origin
X(t) = X~ which is certainly a solution. This solution
can be smoothly connected to. the DEP solution at a
sufficiently large negative r (= it). The segment B cor-
responds to the DEP in the forbidden region and C to
the DEP in the allowed region. The solution along C is
obtained by analytically continuing the DEP solution by
setting t = ir () 0), w—hich describes the classical mo-
tion after tunneling. The lowest WKB order wave func-
tion is described by this classical solution. Now along
this path, we solve Eq. (2.23) for K' and q' with the
initial conditions at t M —oo as

l'. = l'.g, „+8 + l:4„ (3.1)

where

1
~srav = a~Y

16mG
1= —a~p —g""V„+V„o+U(o)
2

Zp ———ai)p g""V„PV—„P+m (o) y(R P

(3.2)

and G and R are the gravitational constant and the scalar
curvature, respectively. Here and in what follows we use
the notation of the 3+ 1 decomposition of the spacetime
metric:

(3.3)

We consider the system that consists of two scalar
fields: i.e., the tunneling field o and another field 4,
which represents the Buctuating degrees of &eedom, both
coupled to gravity. We consider the situation in which
the potential U(o) is in the form shown in Fig. 2 and o
is initially at the false vacu»m, 0 = a~. The interaction
between the two fields is ass»med to be described by the
o-dependent mass term of P; m2(o')Ps/2. As in paper
II we ignore the Suctuations of cr and the metric g„„for
simplicity. We begin with the Lagrangian of the form

q =u,
2(d~

(2.28)

The Hamiltonian is given by

Hgrav+ H~+ H (3.4)

where u' and u" are the positive and negative &equency
functions, respectively, in the false vacuum. In this way,
we obtain the first WKB order wave function before and
after the tunneling.

To close this section, perhaps it is worthwhile to men-
tion that the time t (or r) discussed here is not the ex-
ternal time in the original Schrodinger equation but is a
parameter that naturally arises from the characterization
of the lowest WKB configuration (or the internal time).

where Hg, „andH are the Hamiltonians of the gravita-
tional and tunneling 6elds, respectively, and Hy is that
of the Quctuating 6eld:

H = d3 1
-2
~ (~"™V&PVP+ m'(o) +(R P'),

(3.5)

with p being the momentum conjugate to P.
We should note that when gravity comes into play,

there exists no external time, and the Schrodinger equa-
tion becomes the Wheeler-DeWitt equation

HC =0, (3.6)

FIG. 2. The potential form of the tunneling; Beld, vrhere o'y

and cr~ represent the values of u in the false and true vacua,
respectively.

which is essentially the Hamiltonian constraint for the
total system and the superspace metric has an inde6nite
signature, presumably with only one timelike component.
However, discussion of the nature of the Wheeler-DeWitt
equation is beyond the scope of this paper. Since we ig-
nore Buctuations in g~„aswell as in cr, we simply assume
that the lowest WKB state is described by a classical so-



TAKAHIRO TANAKA AND MISAO SASAKI 50

lution of the (o, g&„)system and ignore problems asso-
ciated with the Wheeler-DeWitt equation. Then, as we
shall see below, there arises no conceptual problem with
the construction of the wave functional for P.

Then the Euclidean action becomes

S~ = 2m drl —
i

— aa + —a o'1( 3 . 2 1

n ( SAG 2

A. Instanton mith gravity +n
~

— + a U(o.) ~

( 3a

( S~G )
(3.8)

ds~ = )())))d))+ a'())) (d)'+ si))')d)))))),
Cr = dr(g),

= 0. (3.7)

Since we ignore the Quctuations in o and g„„,we denote
the instanton configuration simply by cr(g) and g„„(iv).

Let us first construct a nontrivial solution of the Eu-
clidean Einstein-scalar field equations, an instanton (or
bounce) with gravity, to obtain the lowest WEB order
picture. In the absence of gravity, it has been shown
that the classical solution with the minimum action is

O(4) symmetric [9]. Although it is not proved when grav-
ity is present, it seems reasonable that it is also the case
in the presence of gravity. Hence we assume so. The
O(4)-symmetric instanton with gravity was investigated
by Coleman and De Luccia [10]. Here we shall not re-
peat the details but discuss only those features of the
instanton that will be necessary for our purpose.

The O(4)-symmetric instanton takes the form

( a n) . dUo'+
i

3———
i

CT =
( a n) do'

and that with respect to n gives

4~t.".. .
,

(, 8~G,
(3.1o)

which is nothing but the Hamiltonian constraint. Be-
cause of this constraint, the variation with respect to a
does not give an independent equation.

Let us present the solution of the above equations in
the thin-wall case. We also assume that the true vacuum
energy density U(oT) is non-negative. We choose the
gauge n(g) = a(rl) and indicate the wall position by q =

. The result is

where an overdot means the derivative with respect to g.
We see that n plays the role of a Lagrange multiplier; a
consequence of the time reparametrization invariance of
the system. The variation of SE with respect to 0 gives

a(rl)= &

H~ cosh'
(rI&g ),

(il&rl ),
Hy cosh(g —q~) cosh'~ + sinh(g —q~) cosh g~ —(HT /H~)

( )
op (rI&il ),
oT (rI)i1 ),

(3.11)

where g & 0 always and

8vrG 8mG
HF —— U(o I;) ) HT —— U(az ).

3 ' 3
(3.12)

A schematic picture of the instanton is shown in Fig. 3. It has the topology of S . In the thin-wall approximation,
the metric and tunneling field configurations are identical to those of the false vacuum at g ( g, hence, at g ( 0.
Here, we restrict our attention to the case this holds, but it should be mentioned that this is not true in general once
the thin-wall approximation breaks down.

As was pointed out in [11], the coordinate g cannot play the role of the "time" parameter 7, which distinguishes
each spatial configuration of the instanton, the sequence of which connects the false vacuum and the critical bubble
configuration corresponding to the turning point. A relevant choice of it is obtained by the coordinate transformation

(
cosh' =

+sin~ ~+R~ cos~ ~ '

Sln 7' =
/sin~ ~+R~ cos~ ~

sin 7
/cosh~ )i—sin~ ) (3.13)

(—oo & q & oo, 0 & r & m), B = ""„(—~ & « ~, O & R & 1).
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Then we have

d2—dsS = Lnsh4 q a'(q)I((1 —R4)4 4
1-R2

+R'dO' ~

(2) ($.14)
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~W
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allow the superspace metric to have Go; P 0. However,
since there is no shift vector in our metric, Eq. (3.14),
this generalization is»~necessary at the moment.

Now as the state before tunneling, the most natural
false vacuum state is the so-called Euclidean vacuum,
which is de Sitter invariant and exhibits the same short-
distance behavior of the field as the Minkowski vacuum
[12]. Although the latter property is essential to single
out the Euclidean vacuum, it can be made explicit only
when we deal with a speci6c theory. Hence we focus on
the de Sitter invariance of the vacuum in this subsec-
tion. Since the natural mode functions associated with
the form of the metric (3.14) [with a(g) = (HJ cosh') )
does not respect the de Sitter invariance, the relation be-
tween these mode functions and those for the Euclidean
vacuum is nontrivial. Specifically, they are related by a
Bogoliubov transformation. This implies that the Eu-
clidean vacuum is described as some kind of an excited
state relative to the ground state constructed with re-
spect to the static time coordinate (we call the latter the
static vacuum for convenience). This is the reason why
it was necessary to extend our formalism to the case of
excited states at false vacuum.

To prepare the Euclidean vacuum and to obtain the
Schrodinger wave functional relevant for the false vac-
uum decay, in what follows, we 6rst consider a general
static spacetime and overview the relation between the
usual Heisenberg representation of a vacuum state and
the corresponding Schrodinger wave functional. Then
we construct the Euclidean vacuum over the static vac-
uum and translate the result to the Schrodinger picture.
Once this is done, it is then straightforward to obtain the
tunneling wave functional according to the prescription
given in the preceding section.

Let ug(x, t) be a set of mode functions (not necessarily
the positive &equency functions with respect to the static
time coordinate) and Ag be the corresponding annihila-
tion operator; Ag]O) = 0, where ~O) is the "vacuum" in
the Heisenberg picture. Then we have

(3.20)

Using these operators, the Schrodinger representation of
the vacuum, i.e. , ]O(t))s = e '

~O), is determined by
the condition

(t)lo(t))s = 0. (3.21)

On the other hand, using the orthonormality of the mode
functions, ag(t) and a&(t) are expressed as

Then, going over to the coordinate representation by the
replacements

b
ps(~) m i&, 4-s(~) ~ 4(~), (3.23)

we find from Eq. (3.21) that

~O(t))s = JVexp —— d xd y O(m, y;t)
2h

xP(a)P(y) (3.24)

r «(i) = i/&'«
l ««(«, i)i«(«) — ««(«, i)&«(«) l,a )

ha~(t) = i d z
~

—ug(a, t)ps(m) + ul, (a, t)Ps(m) ~

.( - v

l a )
(3.22)

P(~, t) = ) [u, (~, t)A, +u„'(~,t)A„'],

p(~, t) = ) [u~(a, t)A&+ u„'(a,t)A„]. (3.17)
v'~(~)
a(e)

where )V is a normalization constant and

o(a, y;t) = — ) uf, (a, t)u„* (y, t),
1 V'&(~)
i a(a)

where uk is de6ned as

(3.25)

~e assume the mode functions uI, (e, t) are orthonormal-
ized with respect to the Klein-Gordon inner product:

(«„,«):=—i/d'«(«„«' —«„«')= L)„.(3.18)

To consider the Schrodinger representation, we introduce
time-dependent annihilation and creation operators ag(t)
and a&t(t), respectively, as

(t) e iHtA&esHt ot (—t) e iHtAt eiHt (3 1—g)

where H is the Hamiltonian operator. The Schrodinger
representations of the Beld operators it)s(m) and ps(a)
are given by

(3.26)

Now let us specialize the above to the case of de Sit-
ter space and construct the Euclidean vacuum over the
static vacuum. Since the Euclidean vacuum is de Sitter
invariant, we need a set of mode functions which are de-
6ned over a complete Cauchy surface. However, it cannot
be covered by one static chart. Just as in the case of de-
scribing the Minkowski vacuum in terms of Rindler mode
functions in the Minkowski spacetime [13], we therefore
need to prepare two static charts. We label the quanti-
ties associated with these two charts by the indices (1)
and (2). The two regions are causally disconnected. Fur-
thermore, as clear from the metric (3.14), the bubble
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nucleation takes place only in one of the two regions. For
convenience we regard region (1) to be the one in which
the bubble nucleation occurs. As the time direction is
opposite in the two regions, we fix it by identifying the
future direction with the time direction in region (1).
Thus a complete Cauehy surface is given by a hyper-
surface t = t( ) = t( ) and the Hamiltonian operator is
positive in region (1) and negative in region (2):

f A( ) ) A( ) ) f A( )t )
I A(2) I A(2) I I A(2)t (3.33)

Then using the commutation relation between creation
and a~~ihilation operators, we find that the vacuu~ ~O)
is expressed as

Hy ——H~ —H~
- (~) - (2) (3.27)

( ) —uatgt „,( ) swat
'I (3.28)

where both the operators H&' (i = 1, 2) are positive and(i)

have the saxne form.
The positive &equency functions in each static chart

behave as

~O) =a exp — &
B'*'!'A')'A',"

i,j,k,h'

x~o(')) g ~o('))

where N is some normalization constant and

B(i)(i) l ).]g

(3.34)

(3.35)

where t( ) and t( ) are the static time coordinates in re-
gions (1) and (2), respectively. We orthonormalize them
by the Klein-Gordon inner product (3.18). Note that the
lapse function u is negative in region (2). The static
vacuum is expressed as

~o) = ~o(')) g ~o(')); A(*)[o(')) =0 (i =1,2),

(3.29)

where A& are the annihilation operators associated with

the positive &equency functions u& .
The positive &equency functions for the Euclidean vac-

u»m are expressed in terms of a Bogoliubov transforma-
tion &om the static vacuum positive &equency functions.
Since regions (1) and (2) are completely symmetric, there
exist two independent positive &equency functions for
the Euclidean vacuum for each k, which we denote by u&

and 6& . Then in matrix notation with indices k sup-
pressed, the Bogoliubov transformation takes the form

t' 11(1) ) ( u(1) ) ( u(1)+ )
(2) I

= ~
I (2) I

+ p I (2)e I i

& 0 t'tB=
I b 0 I) bkk =Bkhkk . (3.36)

Then, from Eqs. (3.31), (3.35), and (3.36), the matrix P
is found to have the form

Pkk. —o, Pkk. —lMkk' ~

(~) (2) (3.37)

and

(3.38)

The Euclidean vacuum state is invariant under the ac-
tion of any generator of the de Sitter group. Suppose
the indices k of u(') represent the eigenvalues associated
with spherical mode decomposition, (k, E, m), i.e., each
of these modes is characterized by an eigenstate of the

A

Hamiltonian Hy, the angular-moment»m square J, and
the z component of it J . Since these operators are gener-
ators of the de Sitter group, the Euclidean vacuum must
be a zero eigenstate of all of them. From the fact that
all of these operators have the form, Q = Q(1) —Q(2), we
find the matrix B should take the form

( ~(1) ~(2) ) ( p(1) p(2) )
(2) (1) I

P=
I p(2) p(, ) I,)

~~t —ppt = I (3.30)

where I denotes the n»t matrix. Further, by a unitary
transformation, we can always make the matrix n diag-
onal. Hence we may assume

Specifically, the Euclidean vacuum positive &equency
functions are given by

-(~) (~) (2)
k k k +Pk k

~(2) ~„u(2)+ p„u'(1) (3.39)

and the Euclidean vacuum is given by

(~) x (2)
Appal

—AQ v~& p Cl~ p
—0e (3.31)

~O) = JVexp & B A A ~o( )) ~o( )). (3.40)

Let ~O) be the Euclidean vacuum. Then it is charac-
terized by

Ak* ~O) = 0 (i = 1,2), (3.32)

where A& are the annihilation operator associated with

the positive &equency functions 6 ' . The corresponding

Bogoliubov transformation for A& is

At this point, we note that uk (uk ) is proportional
to e * "' (e' " ) for the time coordinate t (= t( ) = t( ))
extended over both regions (1) and (2). This is a re-
sult of the fact that, although regions (1) and (2) are
causally disconnected in the Lorentzian regime, they are
analytically connected through the Euclidean regime as
~ = it( ) and ~ = km+ it( ). It is known that the
positive (negative) frequency functions for the Euclidean
vacuum are characterized by the regularity on the upper-
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half (lower-half) complex t plane [13]. For later conve-
nience, let us consider the negative frequency functions
(i.e., the analytic continuations at t = 0 and t = iv—r
through the lower-half plane). Then the negative &e-

quency function in region (1), u& oc e' "i, is analyt-

ically continued to region (2) as u& oc e " +' "'
Similarly, the negative &equency function in region (2),
u& (x e ' ",is analytically continued to region (1)
as 6„)oc e " ' "' . Taking the complex conjugates
of them we then fiad

d'*~ a~(*)(~,«'))
h(t (a)

-1~u„'("(~,«'))y(~)

„'"(I»)= f a'*& -A~„"(,I»)

(3.47)

(3.41)

Comparing these with Eq. (3.39) and noting the normal-
ization condition (ai, (

—))ga] = 1, we obtain

Since ~o(')) is the true ground state of the Hamiltonian
H(', we have, for t(~) = t( ) = t)

lO&'&(I)b II 10&'&(I)),= ('-' "lO&'&)) II (~' "la"&))

[o(1))8 )o(~)) (3.48)

8—47g7P+18g

A =
e—2IIINIT Q1 e—2'&N Ã

(3.42) Furthermore, since the Hamiltoniaa is diagonalized with
respect to the static vacuum mode functions, we have

where 81, is a constant phase. Also &om Eq. (3.38) we
find

(3.43)

Now it is easy to interpret the above result to the
language of the Schrodinger wave functional. Applying
Eq. (3.24) to the present case we find

(&)trti (2)tlti —'
),&g(&)t

g(~)tg(2)t (3.49)

Therefore we find

~O(t)), = exp )-a,A~("'A("' ~O(')) e ~O(')).

~O(t))s = JV exp —— d zd y A(a, y;t)25
(3.50)

where

(3.44)

This form is explicitly time independent.
Now, as we have obtained the asymptotic behavior of

the wave functioaal in the false vacuum, we go back to the
problem of constructing the tunneling wave functional.
As clear &om Eq. (3.50), the Euclidean vacuum can be
considered as a superposition of many particle states of
the form

A(e, y;t) = ) i'')(e, t)e~(') '(y, t)
k

(3.45)

However, as we have seen, this state is a zero eigenstate
of the Hamiltonian. Hence the wave functional (3.44)
should be time independent. This can be demonstrated
as follows. Operating e ' 4' to Eq. (3.40) we obtain

(A(1)t )III (A(1)t
) ~OTI(1) )

@,(A( )t)nI (A( )t)n~~O(2)) (3 51)

As there is no causal connection between regions (1)
and (2), the wave functional can be constructed inde-
pendently in each region. First consider region (1). Ap-
plying the results obtained in the precediag section, the
wave functional for region (1), which has the asymptotic
form in the false vacu»m as

(A"")"'."(A'"')"- Io"))

~o(t)) exp ) + ( )'f (t(1))
( )t (t(2) )

io( )(t( )))s (8) iO( )(t( ))) (3.46)

is given by

(3.53)

where t( ) = t( ) = t and a&) (t(')) are the tiine-
dependent creation operators as defined in Eq. (3.19).
Their coordinate representations are given as

where ~o( )(t( ))) is the quasi greund state wav-e func--
tional with the parameter tixne t(~) along the path shown

in Fig. 1. The operators Ai, (t(1)) and Ai, (t( )) are
given by



QUANTUM STATE DURING AND AFIKR O(4)-SYMMETRIC. . .

g '
(t '

) = -' ~' '
(t '

) = * "' d z
~

nto (R t '
) —i uJ (~, t )y(~) ~,

/'»(t(')) = *' ""' ("'(t(')) = ' ~'"' d'x
~

—As"'(K t(')) +i~6'"(m t")y(e)
~

(s.54)

where v& and m& satisfy the field equation

(g""V„V„—[m (0) +(B])z( ) = 0 (z = u, u(), (3.55)

I

where

i'' (t) = f d z 5$„'(e, t)

along the trajectory on the complex t& ~ plane shown in
Fig. 1 with the asymptotic initial condition at t~ ~ & 0,

i ~e~—*)
(m, t)(t (a) (s.60)

~(i)(~ t(i)) ~(i)(~ t(i))

~( )(~ t(i)) ( )'(~ t(i)) After all, as is clear from the above procedure we do
not have to know Co&' at ~ & —x but only those in the
interval —vr & r & 0. Furthermore zb&' coincide with

in the region v & —m/2. Once we become aware of
these facts, we need not stick to the construction of m&'

themselves, nor to the coordinates of the metric (3.14).
Instead, any complete set of mode functions which are
related to m& by a unitary transformation is relevant and
any convenient coordinate system can be chosen to solve
for them. For this reason, we may drop the superscript
(i) for the mode functions and denote them simply by
Qg. Thus the procedure to construct the tunneling wave
functional in the case with gravity turns out to be very
similar to the case without gravity. In particular, the
resulting quant»m state after tunneling will be related to
the true vacuum state by a Bogoliubov transformation as
discussed in papers I and II.

(3.56)

As for the wave functional for region (2), since the tunnel-
ing degree of &eedom remains at the false vacuum origin,
it is t& ~ independent. However, we may express the wave
functional in the same manner as that for region (1) by

solving the mode functions v& and m& along the con-(2) (2)

tour of Fig. 1 on the complex t&2~ plane, but with the
false vacuu~ configuration throughout the contour.

S»~ming up all the terms again, we obtain the wave
functional, which describes tunneling from the Euclidean
vacuum:

4 [())( );t] = A'exp ) Bi,A&() (t)A&()
i

Io'"(t)) (3 Io"'). (3.57)

Now, as w'e have discussed when deriving the Bogoli-
ubov coefBcients (3.42), when we consider the negative
frequency functions, regions (1) and (2) are analytically
connected through the lower-half complex t plane while
the tn~oeling field is at the false vacuum origin. Hence
we expect the tunneling wave functional to be obtained
by finding the mode functions m&' for the tunneling back-
ground that correspond to the Euclidean vacuum nega-
tive &equency functions 6& '. Namely, first we set the
boundary condition

C. Conformal scalar model

Here, as a simple application of our formalism, we con-
sider a conformally coupled scalar field P [i.e., ( = 1/6 in
Eq. (3.5)], which is massless except on the bubble wall.
In paper II we have investigated a similar model in the
absence of the background curvature. We show below
that this conformal scalar model gives the quant»m state,
which is conformally equivalent to the one without grav-
ity in paper II.

A convenient choice of the coordinates for the present
case is obtained by the coordinate transformation of the
metric (3.7) with n(g) = a((7) as

TE = —6 cosr)

p = e" sinr, (3.61)

or equivalently that of the metric (3.14) as

v 1 —B2 sin r (1 + gl —R2 cos 7.)
sin v + B2 cos2 v

B(1+gl —B2 cos7.)P=
sin 7 +B cos 'T

Then the metric becomes

~„(*)(~,t) = u„(*)'(~,t), (s.5s)
at t & 0. Then we find that they solve the field equa-
tion (3.55) in the Lorentzian time to t = t(i) = t(2) = 0,
and further in the Euclidean time with v = it~ & and

—~ + it& ~ beyond 7. = —~ to —oo. Note that
&om Eq. (3.41), the solutions are automatically consis-
tent with the analytic continuation at both v = 0 and —m.
Then we solve back to x = 0 through the nontrivial O(4)
bubble background only in the interval —s/2 & ~ & 0
and analytically continue to the Lorentzian time with
t = t( ) = —i(v + s) at 7 = n to the de Sitter back-—
ground and t = t(i) = —i7 at v = 0 to the O(3, 1) bubble
background.

Then, with mode functions Cu&' obtained thus we can
in fact show that the t»~~cling wave functional satisfies

—."(t)+[4(-).tl = o, (3.59)



6454 TAKAHIRO- TANAKA AND MISAO SASAKI 50

(3.63)

where

a2(ln(@)
0@ — 2, fZ — T@+Pg (3.64)

As clear from Eq. (3.62), the analytic continuation to the
Lorentzian metric by r = it (t = t& )) and 7 = —7( + it
(t = t(2)) corresponds to that at Tz = 0 by T@ = iT
Hence the Lorentzian version of the metric (3.63) is =const

ds' = B (() ( dTs +—dp' + psdB(s)),

where

(3.65)
FIG. 6. The same as Fig. 5, but vrith foliation by the T =

const hypersurfaces.

(3.66)

At the false vacuum origin, Eq. (3.65) reduces to the de
Sitter metric:

dss, s = Bs,s(0 ( dT +dp +—p dB(sI)
2

Hy(1 —T2+ p2)
' (3.67)

[r)""P'„&„—~ (o)O ((r)]rug), = 0,

where we have regarded 0 as a function of 0 and

(3.68)

tUyg = OtUg . (3.69)

Thus we can construct the mode functions which satisfy
Eq. (3.55), by solving Eq. (3.68) in the Bat spacetime.

The remaining task is to impose the correct boundary
condition on Cufg. For this purpose, let us consider the
case of a pure de Sitter background. If the conformal
vacuum defined by the positive &equency functions ups

As we have seen in the preceding subsection, the pro-
cedure to obtain. the tunneling wave functional is to solve
for the mode functions mg in the interval —vr & v. & 0
of the Euclidean tunneling background and analytically
continue them to the Lorentzian background at ~ = —m

and v = 0 with the condition that mp are unitarily
equivalent to the analytic continuation of the Euclidean
vacuum negative &equency functioas u& in the region
r & —m/2. Hence we may regard Eq. (3.65) to repre-
sent the background metric both in the Euclidean and
Lorentzian regimes by allowing T to take complex values.
We show how the time coordinate T spans the spacetime
in Fig. 6. The advantage of using the coordinates (T, p)
is that the correspondence to the Bat spacetime case
becomes transparent. The metric (3.65) is conformally
equivalent to the Bat spacetime metric: g» ——0 g„„.
Rn'ther, the conformal factor 0 is a function of only (,
i.e. , it is O(3, 1) [or O(4)] invariant. In particular, 0 may
be regarded as a function of the tunneling field cr.

Because of the conformal coupling of the scalar Geld,
the Beld equation (3.55) for the mode functions Cv~ can
be conformally transformed to that on the Hat spacetime:

G(')(x, z') = o~,'s(x2)D(')(x, x')A~,'s(z' ), (3.70)

where As, s is given by Eq. (3.67), x2 = —(zo)2 + x2 =
—T +p )and

(3.71)

is the symmetric two-point function in the Minkowski
vacuum.

If we embed the de Sitter space in five-dimensional
Minkowski space,

ds2 (d 0)2 + (dzl)2 + (d 2)2 + (dz3)2 + (d 4)2

(3.72)

we Bnd the coordinates x (a = 0, 1, 2, 3, 4) on the de
Sitter space are expressed in terms of z" = (T, x) as

q II~(1+z2) ' H~(1+ x2) )
(3.73)

It is then easy to show that

(y3 I 1 1
(3.74)

This shows G~ 3 is de Sitter invariant. Hence, together
with the fact that its short-distance behavior is the same
as that in the Minkowski vacuum, the present confor-
mal vacuum is found to be the Euclidean vacuum. The
relevant mode functions Cog for the tunneling wave func-
tional are then given by solving Eq. (3.68) along the con-
tour shown in Fig. 1 on the complex T plane and multi-
plying the result by the inverse of the conformal factor;
QJg = 0 QJfg.

To summarize, in the present case of a conformally

(oc e '"+) on the Bat space agrees with the Euclidean
vacuum, the required initial condition for ming is trivial;
CUf/ —

ufo'

To see this is indeed the case, w'e examine the
symmetric two-point function in the conformal vacuum.
It is well known that the positive &equency function up
for this conformal vacuum is given by up ——0 ufo' and
as a result the two-point function G~ 3 is given by
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coupled scalar field, the eKects of gravity to the quant~~m

state after t»~~cling is to solve the mode functions for
the Bat background with the mass term m replaced by
mz02 and multiplying the resultant mode functions by0,with 0 given in Eq. (3.66). The two-point functions
for the quant»m state after t»a~cling are also given by
the conformal transformation of those obtained for the
Hat background D(x, x') as

G(z, x') = 0 i(x2)D(x, z')0 i(x' ). (3.75)

It is also known that if there arises no further diver-

gence apart from the common ones for any spacetime,
Eq. (3.76) continues to hold for arbitrary state. However,
in the present case, as discussed in paper II, we encounter
a new type of divergence, which may be partly due to the
b-function nature of the mass term in our model and is
also possibly due to the breakdown of the WKB expan-
sion. Unfortunately at the moment, we are unable to
clarify if these new divergences would give rise to terms
that are conforxnally nontrivial. If not, since the finite
terms of (T~„)we have found in Hat space in paper II
will be absent in the case of conformal coupling, except
for the term that diverges on the light cone, we would
find only the conformal anomaly terxns in the present
model, provided we impose the regularity on the light
cone. Furthermore, if the true vacuum has no vacuum
energy, it reduces to the Bat space and we would find
no finite term at all, which sounds rather paradoxical.
In paper II we have argued that the regularity on the
light cone is necessary to keep the validity of the WKB
expansion. Hence if we allow the presence of the term,
which diverges on the light cone, it will be necessary to
seriously consider the possible breakdown of the WKB
expansion. The resolution of this issue is left for future
study.

However, the evaluation of the energy-momentuxn ten-
sor seems to require some care. It is known that the
regularized vacuum expectation value of the energy-
moment»m tensor, (T""),for a conformally coupled field
on a conformally Hat spacetime consists of term arising
from a trivial conformal transformation of (T"") in

reg
Bat space and the terms representing conformal anoma-
lies [14]:

(T„„)„=0 (Tf„)+ conformal anomalies. (3.76)

IV. CONCLUSIONS

We have considered an extension of our previous analy-
sis in paper II of the quantum state after O(4)-symmetric
bubble nucleation in Bat space to the case with the grav-
itational efFect. In order to do so, we have first extended
the formalism developed in paper I to the case of multi-
dimensional tunneling from an excited state at the false
vacuuxn origin. Then using the result of extension, we

have developed a method to obtain the tunneling wave
functional from the false vacuum to the true vacuuxn

through a nontrivial geometry of the background space-
time described by the O(4)-symmetric bubble with grav-
ity. Provided that the O(4) bubble is described by the
thin-wall approximation, we have found the procedure
to construct the tunneling wave functional can be for-
mulated in quite a similar manner as in the case of Bat
spacetime background.

As an explicit demonstration of our formalism, we have
considered a simple conformal scalar model, which is
massless except on the bubble wall to represent the Buc-
tuations around the O(4) bubble. We have then found
the the resulting quantum state is conformally equivalent
to that in the absence of gravity, i.e., it is described by
a Bogoliubov transformation of the true vacuum state (a
squeezed state). However, we have argued that the eval-
uation of the regularized expectation value of the energy-
xnomentum tensor for this quantum state may be highly
nontrivial, apart from the conventional conformal anoma-
lies. We have also pointed out the paradoxical situation
that the regularized energy-momentuxn tensor might van-
ish due to the conformal coupling nature of our model if
the true vacuum has no vacuum energy density.

At the moment, we are unfortunately unable to judge
whether these issues are particularities of our over-
simplified model or intrinsic diKculties associated with
Geld-theoretical tunneling phenoxnena. Further research
on the present subject is apparently required.
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