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Analytic semiclassical corrections to the Schwarzschild metric are found perturbatively, to Srst
order in s = A~M, for a quantized scalar Beld with arbitrary curvature coupling. The approximation
scheme developed by Anderson, Hiscock, and Samuel is used to provide approximate algebraic
expressions for the components of the vacuum stress-energy tensor. The linearized Einstein equations
are solved to Snd the metric perturbations caused by the quantized Beld. Microcanonical boundary
conditions are imposed on a spherical wall enclosing the black hole. The various physical sects of
the back reaction, and their dependence on the value of the curvature coupling, are discussed in

detail. The perturbations are found most often to lower the temperature of the black hole. Requiring
that the entropy of the system be increased by the quantized Beld results in upper and lower bounds
on the value of the curvature coupling constant, —3.431 & g ( 7/10.

PACS number(s): 04.70.Dy, 04.62.+v, 97.60.Lf

I. INTRODUCTION

Since the discovery by Hawking [1] that black holes
emit particles in a thermal spectrum, most of the work
on quantum eKects in black hole spacetimes has been
done using a 6xed spacetime background. Although these
background 6eld calculations are important and give sub-
stantial insight into the eff'ects of the spacetime geometry
on quantized fields, they do not give the change in the
spacetime geometry which is caused by quant»m effects.
So far only a few direct calculations of the back reaction
of quantized fields on the spacetime geometry of a black
hole have been done. These include those of Bardeen [2],
Hajicek and Israel [3], and York [4] for evaporating black
holes and those of York [5], Hochberg and Kephart [6],
and Hochberg, Kephart, and York [7] for a Schwarzschild
black hole in equilibrium with radiation in a cavity.

In the equilibrium calculations, attention was re-
stricted to conformally invariant quantized fields. How-
ever, 6elds which are not conformally invariant also exist
in nature, and in particular, the gravitational field itself
is not conformaDy invariant. For this reason it is of inter-
est to investigate the efFects on black holes of quantized
fields which are not conformally invariant. In this paper
we present the results of such an investigation for the

case of a massless scalar Beld with an arbitrary coupling

g to the scalar curvature.
The best method currently available to compute the

effects which quantized Belds have on the spacetime ge-
ometry is to use the semiclassical back-reaction equations

Gpu = Sm(Tpu) .

To solve these equations for a given class of spacetimes
one needs to be able to compute the vacuum expectation
value of the stress-energy tensor of the quantized 6elds
(T„„). This has been the primary obstacle which has
slowed progress in determining how quantized fields alter
the spacetime geometry of a black hole.

Numerical calculations of the stress-energy tensor have
been made for the conformally coupled quantized scalar
Beld in Schwarzschild spacetime by Fawcett [8] and
Howard and Candelas [9]. Jensen and Ottewill [10] have
computed the stress-energy tensor for the electromag-
netic field in Schwarzschild spacetime. Anderson, His-
cock and Samuel have developed a method which allows
the computation of the stress-energy tensor for massive
and massless quantized scalar 6elds with arbitrary cur-
va,ture coupling in a general static, spherical spacetime
and have applied this method to the Schwarzschild and
Reissner-Nordstrom spacetimes [11,12].

The methods we employ are valid in general and can
be performed n»merically if desired, but the semiclas-
sical back-reaction equations are much easier to solve
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if an analytic expression for (T~„) exists. Approxi-
mate analytic expressions for the stress-energy tensor of
quantized conformally coupled fields in static Einstein
(R„„=Ag~ ) spacetimes were developed by Page [13],
Brown and Ottewill [14], and Brown, Ottewill, and

Page [15]. An analytic approximation to the vacuum
stress-energy of conformally invariant massless fields in
a general static spacetime has been developed by Prolov
Zel'nikov [16]. Jensen and Ottewill [10] in the course
of their numerical calculation developed an analytic ap-
proximation to the stress-energy of the electromagnetic
Geld in Schwarzschild spacetime, which is distinct from,
and more accurate than, the Page, Brown, Ottewill, and
Frolov-Zel'nikov approximations. For. a general static
spherically symmetric spacetime, Anderson, Hiscock, and
Samuel [11,12] have developed an analytic approximation
for a massless scalar 6eld with an arbitrary curvature
coupling constant (. In each of these approximations the
quantized 6elds have been in a thermal state with an
arbitrary temperature; for purposes of back reaction cal-
culations, the obvious temperature to examine is that of
the black hole itself, since for any other temperature the
stress-energy tensor diverges on the horizon. This corre-
sponds to placing the black hole in the Hartle-Hawking
vacuum state [17], in which the black hole is in (possi-
bly unstable) thermal equilibrium with an external heat
bath.

Solutions to the semiclassical Einstein equations which
make use of these results have been obtained only in a
very limited number of cases. York used the approximate
expression for the vacuum stress-energy of a conformal
scalar Geld developed by Page to calculate the pertur-
bative back reaction of the Schwarzschild metric [15].
He treated the vacuum stress-energy as the source for
a small metric perturbation and calculated the result-
ing changes in the metric components to Grst order in

(M~/M)2, where M is the mass of the black hole and
M~ is the Planck mass. York calculated the back reac-
tion in a perturbative fashion, and only to first order,
because the Page approximation only generates an ap-
proximate stress-energy tensor for Einstein spacetimes.
The full semiclassical solution representing an uncharged,
nonrotating black hole in thermal equilibrium with a con-
formally coupled scalar field will certainly not be an Ein-
stein spacetime. More recently, Hochberg, Kephart, and
York [6,7] have extended this work to include the effects
of the quantized spinor and vector fields as well as the
conformal scalar field, again using the approximations
of Page, Brown, Ottewill [13—15] and Jensen and Ot-
tewill [10]. Anderson, Hiscock, and McLaughlin have also
calculated the first-order changes in the Schwarzschild
metric for an arbitrary collection of spinor, vector, and
(possibly nonconformal) scalar fields, using the various
approximations, with particular emphasis on the effects
of the back reaction on the black hole interior [18].

In this paper we calculate the first-order [in 5, or
equivalently in (M~/M) ] perturbative corrections to the
Schwarzschild metric when a Schwarzschild black hole
is placed in thermal equilibrium with a nonconformally
coupled quantized scalar field, using the analytic approx-
imation to (T~„) developed by Anderson, Hiscock, and

II. APPROXIMATE VACUUM STRESS-ENERGY'
TENSOR

In Refs. [11,12) it was shown that the stress-energy
tensor for the Hartle-Hawking vacuum state of a mass-
less scalar 6eld with arbitrary curvature coupling in the
Schwarzschild geometry has the form

and analytic approximations to C„„and D„„were found.
The tensor C„„represents the approximate vacuum
stress-energy for the conformal scalar 6eld and is identi-
cal to the expression first calculated by Page [13].

We will begin by considering the components of these
tensors in the usual Schwarzschild coordinates, in which
the metric takes the form

t' 2M't
d8 = — 1 — dt + 1—") dr +r dO

where dO is the metric of the two-sphere.
Using the notation of York [5], the approximate con-

formal vacuum stress-energy components are

C'g = —3 (f —h), C"„= (f + h),

Samuel. Previous work [11]has shown that the accuracy
of this analytic approximation does not depend strongly
on the value of (, the curvature coupling. While this ap-
proximation is not restricted to Einstein spacetimes, we
limit our calculations to first order since the approximate
expression for (T„„)diverges on the black hole event hori-
zon in any spacetime with nonzero B„.This is a defect
of the approximation; full numerical calculations of the
stress-energy display no such divergent behavior [11,12].

We find that the perturbed geometry is significantly
afFected by the value of the curvature coupling constant
(. This means that the perturbed temperature and other
physical quantities are also significantly affected. In fact,
by requiring that the quantized fields increase the ther-
modynamic entropy of the system we can put both an
upper and a lower bound on the value of (. This is the
6rst time that entropy has ever been used to place a
bound on the value of a coupling constant in a theory.

In Sec. II we describe the approximate stress-energy
tensor of a quantized scalar 6eld with arbitrary curva-
ture coupling. The metric perturbations created by this
stress-energy are calculated to first order in (MJ /M)
in Sec. III. The geometry of the perturbed black hole is
studied in Sec. IV, including the efFective of the metric
perturbations on the black hole's temperature. The effec-
tive potential for particle orbits in the perturbed metric
is examined in Sec. V. An analysis of the entropy con-
tributed by the quantized Geld is used to place physical
limits on the curvature coupling constant ( in Sec. VI.
We use the sign conventions of Misner, Thorne, and
Wheeler [19] and choose units such that G = c = k~ = l.
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where

(") = 1 —(4 —6M/r) (2M/r)
(1 —2M/r) 2

(2M~
h(r) = 24

(5)

(7)

As with the density, there is a critical radius at which the
trace is independent of the curvature coupling, namely,
r = [(10)i~2 —1]2M = 4.325M. The sign of the trace at
large r depends on the curvature coupling; the full trace
may be written as

eM2(f —-) ~ 4M 36M ~ eM
1 + +

64~2@4
~

r r
~

60vr~r

and the constants e and A are defined by

e = 5/M, A = 90(8 )s

The non-conformal portions of the approximate stress-
energy are given by [12]

D~ = M2~ + 4Mr —20M
128+2r6

(2r —3M) (rz + 4Mr + 12M2)
384

r + 4Mr + 12M r —96M
D e ——Dy ——eM

384~~~6

15$ —4
p,g(2M) = 24e (i2)

These components have a number of interesting prop-
erties. For example, the energy density of the scalar-field

p,f ———T q has the following form at the horizon:

While the nonconformal terms dominate the trace at
large r, that is only because the conformal classical stress-
energy tensor has zero trace. When any single component
is examined, the nonconformal contributions to the vac-
uum stress-energy components drop ofF as r or faster as
one moves away from the black hole, while the conformal
components approach constant values. Thus, far &om
the event horizon, the vacuum stress-energy becomes in-
distinguishable from that of a conformally coupled field.

III. METRIC PERTURBATIONS

It is now possible to use the approximate expressions
for the stress-energy tensor components to calculate the
first order in 5 (or, more properly, first order in e) per-
turbations to the Schwarzschild metric. The resulting
combination of perturbed metric and approximate stress-
energy tensor makes sense only in a perturbative fashion;
for example, if one computes the divergence of the stress-
energy tensor in the perturbed metric, one will obtain not
zero, but quantities which are of order e2.

Following York [5] it is convenient to work in ingoing
Eddington-Finkelstein coordinates:

Note that at the horizon p,r is negative for all ( ( 4/15
(e.g. , for both the conformally coupled and minimally
coupled scalar field), but is positive for larger values of
the curvature coupling. The energy density is everywhere
positive outside the event horizon for 4/15 ( ( ( 1.2575.
For larger values of (, there is a region outside (but not in-

cluding) the horizon which has negative energy densities.
By taking the derivative of p, r with respect to (, one finds
that the energy density at r = 2(6i~2 —1)M —2.9M is
independent of the curvature coupling; for all ( it is given

by

r
v = t+r+2M ln —1

(2M )

T ~ T ~

The Schwarzschild metric then takes the form

2M&
d8 = — 1 — dv + 2dv dr + r dn")

(16)

(i7)

(IS)

21 —8(6) ~

5120~2M2 [(6)i/2 I]s

3.00 x 10

The components of the stress-energy tensor in this coor-
dinate system are

Tv Tt

There are similar radii at which the other components,
T"„and Tes are independent of (; however, the radius is
difFerent for each component.

The trace of the stress-energy tensor (T ) can also
change sign at the horizon depending on the value of the
curvature coupling:

(20)

2e ( 2M~
T "= 1 — -~ (2f —h) + ( —— D„-",

AM2( r ) )
(T ~)(2M) = 24m (14) (2i)
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where

r2+ 6Mr + 24M'
192m2rv (22)

A general static, spherically metric may be written in
Eddington-Finkelstein coordinates as

metric perturbations:

0p 12'7l r
B. =~M (~

( 1 r2+ 4Mr —20M2
M (25)

idv
)

+2e~(~)gv dr + r2dQ

8~r (1—
AM2

~

(2f —h)

The linear perturbations (first order in e) to the metric
may be described by expanding the metric functions g(r)
and m(r) as

1) (r —2M)'(r'+ 6Mr + 24M')

) 48~r6

(26)
e~ "~ = 1+ ep(r), m(r) = M[1+ ep(r)] . (24)

Equating terms in the Einstein equations which are Erst
order in e then gives the following equations for the linear

There is of course a third Einstein equation which is re-
lated to these two through the Bianchi identities. The
general solutions to Eqs. (25) and (26) are given by

(rl
3 2M 2M M)

(
+ 30 —240 ( —— 1—

) &
")

13
'

(
22 —120 ( —— 1—

)
2M~

11 —100' ( —— 1—') E

(, 'i

+4 ln +Co,
(2M)

1(r& (r&
Kp(r) = —

i + 2
&' )

14+ ——80' ( ——
i

)

7 92 ( 1& (——+ ——400 1—
)

( 2M' ( ~ l
1 — +4 lnI +ho,

) (2M)

( 1'r (
19 —300 ( ——

i
1—'). & ')

(28)

where the constants of integration Co and jtco have been
chosen such that Kp(2M) = Co, Kp(2M) = ko and
X = 3840m.

The departures Rom the Schwarzschild metric now be-
come

2M ) 2Mep, (r)Ag„„=—
i 1 — 2ep(r) +r (29)

b,g„„=ep(r),

which are manifestly regular at r = 2M.
The transformation back to Schwarzschild-type coor-

dinates can be achieved by letting

Ov Bv @ ( 2m(r) l—=1, —=~ I1-
Bt Br ( r

The metric then has the form

2m(. ) l
cLs = — 1— (1 + 2ep)dt2

)
2m(r) ~

+I 1 I
d"2+r2

where now p is given by Eq. (28) and m(r) is to be defined
using the expression for p given in Eq. (27).

IV. PROPERTIES OF THE PERTURBED
METRIC

In a static geometry the event horizon is identical to
the apparent horizon and is given, to first order, by

rH = 2m = 2M[1 + ep(2M)]—:2MnH . (33)

The event horizon now defines a mass for the black hole,
which has gravitational radius r+ ——2MBH, in the per-
turbed geometry. We henceforth replace MBH by M,
with M representing the "dressed mass" deined via
Eq. (33). This redefinition serves to absorb the (phys-
ically unmeasurable) integration constant Co into M, so
that the unknown quantities in the perturbed metric are
now reduced to the single remaining integration constant,
ko. The functional form of p(r) from this point on is
taken to be given by Eq. (27) with Co set equal to zero

The remaining integration constant, ko may be fixed. by
imposing microcanonical boundary conditions. IA'e sur-
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kp ———Kpp(rp), (34)

where pp(r):—p(r) —kpK i is the function p with the
integration constant ko set equal to zero.

As noted by York [5], the tangential stress in the wall
is related to the vacuum stress-energy by the Einstein
equations:

S4,4'=--r 1-1 ( 2M~
2

In the case of conformal coupling (( = s), the radial
stress T„ is positive everywhere outside the horizon, and
hence the cavity wall is in tension, as S4,& ( 0 [5]. How-
ever, when other values of the curvature coupling are al-
lowed, the situation is not so simple. The radial stress of
the scalar field is positive everywhere outside the horizon
only if ( ( 0.2275; for greater values, there is a region
outside the horizon with negative radial stress. The in-
ner boundary of this region lies on the horizon for all

& 4/15; the outer boundary steadily grows in radius
as ( is increased. This behavior allows one to consider
cavity walls which would have a positive pressure, enclos-
ing a vol»me with a radial tension; or, alternatively, one
could choose the wall radius ro to be at a location where
T„"vanishes, in which case the wall has no stress-energy
whatsoever (its mass was assumed to be zero).

The surface gravity of the perturbed black hole may
be calculated &om

where y is the timelike Kil|ing vector field, and the
right-hand side of Eq. (36) is to be evaluated on the hori-
zon.

For the metric at hand, the value of the surface gravity
on the event horizon is

round the perturbed black hole with an ideal perfectly
refiecting spherical wall at radius rp F. ollowing York [5]
we ass»~e a massless cavity wall and ignore boundary
effects due to the quantized fields. We assume the radius
of the wall is chosen to be small enough that the metric
perturbations are still small, yet large enough that the
stress-energy of the scalar field at the wall is strongly
dominated by the classical radiation terms. This second
condition is necessary if one is to ignore the semiclassi-
cal (Boulware vacuum) corrections to the Schwarzschild
metric [20] outside the wall. The metric exterior to the
wall is then assumed to be Schwarzschild in form, with
mass M' = m(rp). We can fix the normalization of the
interior time coordinate by choosing gqq to be continuous
at the wall. This choice forces p(rp) = 0, by Eq. (32),
and thus fixes the integration constant ko in terms of ro

2.0

1.5

1.0
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0.0

-0.5

-1.0

dK&0

I i I ~ I i I i I s I

2 6 10 14 18 22 26 30

will be regular (free of conical singularity) only if the
Euclidean time as we have normalized it here is identi-
fied with period 2z/e, with e taking the value defined
in Eq. (37). The Euclidean definition of temperature at
infinity, viz. , T@ = 1/period, and the Lorentzian defi-
nition of this quantity thus agree as they must for an
equilibrium configuration.

After the imposition of microcanonical boundary con-
ditions, ko is a known function of the radius of the cavity
wall, ro. It is then possible to determine, as a func-
tion of the wall radius, whether the black hole's tem-
perature T, (defined through the surface gravity or Eu-
clidean period) is increased or lessened by semiclassical
effects. The order e change in the surface gravity, de-
fined as he = e —1/(4M) xnay be positive or negative
depending on the choice of ( and rp Th. e regions for
which &, is positive and negative in the ((, rp) plane are
shown in Fig. 1. If the curvature coupling is constrained
by 0.4691 & ( & 0.2679, then the surface gravity (and
temperature T, ) are reduced by semiclassical efFects for
all values of rp For sm. aller values of (, there is a region
near the horizon for which the semiclassical correction is
positive, and then beyond a certain radius it is always
negative. Specifically, for the conformaDy coupled scalar
field, we find that be is negative for all ro & 3.0972M. In
the case of minimal coupling (( = 0), he is negative for all
rp & 3.2507M. For values of g larger than 0.4691, there
is a range of radii (increasing in width as ( increases) for
which he is positive. There is one value of rp at which
the semiclassical contribution to the surface gravity is in-
dependent of (; this occurs at rp 3.41727M; there, the

1 kp + 12 —120(( ——)K = 1+a 6
4M 3840m

(37)

to first order in e. The black hole temperature mea-
sured at asymptotically fIat spatial infinity far outside
the box radius rp, T„ is SK(2z) i. If the perturbed
metric of Eq. (32) is Euclideanized, the resulting space

FIG. 1. Regions of positive and negative be, the semiclassi-
cal correction to the surface gravity (and hence temperature)
of the black hole, are plotted as functions of the curvature
coupling, g, and the radius of the spherical wall enclosing the
black hole, ro. Microcanonical boundary conditions are as-
sumed to hold at the wall.
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surface gravity is given by

1
(1 —1.64 x 10 e) .

4M

Tb,e local equilibrium temperature of the system is not
given by T„ the temperature of the black hole, but by

&~-(&) = I&«(r)l "'& . (39)

A simple calculation, similar to that presented for the

conformal case in Ref. [5], shows that T~, is indepen-
dent of the integration constant ko. Analogously, one can
conclude that T, is the temperature an observer would
measure at asymptotically large distances &om the black
hole (assuming one had physical contact with the en-
closed system, as through a small tube extending &om
ro to infinity).

The unstable circular photon orbit at r~ = 3M (at
order ee) is of interest for a variety of reasons. I ocating
this orbit at order e we 6nd

685 —10320(( —-) + 1296 ln(-)6 2

1244160m
W

—3M(1+ &[3.1 x 10 —2.6 x 10 (( —si)]).

The semiclassical correction to the radius of the photon orbit is positive (moving the orbit out beyond r~ = 3M) for
all ( ( (q = 0.284. This includes both the conformal and minimally coupled cases. Values of ( larger than gq give
semiclassical corrections which move the photon orbit inward.

Quadratic curvature invariants play an important role in quantum field theory in curved spacetime. Of the four
invariants, C p~gC»~, B pB I, B, and DB, the middle two are of order ~, while C @~AC ~~~ has an order e
correction, and the leading term in OB is of order ~. We 6nd that, to order e,

48M
C p gC ~~ — + 2368+ 1920 —— M —240 960 — M r

—[160+480(( —s)]M r —[104+ 720(( —s)]M r
t' „&

+12Mr + r + 48M r ln
(2M)

and

~M
CIA = ™[96M —40M r —(( —-)(3240M —1600M r + 60Mr + 15r )] .

10mr9

As with previously examined quantities, there are spe-
ci6c radii at which the values of these curvature invari-
ants are independent of (. It is interesting that for the
square of the Weyl curvature C»pC»~, this occurs
precisely at the event horizon, r = 2M. At the horizon,

p g 3 6'

P 4M4 384 M4

independent of the curvature coupling.

p" = (t, i, 0, P), (44)

where the overdot means difFerentiation with respect to
an afEne parameter. The efFective potential is obtained
&om the square of the four-momentum. The result is

2— ~ 2 2E = —g~g„„r +V

momentum of a test particle in the spacetime is given
by

V. EFFECTIVE POTENTIAL FOR PARTICLE
TRAJECTORIES

where

t'1.2

g~~ r2 (46)

To investigate further the physical consequences result-
ing &om the changes in the spacetime geometry when
back reaction efFects are taken into account, one can ex-
amine the efFects on the trajectories of particles close to
the black hole. An efBcient way to do this is to make
use of the efFective potential formalism. We consider an
equatorial slice 8 = m. /2 of the spacetime geometry which
can be done without loss of generality. Then following
Hochberg, Kephart, and York [21] we note that the four-

Here E and I are the particle's conserved energy and
angular momentum de6ned by

CXE= —x u = —J~ (47)

L=Pp =py (48)

where y and ( are, respectively, the timelike and axial
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V = Vp (1+&VS),

Vp = 1— + m )")&" )
2My, (r)
r —2M

(49)

Killing vector fields, and m is the rest mass of t&e test
particle.

Substituting in the perturbed metric [Eqs. (23) and
(24)] and keeping terms up to order e, one finds

4~M2
(52)

tinuous function of the radial coordinate r and gives the
correct ADM mass in the limit r -+ oo.

Substituting Eq. (39) into (51) and using (32) allows

one to write the equation for the entropy in terms of p
and po. Integrating Eq. (51) and changing the integration
variable from M to ui = 2M/r results in the following

expression for the total entropy S(r), for r & ro

The relative change in the efFective potential, Vj, de-
pends on the box size rp, the radial coordinate r, and the
curvature coupling constant g. It is a linear function of
$ and can thus be written as

b,S = Sm [ui ~(po —p)+ —nK w ]de, (53)
1

O'N

where

Vi. = Vi.c + (4 —s)Vi.D .

VI. ENTROPY

The thermodynamical entropy S of the black hole
dressed with the quantized scalar Beld can be computed
using the corrected metric given in this paper. To do
so we will use the method given in Ref. [7] in which the
entropy is computed using the relationship

dE 1 OE)
Ti.c Tice (BM)

Here E is the quasilocal energy of the system. For a
classical Beld minimally coupled to gravity it has been
rigorously shown that E = r —r(g"")~~2 [22]. Although
a rigorous derivation does not yet exist for the quasilocal
energy for the fields we are considering (( P 0), we use
this expression in our computation of the entropy. Our
reason for doing so is that this is the simplest possible
expression for the quasilocal energy which both is a con-

(51)

Any local expression for the quasilocal energy in which ei-
ther the Selds or higher derivatives of the metric explicitly
appear will be discontinuous at the cavity wall.

A graphical analysis of Vj~ shows that, as found by
Hochberg, Kephart, and York [21], Vjc & 0 for large
values of rp. In fact, this appears to be the case for all
r & rp if rp ) 2.8M. A careful analytical analysis of VjD
shows that it is positive for all r & ro if ro & 2(1+6~~2)M.
Since boundary eKects will be important near the horizon
»~&ess rp is much larger than these values we will only
consider the case rs » 2M. Then since Vqc; and ViD
have opposite signs but Vi~ is multiplied by (( —s) we

see that for ( & ~s, Vq & 0 for large rs. For ( & s the sign
of Vi depends on the relative strengths of Vjc and Vj~
as well as the size of (. For large enough values of ro, and
values of ( of order unity, a simple analysis shows that
the Vq~ term dominates and again Vj & 0. The physical
implications of a decreased efFective potential as pointed
out in Ref. [21] include a larger efFective cross section for
capture of photons and massive particles by the black
hole.

This expression is valid not only for the massless scalar
field but for any massless free field [7].

The form of the components of the stress-energy tensor
for all massless fields is such that it is possible to write
Eq. (53) as an integral over a linear combination of com-
ponents of the stress-energy tensor [23]. This is done by
first noting that

p= — drr (T ~),
4~

2M

T' -2
«- M((T".) —(T ~)) .

2M T —2

(55)

Changing the integration variables in these integrals to m

and substituting into Eq. (53) results in a double integral.
This double integral can be reduced after some algebra
and use of the Bianchi identity to a single radial integral.
The result which is valid for r & rp is

b,S(r) = 4m& [T„"—Tt,
' —T„"ln(r/r)]dr .

2M

(56)

We have fixed the integration constant so that LS = 0
at the event horizon of the black hole. This would seem
to be the obvious boundary condition to use. Because
we are integrating over M, in principle one could also
have an arbitrary function of r/5~~2 and (. However, as
pointed out in Ref. [7], such a function does not occur in
the solutions to the back-reaction equations and therefore
it seems unlikely that it would occur as an integration
"constant" for the entropy.

When evaluated for conformal scalar fields ($ = 1/6),
massless fermions, and Abelian vector gauge fields, it
turns out that LS is non-negative and monotonically
increasing with radius, which is the expected physical
behavior for entropy [7].

Let us now evaluate b.S((,w) for the massless scalar
field with arbitrary curvature
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~[8 -3 + s -2 + 8
—x 16 + s2

1 ( )
40 8 2 + 104 s]

320~ f 1) t'11
(—3 —2 in(ur) + 2to + 3ur —2ur ).

—3.431 & ( & xo . (58)

Unlike the previous cases which have been studied [7],
the entropy defined in Eq. (57), because it has a terxn
linear in (, for ( g s, cannot be non-negative and mono-
tonically increasing as a function of r, for fixed M, for all
values of (. It follows from the general result, Eq. (53),
that for all massless fields, [8(b,S)//Br]M = 0 at the hori-
zon. We must insist that this be a local minimum of AS
to prevent the existence of a spherical layer of negative
entropy near the horizon. Examining the second deriva-
tive b,S with respect to r at the horizon, this implies that
( ( xo. Indeed, for physically acceptable behavior of
the entropy, we cannot accept a shell of negative entropy
anywhere, that is we cannot permit [8(AS)/Br]M = 0
for any value of r if further derivatives indicate that AS
is locally decreasing as r increases. An examination of
Eq. (57) with this criterion in mind shows that the largest
"permissible" value of ( is found at the horizon. Investi-
gation of the behavior of Eq. (57) shows that the smallest
such value is g = —3.431, which occurs at r = 5.126M.
We conclude that the physically acceptable behavior of
the entropy of a massless scalar field around a black hole
requires, in the present approximation to the back reac-
tion,

Note that this range includes both minixnal (( = 0) and
conformal (( = s) couplings. We believe this is the first
instance in which it has been shown that, as a matter of
principle, the demand of physically well-behaved entropy
can be used to limit the range of a fundamental coupling
con tant.

These limits have been derived using an analytical ap-
proximation to the stress-energy tensor for a massless &ee
scalar field. They will be refined somewhat by using the
full numerical values for the stress-energy tensor. Fur-
ther, massive field and/or fields with a self-interaction
of the form A/4 will make contributions to the entropy
which may be significantly di8'erent from those of the
massless free scalar field. This may lead to difFerent
bounds of ( for those fields. These issues are being in-

vestigated by the authors in collaboration with T. W.
Kephart. The results will appear elsewhere.
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