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Hairy black hales in string theory
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Solutions of bosonic string theory are constructed which correspond to four-dimensional black
holes with axionic quantum hair. The basic building blocks are the renormalization group Bows of
the CP model with a 8 term and the SU(l, l)iU(1) WZW coset conformal field theory. However
the solutions are also found to have negative energy excitations, and are accordingly expected to
decay to the vacuum.
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The classical end point of gravitational collapse is ex-
pected to be a simple object: a stationary black hole
characterized by its mass, charge, and angular momen-
tum. This expectation is strengthened by the famous
"no-hair" theorems [1]. These theorems assume a spe-
ci6c 6eld content, but they generally suggest that the
stationary, stable black hole con6gurations are labeled
only by conserved quantities associated with local gauge
symmetries.

Quantum mechanics leads to a further "balding" of
black holes. For example, Hawking radiation will cause a
charged black hole to radiate away mass until it reaches
the extrernal (mass = charge) limit. Thus one less quan-
tum number is required to characterize the stable end
point.

Several years ago it was suggested that quantum me-
chanics might lead to hair growth as well as hair loss [2].
In theories with axion strings, an arbitrary phase can be
associated with the process of lassoing a black hole with
an axion string. This phase arises &om the axion-string
interaction Lagrangian

Sr=T B

The integral extends over the string world sheet Z, T is
the string tension, and B is the axion two-form poten-
tial. If B is given by the closed but not exact two-form
obeying f&, B = 8L2 (where 8 is dimensionless and L
is the appropriate distance scale) for any two-sphere sur-

rounding the horizon, it follows that a string which lassos
the black holes picks up a phase 8TL2/h. 8 is classically
unobservable, but may be measured quantum mechani-
cally in Aharonov-Bohm-type interference experiments.
It is thus a new quantum number, or "quantum hair"
associated with a quantum black hole. Generalizations
of this idea involving discrete Z~ gauge symmetries were
discussed in [3].

Quantum hair has no perturbative effect on the Hawk-

ing radiation rate, so large hairy black holes will evapo-
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rate as usual. However, for small black holes, nonpertur-
bative efFects could be important and one might suspect
the existence of hairy extremal black holes [2]. These ob-
jects would be stabilized against Hawking radiation by
quantum hair, just as charged extremal black holes are
stabilized by their classical electromagnetic hair.

Evidence for such extremal objects was found (in the
context of discrete gauge hair) in the elegant analysis of
Coleman, Preskill, and Wilczek [4]. A Euclidean instan-
ton which can be described as a virtual string lassoing
the black holes was shown to slow down the Hawking ra-
diation rate, suggesting that it might actually turn o8'

at a critical value of the mass. However, unlike electro-
magnetic charge, axion (or discrete) charge is periodic
and cannot be made arbitrarily large. Hairy extremal
black holes are therefore typically Planckian objects, and
their existence cannot ordinarily be determined &om low-

energy semiclassical gravity. A complete quantum theory
of gravity, including all higher dimension operators, is re-
quired.

In this article we will use bosonic string theory to
demonstrate the existence of hairy extremal black holes.
In string theory, nonzero 8 leads to a deformation of
the classical solutions (which vanishes exponentially at
large distances) and some exact classical solutions will
be found as conformal 6eld theories. The general so-
lution will be qualitatively described in terms of two-
dimensional renormalization group flows. We will 6nd a
tachyonic excitation in the spectrum, so these objects are
unstable —this is in addition to the usual tachyonic insta-
bility of string theory. We briefly discuss the possibility
of generalization to the superstring.

Classical solutions of bosonic string theory are pro-
vided by conformally invariant two-dimensional 0 models
The o. model corresponding to a four-dimensional hairy
black hole with the line element

ds = N(p)dt +dp +R—(p)d 0,
axion hair

Oeo. '

2

and dilaton field 4(p) may be written

Note that, following convention, the 8 term in this action
difFers from (1) by a factor of h.
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S =, d o
~

N—(p)8+tB t+8+pB p+a'R+ Cl(p)+R (p)G„„B+X"8X"+ e„„B+X"8X" ~, (4)ma'

where G„„(e„„),p, v = 1, 2 is the unit metric (volume
form) on the two-sphere, a' = 5/2zT and f d o~gR =
4 J' d2o R+ ——87r on S2. We wish to find c = 4 conformal
field theories of the form (4). The additional c = 22
conformal field theory (CFT) required for c = 26 will be
suppressed.

The building blocks in our constructions are o' models
on S, or CP models, with 8 terms, corresponding to
the last two terms in (4) with constant R. These have
been the object of extensive investigations. The renor-
malization group Bows in the 8, R planes are depicted
in Fig. 1. The renormalization group Qows have a fixed
point at 8 = x, R = R corresponding to a c = 1 CFT,
a free scalar at its self-dual SU(2)-invariant radius. This
was first conjectured by Haldane [5], who argued that
the critical behavior of the spin-s antiferromagnetic chain
was governed by the CP cr model, at 8 = 0 for integer

I

I

spin and at 8 = m for half-integer. The critical behavior
for 8 =

2 was already known, by bosonization and Bethe
ansatz, to be given by the scalar at the self-dual radius.
Subsequent work ([6] and references therein; see also [7]
for a review) confirmed this conjecture and filled out the
phase diagram. The CP 0' model with 8 term has been
applied previously to string theory black holes by Kogan
[8], with a difFerent interpretation of the renormalization
group Qow.

A c = 4 CFT can be obtained (following previous con-
structions [9,10]) by simply taking the tensor product
with an SU(1,1)/U(1) level k = 8, c = 3 coset model.
By representing this coset model as a cr model, it was
identified [11]as a two-dimensional black hole. The full
0. model action with four-dimensional target space is, to
leading order in a',

W

S~ =, d & —tanh p 6~' 8+)8 p+ +pB p+ &'R+ —lncosh p 6a.' + 4h

ma'
+

I
R.'G - + ~ -

I

8+X"8-X",

where 4» is an arbitrary constant. Equation (5) corresponds to a special type of four-dimensional hairy black hole.
There is no asymptotically Qat region; the two-spheres have radius R, for all p and 8 is restricted to equal x.

The one &ee parameter is the constant @s, the value of the dilaton at the horizon p = 0, which is related to the
Arnowitt-Deser-Misner (ADM) mass of the black hole [11]. At the quant»m level Hawking radiation presumably
drives the mass to zero. In this limit the horizon moves off to infinity and the action is simply (after a coordinate
transformation)

1 2d o 8+tB t+8+—pB p — —R+ p+
~
R,G„„+ „„eBX+"8 X"

i
(6)

This represents an extremal black hole with quantum hair.
It is of interest to find hairy extremal black holes which are asymptotically Qat and thus might exist in our Universe.

These can be described starting &om the renormalization group Qows in Fig. 1. Consider a point 8 = x, with R just
above the fixed point R, . For small R —R„ the corresponding o model is nearly conformally invariant and has a
small P function:

IJ,B„lnR(p) = p(R —R,) (7)

where p & 0. The approach to the fixed point is along the perturbation j,j,— and so is marginal as indicted by the
quadratic P function [6]. A conformal field theory to order R —R, can be constructed by dressing the action with the
p Geld

7r AI

a'
d2o. 8+tB t+8+p—B p — R+ (p+0(p —))-

6
I

+
~
(R. —2R, /pp+0(p '))Gg + &g v I

8+X"8 X" (8)

near p = —oo. Presumably it is possible to correct
the action (8) to obtain a CFT in a power series in
R —R = —1/pp in a neighborhood of the fixed point.
As p -+ —oo, R approaches R, and the geometry ap-
proaches the previously discussed extremal black hole.
As p increases, the radius R increases, and the black hole
"throat" begins to open up. When R —R is of order one

I

the radius rapidly increases and one enters the mouth re-
gion. At this point the exp~~sion parameter used in con-
structing CFT's by dressing renormalization group Qows
breaks down, and we have no quantitative tools to ana-
lyze the theory. However, if one assi~mes that R passes
through the mouth region to larger values, the theory can
be analyzed in an expansion in 1/R on the other side of
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R

0

the degeneration to a massive Geld theory at the origin.
A qualitative, but not quantitative, picture of the

structure of hairy black holes can be developed in 3,

minisuperspace-type approximation. The renormaliza-
tion group Hows in Fig. 1 originate entirely from non-
perturbative world sheet instantons which wrap around
the horizon, since those are the only con6gurations sen-
sitive to 0. The spacetime effective action which incor-
porates these instanton effects is nonlocal. However, in
an S-wave approximation in which all con6gurations are
required to be spherically symmetric, a world sheet in-
stanton is represented by a point in the two-dimensional

p, t plane. Summing over spherically symmetric world
sheet instantons is then equivalent to summing over or-
dinary instantons in the two-dimensional effective theory.
The eKects of such instantons are reproduced by adding
to the action the operator whose eH'ects mimic that of
the instanton. The result is

FIG. 1. Shown is a sketch of the renormalization group
Bows for the CP model. An infrared 6xed point lies at
8 =m, R=R, .

s=—
K

+2(VR)' + 2 + 4R'(VC )'
A 2 —2R—2V R — (VH) + Ce ~ cos 0
4R2

this region. To leading order in this expansion, confor-
mal invariance and c = 4 implies that R oc p and 4 is
constant. Thus it is possible to assume that the theory
ties on to an asymptotically Hat geometry.

Other renormalization group trajectories can similarly
be used to construct extremal black holes. For 0 near but
not equal to x, there is a long throat region produced by
R lingering near the fixed point. In this region a con-
struction of the type (8) yields an approximate CFT.
However, for 8 g ir, R eventually becomes small and the
approximations break down. At the R = 0 infrared 6xed
point all excitations are in6nitely massive and a space-
time interpretation of the theory is no longer possible
[10]. If 8 is not near ir, a throat region never forms, and
one immediately descends into the vicinity of the infrared
fixed point.

As indicated in Fig. 1, the perturbation in the 0 di-
rection away from 0 = vr is relevant. It corresponds to
the (j,j) = (2, 2) primary, of weight (i, i). Expanding
around a linear dilaton background, the mass squared [in-
cluding a term (V4)2 from the linear dilaton] is tachy-
onic, m = —17/6n'. The extremal object is therefore
classically unstable, as are the near-extremal objects with
long throats. Presumably they will decay by emission of
a radial axion gradient to Bat R with 0 = 0. The would-
be hair, like a bad toupee, slips ofF.

The picture of the 0 = vr extremal black hole is simi-
lar to that found for magnetically charged extremal black
holes [12,10] which, for large charge, can be analyzed per-
turbatively. There is an asymptotically Hat region, and
a mouth connecting on to a semi-in6nite throat region.
These also share with the present construction the fea-
ture that the time coordinate is a free Geld and plays only
a spectator role in the construction. The solutions with 0
neither 0 nor ir resemble the Q = +I solutions of [10] in

where z = (p, t) Vis a .positive determinant. The first
six terms are obtained by spherical reduction of the four-
dimensional string action with the ansatz

ds = g s(z)dz dz + R (z)d 0,

B = —0(z)e .
2

The last term in (9) reproduces the egects of string in-
stantons. One can think about this in two ways. The
first is the usual string o model point of view, where the
string wrapping the black hole is a world-sheet instanton,
and the last term in the action represents the contribu-
tion of these instantons to the P function. The fact that
the dilute instanton approximation suggests a 0 = m Gxed
point of the CPi model was noted in [14]. Alternately we

can think of them, as in [4], just like ordinary spacetirne
instantons, involving solitonic strings wrapping around a
black hole. This should be valid at large R because, in
the spirit of [15],the low-energy effective field theory does
not know if the core of the string contains a fundamental
string or resembles a smooth soliton.

The equations of motion following from (9) have a so-
lution with constant R and constant 0 = a. However, it

In the case at hand the single instanton action is infrared
divergent. However, as explained in [13], this does not mean
that instanton eKects cannot be summarized by a local oper-
ator. Rather, a single insertion of the appropriate operator
must reproduce the infrared divergence.

In [4] the efFects oF string instantons are, in contrast with
the present case, nonperturbative in 5 because they keep T =
5/2ircL' (rather than o') fixed as 5 —i 0.
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is only suggestive since (9) cannot be trusted when R is
small and the instantons are not dilute. This approxima-
tion also misses the fact that the approach to the fixed
point is marginal.

The reduced action (9) can be thought of as describ-
ing spherical four-dimensional dilaton gravity coupled to
a scalar field 8(x) with a field-dependent potential that
vanishes asymptotically. Nonextremal hairy black hole
solutions can be constructed by solving the radial equa-
tions with boundary conditions imposed at the horizons.
Since the equations degenerate at the horizon, there are
(after gauge fixing) only three independent initial data
which may be taken to be the horizon values 8h, @h, and
Bh of 8, Cr, and B. Bh directly determines the horizon
area, while 4h determines the asymptotic value of 4. If 8
were an ordinary massive field there would be two possi-
ble asymptotic solutions: one which grows and one which
decays exponentially. Unless one takes Oh ——0, there
would be some admixture of the growing solution and the
spacetime would not be asymptotically Hat. This is in ac-
cord with the no-hair theorems for scalar 6elds. On the
other hand, if 8 were exactly massless the asymptotic so-
lutions go as a constant plus I/B, and there is no danger
of destroying asymptotic Qatness. In fact, the solution
will have 8 = 8h everywhere. The action (9) is some-
where between the massive and massless case. Because
the mass vanishes asymptotically, there are no growing
modes and no fear of destroying asymptotic fiatness. On
the other hand, since the potential is nonzero 8 will not
be constant if 8h P 0, rr. In general the phase measured in
string interference will be given by the asymptotic value
of 8(x) which is nontrivially related to 8h.

It is natural to attempt a similar construction for the
superstring. In this case, however, 8 can be eliminated
by a chiral fermion rotation so there is no analogue of
Fig. 1. The analogous eKect for black holes with discrete
gauge hair was discussed in [16]. However, for a collection
of neutral black holes characterized by diferent values
of 8, there is no globally de6ned chiral rotation which
eliminates all the 8's. Thus we do expect quantum hair

to arise, although the conformal 6eld theoretic methods
described herein are inadequate to describe it.

In closing we wish to discuss the observability of the
axion hair in this solution. There is a limit, albeit arti-
6cial, in which it can be measured. This is the limit of
string tree level, where we are doing conformal 6eld the-
ory in a Bxed background. This limit is partly classical
and partly quantum mechanical. The background fields
do not Buctuate, but the propagation of test strings is
quantum mechanical; for example, the vertex operators
satisfy wave equations. A spherical world sheet can loop
the black hole, so interference eHects from 8 will appear
in tree-level amplitudes. Note also that because the back-
ground is classical the field satisfies (b,B)z = ((b,B)z).
The left-hand side here is a two-instanton order. The
right-hand side has both one- and two-instanton contri-
butions, but the first enters at string loop order and so
is suppressed in the limit discussed here.

Quantrrm effects make the axion hair dificult to mea-
sure for several reasons. In general 8 eigenstates are not
energy eigenstates, and so the 8 mode of the axion 6eld
will rapidly fiuctuate (we believe this is equivalent to the
arguments of [4]). In the present case this is exacerbated
by the presence of the tachyonic mode.

In conclusion, under closer inspection axion hair turns
out to be a toupee in bosonic string theory: it does not
provide a new quantum label for stable, extremal black
holes. It remains a logical and interesting possibility that
genuine quantum hair could exist in other contexts, such
as superstring theories or discrete gauge symmetries.
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