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Black hole entropy in two dimensions
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Black hole entropy is studied for an exactly solvable model of two-dimensional gravity, using
recently developed Noether charge techniques. This latter approach is extended to accommodate
the nonlocal form of the semiclassical efFective action. In the two-dimensional model, the Gnal black
hole entropy can be expressed as a local quantity evaluated on the horizon. This entropy is shown
to satisfy an increase theorem on either the global or apparent horizon of a two-dimensional black
hole.

PACS number(s): 04.70.Dy, 04.60.Kz

I. INTRODUCTION

The quantum instability of black holes was first demon-
strated by Hawking [1]. An external observer detects the
emission of therxnal radiation Rom the black hole with a
temperature proportional to its surface gravity K:

This result draws interesting connections between quan-
tum field theory, general relativity, and thermodynam-
ics, but also leads to a celebrated conBict between quan-
tum theory and general relativity [2]. If the thermal
emissions continue indefinitely, the black hole would ul-
timately vanish, having radiated away its entire mass. In
the process, a pure initial quantum state would appear
to evolve into a mixed final state, since the information
associated with the black hole s internal conditions is ir-
revocably lost. Hence unitary time evolution, a basic
tenet of quantum theory, would appear to be violated.

Exactly what happens in the final moments of black
hole evaporation remains an open question, since it re-
quires an understanding of physics at high curvatures as
well as of back reaction effects. However, this is a ques-
tion which has recently come under intense study in the
context of two-dimensional theories of gravity. Callan,
Giddings, Harvey, and Strominger (CGHS) [3) began
with a theory of two-dimensional dilaton gravity coupled
to N massless scalar fields:

1
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(2)

This action is closely related to the effective action de-
scribing the radial xnodes of a four-dimensional extremal
black hole in string theory [4]. The equations of motion
for this action (2) are exactly soluble. Further since this

where G(z, y) is the Green's function for the two
dimensional D'Alembertian V2. With a large N expan-
sion in which Nh is held fixed, one has a systematic ex-
pansion in which the classical and one-loop actions con-
tribute at the same order, and which incorporates the
dominant sexniclassical effects, .including both the Hawk-
ing radiation and the back reaction effects on the geome-
try. Russo, Susskind, and Thorlacius (RST) [7] modified
the semiclassical action by adding a local covariant coun-
terterm
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with which the theory is again exactly soluble. Thus the
analysis of the solutions is simplified, and combined with
a particular choice of boundary conditions in the strong
coupling regime [7—9], one can produce a physical picture
for the entire process of the forxnation and evaporation
of a black hole.

The RST model is then a natural framework in which
to examine questions about information loss and black
hole entropy [9, 10]. Since (classically) a horizon limits
one's ability to collect information about the universe,
it may seem natural to associate entropy with such a
boundary. Bekenstein was the first to suggest that black
holes should have an intrinsic entropy proportional to
the surface area of the horizon, 4[11]. The discovery
of Hawking radiation [1] allowed a precise result to be
for xnulated:

theory is in two dimensions, the leading quantum contri-
butions induced by the matter fields can be calculated [5].
One accounts for these effects by including the following
nonlocal term to the efFective gravity action [6]:

XhIi ——— d z Q—g(z)
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This formula applies for any black hole solution of Ein-
stein's equations [12]. If as in an efFective quantum cor-
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rected action, the Einstein action is perturbed by higher
curvature interactions, the black hole temperature (1) re-
mains unchanged but the entropy formula (5) no longer
applies [13]. It is only recently that exact expressions
have been derived for black hole entropy in such modi-
fied theories [14—18]. In particular, Wald [14] developed
a very general technique, which may be applied to any
difFeomorphism invariant theory in any number of dimen-
sions. In his Noether charge approach (see below), a first
law of black hole mechanics [19] is derived

—hS = hM —A~ l h J( )2Ã
(6)

where M, J~ ~, and 0& ~ are the mass, the angular mo-
ment»x» [20], and the angular velocity of the black hole,
respectively. From this equation one is able to identify
the entropy 8 as given by the integral of a local geo-
metric expression over a cross section of the horizon. In
Eq. (6) and for the remainder of the paper, we adopt the
standard convention of setting h = c = k~ = 1.

If the resulting entropy expressions are to play the true
role of an entropy, they should satisfy a second law as well—i.e., 8 should never decrease as a black hole evolves.
In Einstein gravity, such a result is provided by Hawk-
ing's area theorem [21],which states that in any classical
processes involving black holes, the total surface area of
the event horizon will never decrease. Some partial re-
sults for black hole entropy in higher curvature theories
have also been found [22].

Wald's techniques [14] for determining the black hole
entropy were originally developed for application to
higher curvature theories in four or higher dimensions.
In this paper, these techniques are applied to the two-
dimensional dilaton gravity models, described above.
Section II describes Wald's method [14] with an appli-
cation to the classical action (2). This calculation re-
produces the black hole entropy already derived by other
methods. (Reference [18] has also applied the Noether
charge technique to determine the black hole entropy for
Io.) A second law is also proven for this entropy expres-
sion. Section III extends the Wald's method to accommo-
date the nonlocal form of the the sexniclassical action in
Eq. (3). Even though the action is nonlocal, in conformal
gauge the contribution to the entropy is a local expression
evaluated on the horizon. The total black hole entropy
satisfies an increase theorem for eternal black hole so-
lutions (i.e., black holes in equilibrium with an external
heat bath). Section IV extends the latter result to dy-
namical black holes (i.e., with no external heat bath). In
this case, vacu»m corrections to the matter stress-energy
xnust be accounted for to evaluate properly the black hole
entropy. The corrected expression is also shown to sat-
isfy a second law. Section V presents a discussion of our
results, and in particular a comparison with the recent
results of Ref. [10]. Throughout the paper, we employ
the conventions of [23].

II. ENTROPY AS NOETHER CHARGE
AND CLASSICAL ENTROPY

Wald's derivation of black hole entropy relies on con-
structing a Noether charge associated with the dHFeomor-

phism invariance of the action. The present discussion
will be a brief introduction to these techniques. In par-
ticular for the most part, the discussion will be limited
to applications in two dimensions for the theories studied
here. The interested reader is referred to Refs. [14, 18,
17] for complete details.

A key concept in Wald's approach is the notion of a
Killing horizon. A Killing horizon is a null hypersur-
face whose null generators are orbits of a Killing vector
6eld. If the horizon generators are geodesically coxnplete
to the past (and if the surface gravity is nonvanishing),
then the Killing horizon contains a spacelike cross section
B, called the bifurcation surface, on which the Killing
field y vanishes [24]. Such a bifurcation surface is a
fixed point of the Killing Bow, and lies at the intersec-
tion of the two null hypersurfaces that comprise the full
Killing horizon. Since the CGHS and RST models of two-
dimensional gravity are exactly soluble, it is straightfor-
ward to establish that the event horizon of any stationary
black hole is a Killing horizon. In these models, the bi-
furcation surface reduces to the point at the origin of the
Kruska, l-like coordinates. Wald's construction applies to
black holes with bifurcate Killing horizons, but given the
6nal local geometric expression for the black hole entropy,
the latter may be evaluated at any point on the horizon
of an arbitrary black hole solution.

Another essential element of Wald's approach is the
Noether current associated with diffeoxnorphisms [25].
Let L be a Lagrangian built out of some set of dynami-
cal fields, including the metric, collectively denoted as Q.
Under a general field variation bg, the Lagrangian varies

~(v' gL) = v' g—E &0+—v' gVog (~4—) (7)

where the centered dot denotes a s~~mmation over the
dynamical 6elds including contractions of tensor indices,
and E = 0 are the equations of motion. With symmetry
variations, for which b(g gL) = 0, g —is the Noether
current which is conserved when the equations of mo-
tion are satisfied —i e , V 8 (bg. ). = 0 when E = 0.
Rather than vanishing for a diffeomorphisms, 8@ = CgQ,
the variation of the Lagrangian is a total derivative,
b(g gL) = Zg(g —gL) = g—g—V' (P L). Thus the con-
served Noether current J is

J =8 (ZgQ) —g L

where V J = 0 when E = 0. Further since J is con-
served for any diffeomorphism (i.e., for all vector fields

( ), there exists a globally defined scalar Q, called the
Noether potential, satisfying J = P VsQ [26], where
e g is the vob~me forxn in two dimensions. Again, this
equation for J holds up to terms which vanish when the
equations of xnotion are satisfied. Q is a local function
of the dynamical fields and a linear function of $ and
its derivatives. One can also show then that the Noether
charge evaluated for a spacelike interval M reduces to
the boundary terms N = Q+ —Q, where Qg denotes
the Noether potential evaluated at the end points of M.

Given these results, Wald [14] derives a first law of
black hole mechanics [19]. One begins by evaluating
the Noether charge on a surface in a stationary black
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hole background. The di8eomorphism vector is chosen
to be the Killing Geld which generates the horizon, and
the surface is a spacelike interval extending kom asymp-
totic infinity to the bifurcation point. Then the dynam-
ical fields are varied infinitesimally to a nearby solution
(which need not be stationary), and one finds an identity
relating a surface term at infinity to another on the hori-
zon. This identity has the form of the first law (6) (but
of course there are no angular momentum terms in two
dimensions). The boundary term at the horizon is inter-
preted as yielding the variation of the entropy, which is
then given by S = 2zQ(g)~ s. Here the Noether poten-
tial is evaluated at the bifurcation point, and y is the
Killing vector scaled to have unit surface gravity.

By construction Q involves the Killing field y and
its derivatives; however, this dependence can be elim-
inated as follows [14]. Using Killing vector identities,
Q becomes a function of only g and the first deriva-
tive V ys. At the bifurcation point though, y vanishes
and V yg ——e g. Thus eliminating the term linear in

and replacing V' yp by e p yields a completely ge-
ometric functional of the metric and the matter fields,
which may be denoted Q. The expression 2z Q yields the
correct entropy when evaluated at the bifurcation point,
or in fact when evaluated at an arbitrary point on the
Killing horizon [17]. Thus this latter expression is a nat-
ural candidate for the entropy of a general nonstationary
black hole. Actually, a number of ambiguities arise in
the construction of Q, but none of these have any ef-
fect when the charge is evaluated on a stationary horizon
[17]. These ambiguities may become significant for non-
stationary horizons, though. In this case, a choice which
yields an entropy that satisfies the second law would be
a preferred definition [22].

Using Wald's technique, results have been established
to compute the entropy for a general I agrangian of the
following form: L = L(@,V @,g 6, A s g), that is in-
volving only second derivatives of the metric g b, and
first derivatives of the matter fields, denoted by g . The
final entropy may then be written [17, 18] (see also [16])

S = 2vrQ = 2~Y—
where the tensor Y '" is defined by

Yabcd 0 L

(8)

S'0 —2e-'~

For general higher curvature theories, the definition (8)
represents a particular (simple) choice given the ambigu-
ities in Wald's construction. In the present case though
where Io is only quadratic in derivatives, the formula (9)
does not suer &om any such ambiguities. One can de-
rive the same result by integrating the thermodynamic
relation dS = dM/T given the temperature as a function
of the mass [10]. (In fact, the temperature is a constant

This result is sufhcient to determine the black hole
entropy for the classical CGHS action (2). Only the first
term in the action makes a contribution with the outcome
that

in the present case.) Alternatively, Frolov [27] produced
this formula using Euclidean path integral techniques for
a class of static black hole solutions. Interpreting this
formula in terms of the associated four-dimensional black
hole, one finds that Eq. (9) is precisely one-quarter the
area of the event horizon, as prescribed by Eq. (5) [9].
This expression was previously derived with the Noether
charge technique in Ref. [18]. Since the classical CGHS
model is exactly soluble, it is relatively straightforward
to establish a second law for this entropy, as we will now
describe.

A review of the CGHS model can be found in Ref. [28].
The solutions are most easily described in conformal
gauge —i.e., choose the metric to have the form d8
—e ~dx+ dx using the freedom of coordinate invari-
ance. Among the resulting equations of motion, one
finds [3] 8~8 (p —P) = 0. Hence one has p
P + 2[is+(z+) + tu (x )]. Now a coordinate transfor-
mation of the form z+ = h+(o'+) leaves the line el-

I

ement in the same form d8 = —e ~ do+ do with
p' = p + &in(cj + h+) + &in(8 —6 ). So this residual co-
ordinate &eedom within conformal gauge allows one to
shift the conformal function p to set m+ ——0 = m . This
choice with p = P is called Kruskal gauge.

In Kruskal gauge, the general solution is [3]

where

xP (x —)+b, (x )+mo (10)

and T~~ = i g; i(Oyf;)2 ) 0. Many of the features
of these black hole solutions are illustrated by the static
vacuum solution

Ax dx

mp —A2x+x—

which is a black hole with Arnowitt-Deser-Misner (ADM)
mass I = Amo (ifmo ) 0). In this case, the global struc-
ture is essentially the same as that of a Schwarzschild
black hole. There are past and future spacelike curva-
ture singularities at z+x = mo/A, which are hidden
behind the future and past event horizons at x+ = 0.
Asymptotically as z ~ —oo (or x+ ~ —oo), the metric
becomes Bat as can be seen &om the coordinate transfor-

m Acr + Acrmation +Ax+ = e+" (or pox+ = e+" ), which yields
ds dx+dx /(A x+x ) = —do+do . The solution
in these asymptotic regions is called the linear dilaton
vacuum, since the dilaton grows linearly in a spacelike
direction, P 2 (cr —cr+)

Now returning to the proof of the second law, it will
be assumed that T++ vanishes in the asymptotic future
as x+ ~ oo. In this asymptotic region, observers at
points where 0+e & & 0 will inexorably be drawn to the
singularity where P -+ oo. Asymptotically on the global
event horizon, one then has 0+e ~ = 0. By integrating
the equations of motion or by differentiating the general
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g+Sp = 2 dp T++ g (12)

where 8+e 24'(oo) = 0 was also used. Since the integral
term is positive definite, the entropy is always increasing
along the future event horizon. Note that at an early
point on the horizon before any matter has crossed into
the black hole, the entropy is increasing because of rnat-
ter contributions to the future in Eq. (12). This behav-
ior illustrates the teleological nature of the global event
horizon —the entropy begins increasing early on in an-
ticipation of the infalling matter.

Following the suggestion of Refs. [10,29], it may also
be interesting to follow the progression of the entropy
along the apparent horizon. In the stationary black holes,
which play an important role in the Wald's derivation of
the entropy, the apparent and global horizons will coin-
cide. To define an apparent horizon in two-dimensional
gravity, one xnust appeal to the related four-dimensional
black hole. There, e 2& is proportional to the area of
the transverse two-spheres. Trapped points then sat-
isfy 8+e & & 0 and 8 e 2& ( 0 (i.e., points for which
the area necessarily decreases in the forward light cone).
The apparent horizon or the boundary of the region of
trapped points is defined by 8+e 24' = 0. Prom the gen-
eral solution (10), one has then z& ——

~& P+(x+). Froxn
the definitions (11), one sees that the apparent horizon
can only move out (to more negative x ) as it evolves
forward in z+. The future directed tangent vector is

t 8 = 8~+ &*+8 = 8~ —~&T~+8 . Now the variation
of the entropy is given by

solution (10), one finds

8+e ~ = —[A z + P+(z+)]

Hence the global future event horizon can be identified as
xH ———~&P+(oo). Combining this result with Eqs. (9)
and (ll) yields

III. SEMICLASSICAL CORRECTIONS
TO ENTROPY

The black holes considered in the previous section are
fixed classical backgrounds. One can compute the Hawk-

ing radiation for these backgrounds using the relation
with the trace anomaly for massless fields coupled to
two-dimensional gravity [5]. The temperature is found
to be a constant A/(2z), independent of the mass [3].
The back reaction of the geometry due to the Hawking
radiation can be incorporated by adding the sexniclassi-
cal contributions to the action. In the RST model, there
are two semiclassical terms given in Eqs. (3) and (4), and
both will make new contributions to the black hole en-
tropy. The second of these, I2, is a local term and falls
into the class covered by Eq. (8). One finds then that I2
contributes

N
S2 ————

12

to the black hole entropy.
Being nonlocal, Iq does not lend itself directly to

Wald's analysis [14]. However, one can introduce an aux-
iliary Geld to rewrite this action in a local forxn as

d~x —g Vg 2 —2'
The g equation of motion is V~g + R = 0, for which the
solution may be written

no(*) = —/ ~% v'-g(ll) G(* ~) &(v) .

Substituting bio into the action (13),one recovers the orig-
inal nonlocal expression Ii in Eq. (3). The local action
xnay be analyzed as in the previous section, yielding an
entropy contribution

N N
n(ze) = ——— d'y I y(y) G(z~ y) &-(y)

12 12
2t 8 Sp ——28+e ~ ——T++0 e

A2
N= —p(za), (14)

2
T+~[A2z++ —P (z~)]

Considering only the evolution of the black hole to the
future of the past event horizon, z+~ ———bP (—oo)
(where we assumed that any outgoing radiation vanishes
as x ~ —oo). Hence in the second factor above one has

A'z++ P (x„)) P (z„)—P (—oo)

A

dy T (y ))0

Hence along the apparent horizon, t 0 S & 0 has been
established —i.e., the entropy only increases as the ap-
parent horizon evolves. Note that when T++ ——0, the
apparent horizon remains at a Gxed value of x, and
that the variation of Sp also vanishes.

where the Gnal local result applies in conforxnal gauge.
This approach may appear suspect since it involves
adding extra dynaxnical degrees of freedom to the theory.
It will now be shown that with minor modifications the
Noether charge approach can be applied to the nonlocal
action, and that Eq. (14) is in fact the correct result.

In the analysis of the previous section, the Lagrangian
or the action was a functional of only the dynaxnical Gelds

Q and their derivatives. Further diffeomorphism invari-
ance then dictates that the variations bvP = Zg@ induce
the variation bI = ZgI. In the nonlocal action Iq, it
is not immediately apparent that the Green's function
G(x, y) fits into this framework. In fact though, G(x, y)
is implicitly a functional of the metric defined through
the equation V G(x, y) = b (x —y), which is xnost use-
fully written as

(8-v' yy'»)*G(z y)—= v' g~'(z y) = b'(z —y—) . —
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where bg = g g bg g. The variation of the Green's
function is then

SG(z, y) = f d z G(z, z)

x (8 vr —g[hg —2g'"bg, d, g ]Os),G(z, y).
(16)

Thus the metric variations produce a well-defined albeit
nonlocal variation of the Green's function. This result
(16) is of course used to derive the metric equations of
motion for the RST model. Next, one can verify that
bg s = l:gg s = V (b + Vs( induces the appropriate
variation

bG(z, y) = l:tG(z, y)
=(& ~-)*G(z y)+ (4 ~-).G(z y) (»)

Hence the Noether charge analysis can be applied to
the nonlocal action treating the Green's function as a
functional of the metric. The only change as compared
to the discussion in previous section is to refer the con-
struction of the Noether charge to the action, rather than
the Lagrangian. For example, Eq. (7) is replaced by [30]

6g = Ei (Ig + V gi (bg) (18)

where standard functional diH'erentiation is understood
on the left-hand side [e.g. , for a scalar field,
b' (z —y)]. Here, Ei and tI)i are the contributions of
Iz to the total equations of motion, and the total bound-
ary current, respectively. Since the action is manifestly
covariant, one knows that

=Vs(() .
bIi

Note that p does not take the form ( ur since several
integration by parts are required to yield Eq. (17) from
the variation in Eq. (16). Of course, p contains non-
local expressions involving the Green's function. The
new contribution to the total Noether current is then
Ji = Oi(l:~@) —p ((). It is not hard to show explic-
itly that when the equations of motion are satisfied, the
Noether potential receives a new contribution of the form

Qi(*)=
4~

(& 6'~-~)(~)/&'wI —u(u) G(*,u) &(u)

+2(p' ~)(*)/~'v1( u(u)r'~(* ll) &(u)—

Now as before, one eliminates the explicit dependence
of the Noether potential on the vector field by retaining
only the first term, and replacing V f with e . Thus
one arrives at the contribution of Ii to the black hole

Here 6 (x —y) is a density distribution satisfying

f d zf (x) b2(z —y) = f (y), and so it is independent of
the metric. Varying the metric in Eq. (15) yields

(8 g gg Os) hG(z, y)

+(~-V' g[—'g "-~g.~ g' —4'l&~)*G(» y) = o

entropy

~i = 2~Vi(zH) = —— d'yg g—(y) G(zH y) R(y)12

where an extra constant has been added for convenience.
In conformal gauge with ds2 = —e ~dz+dx, one has
R = e ~( 2V2p) —= 8e 2r(9+(9 p, and the above ex-
pressions for the Noether charge and entropy reduce to
local terms involving the conformal factor evaluated at
the horizon. In particular, the total entropy (20) be-
comes

N (12 2~ p 1 % 1')
~RsT = —

I

—e '~+ p ———-»———
I

. (21)
6 (N 2 4 3 4)

In the conformal gauge, the equations and solutions for
the RST model are very similar to those of the classical
CGHS model [3,8—10]. The equations are most easily
analyzed in terins of [31]

12 24, p 1 X
y = —e @+p————ln —,=N ' -2-4 3

12 ~~ P 1 N0= —e ~+ —+ —ln —, (22)X 2 4 48'

where the constants are chosen following [10]. One
finds that the combination y —0 = p —P + 2lni2 is
a free field [7], i.e. ,

(9+0 (y —0) = 0 (23)

As in the CGHS model, one uses the residual &eedom in
coordinate transformations to fix to Kruskal gauge where

y = 0 (or p = (t) + 2lni2).
A new aspect of the semiclassical RST equations is

that they are ill defined for a critical value of the dilaton.
This critical point is also revealed by the fact that 0 &
0„= 4 for any real value of P. To complete the model,
the behavior of the fields must be resolved at this critical
point. Russo, Susskind, and Thorlacius [8, 9] suggested
that one impose

c)+BI„=0 = (9 OI„ (24)

where the 0 = Q„surface is timelike. This constraint
ensures that the curvature remains finite as the boundary
is approached [32].

In Kruskal gauge, apart from Eq. (23), the remaining
gravity equations are

0+0 0= —A,
g~y = B~O = —T~~,

where one can evaluate this result at any point x~ on
the horizon, while the integration runs over the entire
spacetime.

Hence the total black hole entropy for the RST model
is

~Rsvp

= ~0 + ~i + ~2
~ (12, 4(z~) 1 N lb= —

I

—e ''(zH)— ——ln ———
I

6 4 3

d yg g(y) G(—za, y) &(y) (2
N
12
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where the matter stress-energy tensor has been scaled
to T~~ = ~ Pi i(8~f;)2 ) 0. The general solution of
these equations is

~ = n = -~2z+*- *—+I (*+)+~,(*+)
-* &-( )+&-(z )+

where

(26)

~@+&++(v+),
0

Qy+ y+ g y+

These solutions are eternal black holes in equilibrium
with a heat bath at infinity with a temperature 2" . Note
that a black hole can remain in equilibri»m with a single
heat bath even while matter is falling in since the Hawk-
ing temperature is independent of the mass of the black
hole.

Comparing Eqs. (21) and (22), one sees that the en-
tropy may simply be written

N N
SRs~ = —(g —0 ) = —(0 —0 ) (27)

in the Kruskal gauge. A second law is established without
any further eKort when one realizes that in the present
RST model, 0 replaces e 24' in both the equations of
motion and entropy of the classical CGHS model. The
derivation of the second law for the CGHS model can be
applied to the present case by simply replacing e 2'mt' by
0. So in any of the eternal black holes, the entropy (27)
can only increase on the future global event horizon, as
well as on the apparent horizon. Note that the apparent
horizon can be defined by 8+0 = 0 (see below) [9, 10].

The evolution of the classical black hole entropy in
these solutions might also be considered. One has 8 0 =
0'8 P = —in'e24'8 S where 0' = ~+ = i —24ea —

4 o 0 8$ 2 N
Now in the physical region of interest (i.e., P & P )
—oo) 0' ( 0, and so the prefactor (—40'e2&) is non-
negative, vanishing only at P = P„. Hence given that 0
never decreases, it must then also be true that the clas-
sical entropy S0 increases on both global and apparent
event horizons.

IV. EVAPORATING BLACK HOLES

Since the RST model provides a full semiclassical pic-
ture of black hole physics, one can also describe evapo-
rating black holes (i.e., black holes without an external
heat bath). In the Kruskal gauge, these are given by

~ = n = -~' +*-—*+7 ( +) + 8,(*+)
1

+mp ——ln[ —4A z+z ]4
(28)

in a region where there is only infalling matter. Now the
(global or apparent) horizon will originate at an early
time on a timelike portion of the 0 = 0, boundary.
Since 0„ is the minim»m value for 0, the quantity in

(27) must begin by increasing as the horizon pulls away
&om the 0 = O„boundary. The final moment at
which the black hole has completely evaporated is dis-
tinguished as the point where the horizon returns to the
0 = O„boundary, which turns there &oxn being space-
like to timelike. Hence, late in the evolution of the black
hole, the function in (27) must be decreasing as 0 returns
to 0„. While it may seem disappointing that SRs~ in
(27) is sometimes decreasing, in fact it is not the entropy
for these evaporating black holes. The reason is that
Eq. (27) was derived using the equations of motion (25),
whereas the evaporating solutions satisfy difFerent equa-
tions of xnotion, due to a difference in the vacuum state
of the quantum fields.

To produce evaporating black hole solutions, the con-
straints (25) are replaced by

8~0 = —Ty~ —t~, (29)

where t~ are quantum corrections to the vacuum energy.
For the solutions (28), ty = — ~, . The origin of this
term in the semiclassical equations can be understood
arising &om the anomalous transformation properties of
the normal ordered stress-energy tensor [10,33].

One can also understand these contributions as arising
from properly defining the scalar Green's function for
calculations in a particular vacuum. Recall that in con-
formal gauge, the D'Alexnbertian V' = —4e ~8+8 has
a family of zero modes of the form m+(z+) and m (z ).
These will then give rise to ambiguities in the definition of
the Green's function, which must be resolved by choosing
appropriate boundary conditions. The relevance of this
ambiguity here is that the above calculations used

The entropy contribution from the nonlocal action (19)
is also modified to

N
Si = —po(*a *a)6

N
[ Jr( H H) + +(zH) + ( H)]

Thus the total entropy becomes

where it was assumed that p = p~, the conformal fac-
tor for the Kruskal gauge metric. In fact if the vacuum
was defined with repect to time for another choice of co-
ordinates or+, one should have p = p0, the conformal
factor for the corresponding vacuum metric. Recall that
for z+ = h+ (o +), one has po ——pa + (u+(z+) + (u (z )
where u~ = 2iln(8 ~h+). Hence the difFerence between
the conformal factors is precisely in the zero mode sector.
The end result is that one should set p = p0 in the final
entropy (21).

One proceeds by defining y as in Eq. (22) with p = pz,
and choosing the Kruskal gauge y = 0, as before. Then
when Eq. (30) yields p = po

——p~ + u+(z+) + w (z ),
the constraints (25) are modified to those in Eq. (29) with

ty = (8~(el~) + 8~(d~
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N (12
SRST=

~

e +PK+~++~—
6 qN

1 N 1&
!

———ln ———
2 4 3 4)

N= —[0 —Ocz +QJ++(d ]. (32)

boundary curve is given by 4A2x+x = —1, and infalling
matter which always carries positive energy wiO always
move boundary inside this curve. Thus one must have
1+ 4&, ) 0, and hence t 0 SRsT & 0. Therefore
the entropy always increases on the apparent horizon for
these solutions (28), as well.

In the case of evaporating black holes described by
Eq. (28), the correct vacuum metric is that obtained
for the linear dilaton background coordinates, +%2:+ =
e+" +. Hence

1 + 1
or+ = —ln(Ax+), ur = —ln( —Ax )2

'
2

yielding t~ ——— ~, and

SRsT = —0 —O~~ + —ln (
—A x x ) . (34)

N 1

6 2

It is easily shown that the entropy (32) satisfies a sec-
ond law, on a global event horizon. The constraint equa-
tion (29),

8+0 = T++ —(—8+(d+ ) —8+M+,

yields

2 N
&~SRsT = ——T++ + (~+~+)6 (35)

where factor in brackets is positive definite. Integrating
as before yields

~+SRST = 8+SRST(x~)
+

+— du+ T+++ (&+~+)' (~')
6

where x&+ is the value of z+ at the end point of the black
hole evaporation. Now at x+ = x++ which lies on the
0 = O„boundary, one has 8+0 = 0 by the RST bound-
ary condition (24), and so the sign of 8+SRsT(x&) is
determined entirely by 0+~+ at that point. Assuming
that B~u+(x&) & 0, one has that SRsT can only increase
along the global horizon. This condition certainly holds
for the evaporating black holes where Eq. (33) applies.

The analysis of the evolution of the entropy on an ap-
parent hor.'zon is more complicated because in general it
is diKcult to determine the 1ocation of apparent horizon.
Here the discussion will focus on the solutions given in
Eq. (28) for which the entropy is given in Eq. (34). The
apparent horizon is delned by 8+0 = 0 which yields

1
A 4/2 + $2 +

The tangent to the horizon is t 0 = 0+ + &
~+0

0+ + (2p +)g pg T++ 0 Then1

N — ( 1
D~SRsT = —x T++ 1—

6 ( 4A2x+x —
)

+ 1+4x+ ( 4A2x+z —
i

All the terms above are positive definite, except pos-
sibly the very last factor. Now the vacuum 0 = 0„

V. DISCUSSION
In this paper, the black hole entropy for the semiclass-

cal action for RST model was derived using the tech-
niques developed by Maid. Despite the nonlocal form
of the semiclassical action, the Noether charge technique
can be extended to derive the entropy. However, the
result is itself nonlocal, of course. These semiclassical
contributions account for the entropy in the Hawking ra-
diation generated by black hole. I expect that this cal-
culation producing black hole entropy contributions for
nonlocal terms in the effective action will extend to higher
dimensional theories as well. To satisfy this conjecture in
general, one must extend the analysis of Ref. [26] to guar-
antee that the Noether current can always be written in
terms of an exact differential form even for the nonlocal
terms. Such entropy contributions will be important for
theories including massless fields (e.g. , photons, neutri-
nos, gravitons. ), where the semiclassical effective action
must have nonlocal terms to describe Hawking radiation.
A feature of the calculation which may be particular to
two dimensions is that the entropy reduces to a mani-
festly local expression evaluated at the horizon with an
appropriate choice of gauge.

It is not suprising that a second law holds for the en-

tropy in the classical CGHS model. In terms of the four-
dimensional black hole, this entropy (9) corresponds to
the horizon area. Hawking's area theorem [21] holds in
the four-dimensional theory, and so ensures that the en-

tropy will never decrease on the global event horizon, un-

der the ass»mption that cosmic censorship holds. In the
two-dixnensional model, no cosmic censorship assumption
is needed since the general solution (26) is known, or
rather from the general solution one knows that cosmic
censorship is valid for this theory. One should note that
the two-dimensional solutions only correspond to a subset
of the possible solutions in the four-dimensional theory.

In the semiclassical RST model, the fact that a second
law holds confirms the validity of the interpretation of
the Noether potential (20) as an entropy. It may seem
unusual that the classical entropy also increases in the
semiclassical theory, at least for the eternal black holes.
This eEect is due to the therxnal equilibrium between
the black hole and the heat bath. Even though the en-

tropy (27) accounts for the entropy in the radiation, uo
new entropy is being generated because of the equilib-
rium condition. The latter is clear from the fact that
on the apparent horizon, the entropy only changes when
matter crosses the horizon into the black hole. One may
expect that in this case the entropy in the radiation is
infinite, and so that the semiclassical entropy (27) should
diverge, which is clearly not the case. This apparent dis-

crepancy occurs because this divergence would simply be
a constant common to all (eternal) black holes, and hence
would not affect the variations in the first law (6). In the
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Noether charge method, which integrates these variations
to determine S, this divergence would be an integration
constant, which is naturally omitted. This fortunate cir-
cumstance relies on the fact that the black hole tempera-
ture is independent of the mass in these two-dimensional
models.

tn the case of evaporating black holes, the production
of entropy in the Hawking radiation is crucial to ensure
that a second law holds for the total entropy, even when
the classical entropy decreases. Care must be taken to
account for the proper quant~~m vacuum to evaluate the
entropy (20) correctly. It is interesting that the vacuum
stress-energy t+ has two contributions (31), one positive
definite and the other of indefinite sign. In establish-
ing the second law, it is precisely the latter that is ab-
sorbed in the entropy leaving a positive definite "effec-
tive" stress-energy in Eq. (35). It is important to em-
phasize that the positivity of the stress-energy is always
crucial in establishing the second law in all of the cases
considered. This positivity provides some insight as to
why one can expect a second law to apply for the semi-
classical results. In any theory if the stress-energy satis-
fies a null energy condition, the second law follows imme-
diately kom the first law, at least for the special case of
quasistationary processes [22]. Of course, the conclusions
here apply beyond quasistationary situations.

One might refer to any of the above entropy increase
theorems as an intrinsic second law, in that they refer
to the increase of the black hole entropy, alone. Such a
result is distinct kom a generalized second law, which
would require that the sum of the black hole entropy and
that of the external matter interacting with the black
hole always increases [ll]. One might suppose that an
intrinsic version of the second law will be a prerequisite
for the generalized second law to hold. There exist ar-
guments in favor of the generalized second law [34], but
the results are less conclusive since they only apply to
quasistationary processes.

Reference [10] proves the generalized second law in the
RST model for a very broad class of processes. This
analysis relies on finding a microphysical interpretation
for the semiclassical corrections to the black hole entropy.
In their derivation, S~ arises as entanglement entropy
&om short-range correlations between Buctuations near
the horizon. This point of view suggests that similar
terms could always be formulated as a local expression,
despite apparent nonlocal appearances, even in higher-
dimensional theories.

However, the analysis of Ref. [10] also seems to point
out a shortcoming in the present approach. These au-
thors also find a further contribution which is required
to account properly for long-range correlations. Up
to an additive constant, this new term takes the form
bSL, = s ln~ ln( —4A z+x ) . This term is essential to
establish that the entropy increases for the generalized
second law in situations where a black hole accretes a
near critical lux of matter. One speculation on how ASL,
may arise in the present analysis is that it may be found
in a yet more careful examination of Eq. (30). The treat-
ment of boundary terms has been lax for the integration
by parts performed in this integral with conformal gauge.

One expects that these terms will be canceled by an inte-
gral of the boundary curvature, which should be included
on the left-hand side of Eq. (30). (Ultimately, the latter
is inherited kom the conformal anomaly, which includes a
surface term for manifolds with boundary. ) The 0 = 0„
boundary though plays a special role in these dilaton
gravity models [8,9, 32]. It may be that a consistent the-
ory requires a modified boundary action for this surface,
and that as a result the integration by parts in Eq. (30)
produces a residual boundary term, which represents the
extra long range entropy contribution. It is an apparent
drawback of Wald's tecb~ique that no contribution such
as LSL, arises directly. One may note that when LSL, is
added to the present black hole entropy, it still satisfies
an intrinsic second law.

Reference [10] also argues that the generalized second
law can always be violated in special situations if one
attempts to apply it to the global event horizon. Hence
they conclude that one should formulate the second law
on the apparent horizon instead. These violations only
occur on short time scales. On longer time scales (e.g. ,
the entropy differences between approximately stationary
phases in the evolution of a black hole), the global horizon
should serve as equally well as the apparent horizon in
a second law, since the two surfaces should be almost
the same. For the present two-dimensional models, the
intrinsic version of the second law applies to either type of
horizon. In higher dimensions, the second law is usually
discussed in the context of the global horizon, although
Ref. [29] has considered the laws of black hole mechanics
for apparent horizons.

A related question is how to account for the semiclas-
sical entropy after the black hole ceases to exist. At the
final point in the existence of the black hole, the black
hole entropy can be attributed entirely to the semiclassi-
cal contributions, which indicates it is entirely associated
with the Hawking radiation. Now certainly this radiation
does not disappear even after the black hole is completely
evaporated. Thus one may consider whether or not there
is a sensible way to consider the evolution of the entropy
after the black hole vanishes. A natural candidate is to
continue evaluating the total entropy (32) along the null

ray which extends the global horizon to future nuD infin-

ity. One finds quite generally that the entropy continues
to increase along this surface. The dominant contribu-
tion though rapidly becomes the classical "area" term as
the surface expands. Another natural surface to consider
would be the 0 = O„boundary. It would be interesting
to consider the evolution of the entropy expression (32)
along this surface, where the entire contribution would
be in the vacuum correction terms. These speculations
might also lead one to consider the behavior of the en-
tropy expression (32) along an arbitrary (outgoing) light-
like surface. Again under fairly general conditions, the
entropy is found to increase. This increase may be ex-
pected since in kee space such a surface is naturally ex-
panding, which would increase both the classical "area"
term as well as the semiclassical entanglement entropy.
What would make this result far more interesting is if a
version of the first law could also be devised on such an
arbitrary surface.
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