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We investigate the thermodynamical properties of black holes in (3+1)- and (2+1)-dimensional
Einstein gravity with a negative cosmological constant. In each case, the thermodynamic internal
energy is computed for a finite spatial region that contains the black hole. The temperature at the
boundary of this region is defined by differentiating the energy with respect to entropy, and is equal
to the product of the surface gravity (divided by 2s) and the Tolman redshift factor for temperature
in a stationary gravitational field. We also compute the thermodynamic surface pressure and, in
the case of the 2+1 black hole, show that the chemical potential conjugate to angular momentum
is equal to the proper angular velocity of the black hole with respect to observers who are at rest
in the stationary time slices. In 3+1 dimensions, a calculation of the heat capacity reveals the
existence of a thermodynamically stable black hole solution and a negative heat capacity instanton.
This result holds in the limit that the spatial boundary tends to infinity only if the cosmological
constant is negative; if the cosmological constant vanishes, the stable black hole solution is lost. In
2+1 dimensions, a calculation of the heat capacity reveals the existence of a thermodynamically
stable black hole solution, but no negative heat capacity instanton.

PACS number(s): 04.70.Dy, 04.20.Cv, 04.20.Fy, 04.60.Ks

I. INTRODUCTION

A variety of theoretical arguments iadicate that black
holes have thermodynamical properties. This thermal
character is expected to hold for all black holes, yet much
of the literature on black hole thermodynamics is re-
stricted to the case of spacetimes that are asymptotically
Bat in spacelike directions. Since asymptotic Hatness is
not always an appropriate theoretical idealization, and
is never satis6ed in reality, it is important to develop a
theoretical &amework for the description of black hole
thermodyaamics that is divorced &om the assumption of
asymptotic Batness of the spacetime. This is one of the
primary motivations behiad the formalism developed in
Refs. [1—8]. This approach to black hole thermodynainics
can be applied to gravitational and matter 6elds within
a bounded, finite spatial regioa, so the asymptotic be-
havior of the gravitational 6eld becomes irrelevant. In
this way, it is possible to treat black hole spacetimes
that are asymptotically curved and black holes in spa-
tially closed universes. Even for black hole spacetimes
that are asymptotically Bat, there are several advantages
to be gained by working in a spatially finite region [8].
For example, with the temperature 6xed at infinity, the
heat capacity for a Schwarzschild black hole is negative
[9] and the formal expression for the partition function is
not logically consistent [10]. On the other hand, with the
temperature fixed at a finite spatial boundary, the heat
capacity is positive aad there is ao inconsistency in the
black hole partition function [1].

In this paper we employ spatially finite bouudary con-
ditions to investigate the thermodyaamical properties of

black holes in (3+1)- and (2+1)-dimensional Einstein
gravity with a negative cosmological constant. In these
cases, the spacetimes are not asymptotically Hat but,
rather, they are asymptotically anti —de Sitter. Previous
works on the thermodynamics of asymptotically anti —de
Sitter black holes lack a firm conceptual foundation, be-
cause the temperature is identified with it~/(2z) where
KH is the surface gravity of the black hole and the ther-
modynamic internal energy is identified with the con-
served mass at infinity [11,12]. However, the surface
gravity and the mass at infinity each depead ou. the nor-
malization of a timelike Killiag vector field, and in the
absence of an asymptotically fiat region there is no phys-
ically preferred choice. As we will show, +Iti(2n) equals
the physical temperature of the black hole as measured
by an observer who is situated not at infinity but at a spa-
tial location where the (normalization-dependent) gravi-
tational redshift factor equals ~mity. For asymptotically
anti —de Sitter spacetimes, the physical temperature of a
black hole or any hot object will redshift to zero at spatial
infinity [13].

We begin in Sec. II with a review of Ref. [7]. This
includes a de6nition of the total energy E of the gravi-
tational 6eld within a region of space with boundary H.
In addition, conserved charges are defined whenever the
history of the boundary B admits a Killing vector field.
The charge associated with a rotational symmetry is the
angular momentum J, and the charge associated with a
timelike Killing vector field de6nes a conserved mass M.,

The energy E and the mass M are not the same —we
discuss the distinction between thexa. We also show that
the conserved charges as defiaed here, in the limit that
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the boundary B is pushed to spatial infinity, agree with
the Arnowitt-Deser-Misner (ADM) charges [14] that are
de6ned through an analysis of the surface terms in the
gravitational Hamiltonian [15]. A spatial stress tenor s s

for the boundary B is also defined.
There is some &eedom of choice in the de6nitions of E,

M, and J, which is reHected in the presence of two ar-
bitrary functions of the boundary geometry. This choice
determines the "zero-point configuration, " that is, the
gravitational canonical data for which E, M, and J van-
ish. The two arbitrary functions can be defined so that
E, M, and J vanish for a stationary slice of anti —de Sit-
ter spacetime, or for a stationary slice of Bat spacetime.
(For the 2+1 case, the zero point configuration can be
chosen as a stationary slice of the zero-mass black hole
solution. )

In Sec. III we compute the energy and spatial stress
for the region of a static slice of Schwarzschild —anti —de
Sitter spacetime within a spherical boundary B. We then
identify E as the thermodynamic internal energy and the
entropy 8 as one-quarter the area of the black hole event
horizon. The temperature T at the boundary B is de-
fined by BE/BS, and is equal to the product of e~/(2z')
and the redshift factor [13] for temperature in a station-
ary gravitational field. In particular, the temperature
depends on the location of the boundary B, and cor-
rectly redshifts to zero in the limit B ~ oo. Moreover,
the temperature is independent of the choice of a zero
point configuration for the energy. We also find that the
surface pressure 'P, as defined by the derivative of E with
respect to the area of the boundary B, is given by the
trace of the spatial stress tensor 8 ~.

Our results show that there are no Schwarzschild —anti-
de Sitter black hole solutions with temperature at B less
than some critical value Tp, and there are two possible
black hole solutions with a given temperature T greater
than Ts. Moreover, for T ) Ts, the smaller of the two
black holes has a negative heat capacity and the larger of
the two black holes has a positive heat capacity. These
results hold in the limit of a vanishing cosmological con-
stant, and are interpreted as follows [1,11]. For low tem-
peratures, the ed~i&abri»m states are described semiclas-
sically by thermal gravitons propagating on fiat or anti-
de Sitter backgrounds. For high temperatures, the equi-
libri»m states are classically approximated by the larger
black hole with positive heat capacity. The Euclidean
section of the smaller black hole is an instanton that
dominates the semiclassical evaluation of the rate of nu-
cleation of black holes [16] from fiat or anti —de Sitter
space.

We analyze solutions in the lixnit in which the bound-
ary goes to in6nity and the temperature is adjusted so
that the black hole horizon size remains fixed. The results
depend crucially on whether the cosmological constant is
strictly negative or zero. If the cosmological constant is
negative, then our results are qualitatively unchanged in
this limit. In particular, solutions include both a large,
thermodynamically stable black hole and a small black
hole instanton. If the cosmological constant is zero, the
large black hole is lost in the limit and only the small
black hole instanton solution rexnains. This shows that

a black hole in infinite space can be thermodynamically
stable if the cosmological constant is negative, but not if
the cosmological constant is zero [11].

In Sec. III we also compute the conserved mass M for
the Schwarzschild —anti —de Sitter black hole. (The angu-
lar moment»m vanishes. ) With an appropriate choice of
zero point configuration, and in the limit B m oo, M
is equal to the black hole mass parameter and BM/M
is equal to e~/(2'). As mentioned above, e~/(2vr) is
not the physical temperature at in6nity. However, in the
limit that the boundary tends to infinity and the black
hole horizon size remains flxed, BM/B(e~/2z ) yields the
correct expression for the heat capacity.

In Sec. IV we analyze the thermodynamical prop-
erties of the stationary black hole solution to (2+1)-
dimensional Einstein gravity with a negative cosmologi-
cal constant [12,17]. In this case, there are no black hole
solutions in the limit that the cosmological constant van-
ishes. First we compute the energy, spatial stress, mass,
and angular moment»m for a stationary slice of the 2+1
black hole spacetime within an axially symmetric bound-
ary. The entropy 8 is twice the "area" (circ»~ference) of
the event horizon, and we again identify E as the thermo-
dynamic internal energy. Just as for the Schwarzschild-
anti —de Sitter black hole in 3+1 dimensions, the temper-
ature at the boundary B is the product of tc~/(2z') with
the redshift factor, and the surface pressure is given by
the trace of the spatial stress. The chemical potential
conjugate to angular momentum is defined by BE/BJ,
and is shown to be equal to the proper angular velocity
of the black hole with respect to the Eulerian observers
who are at rest in the stationary time slices.

Our results show that there is a unique black hole solu-
tion for each temperature T at the boundary B. Ass»m-
ing the temperature is positive, then the heat capacity
is positive and the black hole is thermodynamically sta-
ble. Unlike the case in 3+1 dimensions, there is no neg-
ative heat capacity instanton, and therefore no obvious
mechanisxn to allow for the nucleation of black holes &om
anti —de Sitter space. These conclusions are qualitatively
unchanged in the limit in which B + oo and T —+ 0 in
such a way that the black hole size remains 6xed.

For both the (3+1)-dimensional Schwarzschild —anti-de
Sitter black hole and the (2+1)-dimensional black hole,
we derive the temperature by identifying E with the in-
ternal energy and a88uming the appropriate expression
for entropy as a function of horizon size. In order to
actually derive the entropy, it is necessary to perform a
quant»~ (or at least semiclassical) calculation. One ap-
proach, which is based on path integral tech»iques [9,18],
is to identify the entropy in the classical approximation
with the "microcanonical action" for the Euclideanized
(or complexified) black hole spacetime [8]. Even without
the ass»option of the appropriate form for the entropy,
the calculations in this paper can be interpreted in terms
of black hole mechanics.

II. REVIEW

We consider a spacetixne manifold M of dimension D
which is topologically the product of a spacelike hyper-
surface and a real line interval, Z x I. The boundary of
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Z is denoted i9Z = B. The spacetime metric is g~„with
the associated curvature tensor R„„~ and derivative op-
erator V„. The boundary of M, 8~, consists of initial
and 6nal spacelike hypersurfaces t' and t", respectively,
and a timelike hypersurface 7 = Bx I joining these. The

induced metric on the spacelike hypersurfaces t' and t" is
denoted by h;~, and the induced metric on 7 is denoted

1by
The gravitational action appropriate for 6xation of the

metric on the boundary BM is [19]

gll

S' = — dDzg g(R——2A)+ — d '*v hK —— d '
Q—pO.

2K K K
(2.1)

Here, ~ is a coupling constant and A is an optional cosmo-
logical constant. For simplicity we have omitted matter

gll
contributions to the action. The symbol f, d+ iz de-
notes an integral over the boundary element t" minus an
integral over the boundary element t'. The function K
is the trace of the extrinsic curvature K;~ for the bound-

[

ary elements t' and t", de6ned with respect to the future
pointing unit normal. I ikewise, 0 is the trace of the ex-
trinsic curvature 0;~ of the boundary element 7, defined
with respect to the outward pointing unit normal.

Under variations of the metric, the action (2.1) varies
according to

gtl

bS = (terms that vanish when the equations of motion hold) + d z P'~bh;~ + d z m'~by;z .
gl 7

(2.2)

The coefFicient of bh;z in the boundary terms at t' and
t" is, by de6nition, the gravitational momentum

p;~ dz'dz~ = Ndt + 0—s(dz + V dt)(dz + V dt),
(2 5)

P'~ = ~i(Kh" —K'~) .
2K

(2.3) where N is the lapse function and V is the shift vector.
The corresponding variation of p;z is [7]

Likewise, the coefficient of bp;~ in the boundary term at
ls

vr" = ——g—p(op" —8") .
2K

(2.4)

In addition to the terms displayed in Eq. (2.2), bSi in-
cludes an integral over the corner t" fl 7 (and an integral
over t' 8 7 ) whose integrand is proportional to the varia-
tion of the "angle" u n between the unit normal u to t"
(or t') and the unit normal n to 7 [20,21]. We will not
need these terms in the analysis that follows.

The action S yields the classical equations of motion
when the induced metric on BM is held fixed in the vari-
ational principle. In general, the functional S = 8 —S,
where Ss is a functional of the metric on BM, also yields
the classical equations of motion when the metric is 6xed
on BM, since in that case bS vanishes. For simplicity,
we define So to be a functional of p;~ only. The varia-
tion bS differs from bSi of Eq. (2.2) only in that n'~ is
replaced by ~'~ —(bSO/bp;~ ).

Now foliate the boundary element 7 into (D —2)-
dimensional hypersurfaces B with induced (D —2)-
metrics 0 s. The (D —1)-metric p;z can be written ac-
cording to the familiar ADM decomposition [14] as

bp;~ = ( 2u(u~/N—)bN+ ( 20 (,u~)—/N)bV'
+(0.(;~,') )boos, (2.6)

where u; is the unit normal to the slices B and 0' = b'

projects covariant tensors from 7 to the slices B With.
this result, the contribution to the variation of 8 &om
the boundary element 7 becomes

where the coeKcients of the varied 6elds are de6ned by

(2.8)

~ bs'

N~o ' ' N~obo s

(2.9)

(2.10)

bS(~ = d 'z[x'~ —(bS /bp;, )]by,,r
dD 'z~o[ sbN +j bV—+ (N/2) s 'bo s],r

(2.7)

We use latin letters i, j, k, . . . , as indices both for tensors on
7 and for tensors on a generic hypersurface Z. The two uses
of such indices can be distinguished by the context in which
they occur.

The leading terms in Eqs. (2.8)—(2.10) can be rewritten
in terms of the extrinsic curvature k g that is de6ned by
parallel transporting the unit normal n to 7 across a
(D —2)-dimensional slice B. Thus, k s is the extrinsic
curvature of 8 considered as the boundary B = BZ of a
spacelike hypersurface Z whose unit normal u is orthog-
onal to n. Also let P'~ denote the gravitational momen-
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(2.11)

~ 2
~A;j; = a;,p' nr, —(jp);,

h

~b ~ abs s = —[k + (n„a" —k)cr ] —(sp)

(2.12)

(2.i3)

t»m for the hypersurfaces Z that are "orthogonal" to 7,
and let a„=u"V„u„denote the acceleration of the»~it
normal u„ for this family of hypersurfaces. The resulting
expressions are [7]

J = d z~o j t,
" .

B
(2.19)

If there is no matter stress-energy in the neighborhood of
g, Qg is conserved in the sense that Qg is independent of
the particular surface B (within f) that is chosen for its
evaluation [7]. This property is not shared by the energy
E. If the system contains a rotational symmetry given
by a Killing vector field g on 7, the conserved charge is
the angular moment»m J = Qq. If the (D —2)-surface
B is chosen to contain the orbits of (', then the angular
moment»m can be expressed as

In these equations we have expressed the terms propor-
tional to the functional derivatives of S as ep, (jp);, and
(sp) . Also note that the indices in Eq. (2.12) refer
to the hypersurface Z. Thus, j; = j 0;. where 0' = h'

projects tensors kom Z to B, and cr;~ = 0', o~~.
We will ass»me that So is a linear functional of the

lapse N and shift V, so that ep and (jp); are functionals
of the two-metric cr s only [7]. This condition implies
that S is functionally homogeneous of degree 1 in the
lapse and shift:

SSO SSP
S = d z(N +Vr 4 6N bV

(2.i4)

By varying this expression with respect to N, V, and
0 g, wefind

D—i N cr SdD 'z (sp) sbcr
g,

7

= f d~ 'z[ Nb(~o—ep)+ V b(~0(jp)o)] . (2.15)
J7.

This relationship is useful for the determination of (ap)
when ep and (jp) are directly given as functions of cr s
and its derivatives. For later use, we note that the varia-
tions in 0 s can be split into variations in the determinant
and variations that preserve the determinant

Z = d~ 'z~~e . -
B

(2.17)

We also refer to j; as the moment»m surface density and
s as the spatial stress [7].

When there is a Killing vector field g on the boundary
7, an associated conserved charge is defined by [7]

Qg = d~ 2z~cr(eu'+ j')(; .
B

(2.is)

bo s = —
~ ~

b~cr+ (~is) ~ h
~ ~, (2.16)

dg 0&

where d = D —2 is the dimension of B.
From its definition through Eq. (2.7), —~cr e is equal

to the time rate of change of the action, where changes in
time are controlled by the lapse function N on 7 . Thus,
e is identified as an energy surface density for the system
and the total quasilocal energy is defined by integration
over a (D —2)-surface B [7]:

This is the integral over B of the P component of the
moment»m surface density j;, where (' = (8/BP)' .

If the Killing vector field 4s is timelike, then the neg-
ative of the corresponding charge (2.18) defines a con-
served mass for the system, M = —Qg. If the Killing
vector field is also surface forming, then the mass can
be evaluated on a surface B whose unit normal is pro-
portional to f. In this case the conserved mass is given
by

M = d z~oNe,
B

(2.2O)

where N is the lapse function defined by g = Nu. If, in
addition, Is restricted to B has»»it norm, N = 1, then
the conserved mass M coincides with the energy (2.17)
of the hypersurface Z whose boundary is B. However,
if g does not have unit norm at B, then the mass M
will cMer &om the energy E. Moreover, the energy E
evaluated on other slices of 7 will not, in general, equal
the conserved mass M. These distinctions between mass
and energy are especially important for spacetimes that
are asymptotically anti —de Sitter, since in that case the
magnitude of the timelike Killing vector field diverges as
it approaches infinity. Thus, the timelike Killing vector
does not approach the unit normal to the (asymptoti-
cally) stationary time slices at spatial infinity, and the
mass M and energy E do not coincide.

For asymptotically Hat or asymptotically anti —de Sit-
ter spacetimes, the ADM charges at infinity, as defined
by an analysis of the surface terms in the Hamiltonian
[14,15,22,23], coincide with (the negative of) the con-
served charges (2.18). In order to verify this connection,
note that the Hamiltonian derived from the action (2.1)
is [7]

H = dD 'x NR+V'R;

+ d zJo.(Ne —V'j;) .
B

(2.2i)

When the constraints 'R = 0 = Q; hold, the first integral
in the Hamiltonian vanishes. Thus the energy (2.17) is
the value of the Hami&tonian with N = 1 and V' = 0 on
the boundary B; that is, the value of the Hamiltonian
that generates a unit time translation on the bound-
ary in the direction orthogonal to the hypersurface Z.
Now push the boundary B to infinity along an asymp-
totically stationary time slice Z. The ADM charges are
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defined by the value of the Hamiltonian that generates an
evolution that asymptotically coincides with an asymp-
totic Killing vector g. Therefore each ADM charge is
given by the boundary integral in the Hamiltonian (2.21),
where 1V and V' are chosen such that (asymptotically)
1Vu + V'(B/Bx') = g. On the other hand, setting g
equal to 1Vu+ V'(B/Bx') in Eq. (2.18), we see that the
conserved charge associated with the asymptotic Killing
vector g is

in the energy surface density is a function of R, and the
term (jp) in the moment»~ surface density is chosen to
be zero. If variations in the metric 0 g are restricted to
variations in the radius R, then Eqs. (2.15) and (2.16)
imply

d x—o q(sp) h~o = — d x1V 8'i/o. .f B(v «p)
2 B o'

(3.3)

Qg = — d x~o(¹—Vj) .
B

(2.22) It follows that

This is the negative of the boundary term in the Hamil-
tonian H. Therefore, if B is taken to infinity, Qg is the
negative of the ADM charge associated with g. Specifi-
cally, the ADM mass and angular momentum agree with
the mass M and angular momentum J of Eqs. (2.20)
and (2.19), in the limit that B is taken to infinity.

It should be recognized that both the conserved
charges (2.18) and the ADM charges depend on the nor-
malization of the (asymptotic) Killing vector field. Thus,
the charge associated with the Killing vector g, where c
is a constant, is equal to the product of c and the charge
associated with (. A second and more subtle ainbiguity
in the charges arises because of the presence of the terms
sp and (jp); in the energy surface density and momen-
tum surface density. These terms depend on the bound-
ary metric o p. In the standard ADM analysis at infin-

ity, these terms are electively chosen such that the mass
and angular momentum vanish for a fiat time slice of flat
Minkowski spacetime if A = 0, or for a static time slice of
anti —de Sitter spacetime if A ( 0. (Alternatively, in 2+1
dimensions with A & 0, mass and angular momentum
are conveniently chosen to vanish for a static time slice
of the zero mass black hole solution. ) In the asymptot-
ically Bat case, this choice of a zero point configuration
for the mass and angular momentum is typically built
into the analysis through the use of coordinate deriva-
tives acting on the metric tensor components, where the
coordinate system is asymptotically Cartesian.

III. SCHWARZSCHILD —ANTI —DE SITTER
SPACETIMES

where

1V'(r) = f'(r) = (1 - 2m/r + r'/I') . (3.2)

Let E be the interior of a t =const slice with two-

boundary B specified by r = R =const. The term eo

In this section we will consider the Schwarzschild —anti-
de Sitter black hole solutions to (3+1)-dimensional Ein-
stein gravity with a negative cosmological constant A.
We will adopt units for which r = 8n (thus G = 1), and
also set A = —3/l . The metric written in static spherical
coordinates is

ds = 1V (r)dt + f —(r)dr + r (dH + sin

Hdqrs),

(3.1)

B(R'sp)'
B(R2)

(3.4)

since N is constant on 7 .
A straightforward calculation of the trace of the ex-

trinsic curvature k s for the spherical boundary r = R in
Schwarzschild —anti —de Sitter spacetime yields

k = — = ——gl —2m/R+ R'/12 .2f(R) 2

R R

The acceleration of the unit normal u„satisfies

(3.5)

f (R)1V'(R) m/R + R2/l2

1V (R) Rgl —2m/R + R2/P

where the prime indicates a radial derivative. Prom these
results, the energy surface density (2.11) is given by

/1 —2m/R+ R2/)2 —sp(R)
4vrR

(3 7)

and the total energy (2.17) is

E = R/1 —2m/—R+ R2/l2 —4nRsp(R) . . (3.8)

Also, the trace of the spatial stress (2.13) is given by

1 i 1 — /R+2R /l ~ 1B(R )

1 —2m/R+ R /P) R B(R)

(3.9)

where Eq. (3.4) has been used. For the boundary r = R
of the t =const slices of Schwarzschild —anti —de Sitter, the
moment»m surface density (2.12) vanishes.

If we choose

op(R) = — Ql + R2/l2,1
4mR

{3.10)

then the energy surface density e and the energy E van-

ish for anti —de Sitter spacetime (m = 0, / finite). Also
note that with this choice, as R + oo the energy van-

ishes: E ml/R -+ 0. Another natural choice is
p= —1/(4'z'R). In that case s and E vanish for flat

spacetime (m = 0, l -+ oo), and E —R /l m oo as
B ~ oo. The simplest and most convenient choice for eo
is s = 0. We will leave ep(R) unspecified in the analysis
that follows.

The entropy 8 of any stationary black hole in (3+1)-
dimensional Einstein gravity is one-quarter the area of
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its event horizon. (This includes black holes that are
distorted by stationary matter 6elds relative to the stan-
dard Kerr or Kerr —anti —de Sitter family. ) This conclu-
sion was flrst reached by Bekenstein [24] apart from an
overall numerical factor, and is derived as a general re-
sult in Ref. [8]. Moreover, it is now well recognized [25]
that black hole entropy depends only on the geometry of
the horizon (in the classical approxiination). This sug-
gests that the expression for black hole entropy is inde-
pendent of the asymptotic behavior of the gravitational
6eld, or the presence of external matter 6elds. Thus,
for the Schwarzschild —anti —de Sitter black hole (3.1), the
entropy is 8 = z (re), where r~ satisfies

N (rz) = 1 —2m/rz + (rH) /l = 0 . (3.11)

For a given m, there is a unique real solution for the
event horizon r~ Th.e expressions (3.5)—(3.9) are real
and physically meaningful only for r~ & R.

Now identify the energy (3.8) as the thermodynamic
internal energy for the Schwarzschild —anti —de Sitter black
hole spacetime within the boundary R; view E as a func-
tion of the entropy 8 = m(r~)2 and the boundary area
4+R2. The corresponding temperature is

~~ = —z(V"y")(V„g„)= (B;N)h'(8,N).
(evaluated on the horizon); (3.13)

with y being a Killing vector normal to the horizon. The
first factor in Eq. (3.12) is the inverse of the lapse func-

tion 1/N = g—gtt evaluated at R, and is the Tolman
redshift factor for temperature in a stationary gravita-
tional Beld [13]. Therefore, the temperature at R is the
product of tc~/(2z') and the redshift factor:

1'(")—2.N(R)
(3.14)

For a given size black hole, the temperature T redshifts
to zero as R ~ oo (assuming the cosmological constant is
nonzero). Note that although the surface gravity (3.13)
depends on the scale of the coordinate t that labels the
stationary time slices, the temperature (3.14) does not.
Also observe that the temperature is independent of the
choice of function eo.

From the energy E we can also define a thermodynamic
surface pressure by

( BE
g B(4z.Rz) &

(3.15)
1 ~ 1 —m/R+ 2R /l ~ B(Rzso)

8~R
~ gi 2m/R+ R2/-l2

~
B(R')

(BE) 1 (1+3(r~)2/l2)
&B8) Ql —2m/R+ R /l2 ( 4mra )

(3.12)

The second factor in this expression is just 1/(2x) times
the surface gravity eH of the black hole, where

This is precisely one half of the trace of the spatial stress
tensor (3.9):

1 abP = 20'g~s (3.18)

The surface pressure does depend on the function zo.
The de6nitions for temperature and surface pressure are
captured in the first law of thermodynamics, namely,
dE = T d8 —'Pd(4vrRz).

The heat capacity at constant surface area 4mR2 is
defined by

&R =—
( ~ I

f BEi
IBTj (3.i7)

where the energy E is expressed as a function of T and
R. The energy (3.8) and temperature (3.12) can be
expressed as functions of r~ and R by eliminating m
through Eq. (3.11). Then the heat capacity can be writ-
ten as

(BEI t'BTI
EBrH l EBrH )

(3.18)

BT/Bras is equal to a positive function of r~ times a Sfth
order polynomial in rH. This polynomial has precisely one
positive root, because the constant term is negative and the
signs of the coefBcients of all higher powers of r~ are posi-
tive. The single root lies in the range 0 & r~ & R since the
polynomial is positive at rH = B.

It is straightforward to show that E is a monotonically in-
creasing function of r~ for 0 ( r~ ( R, so that BE/Br'
is strictly positive. On the other hand, the temperature T
is a positive function of r~ with T ~ oo both as r~ -+ 0
and as r~ -+ R. It can be shown that in the range
0 & r~ & R, T has a single extremum2 which is a min-
imum To. Therefore, Eq. (3.12) has no solution for re
when T & To, and has two solutions for r~ when T ) To.
Physically, this means that there are no Schwarzschild-
anti —de Sitter black hole solutions with temperature at
r = Riess than TO. If the temperature at r = Ris

fixed

t
a value less than To then the system will be dominated by
thermal radiation in an anti —de Sitter background. If the
temperature at r = R is fixed to a value greater than To,
there are two black hole solutions, a small black hole with
BT/Br~ ( 0 and a large black hole with BT/Br~ ) 0.
Since the sign of the heat capacity (3.18) coincides with
the sign of BT/Br~, only the larger of the two black holes
is thermodynamically stable.

The preceding analysis is qualitatively unchanged in
the limit of a vanishing cosmological constant, A = 0
(l ~ oo). Previous work [1,16] on the A = 0 case shows
that the Euclidean section of the small black hole with
C~ & 0 is an instanton that dominates the semiclassical
evaluation of the rate of nucleation of black holes in a
cavity of size R and temperature T. The large black hole
with C~ & 0 is the end result of the nucleation process.

Consider the heat capacity with the limit R -+ oo
taken in such a way that the black hole size rH remains
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, (1+3rH2/l'i
»m &a = —2zrH

~R-woo (1 —3rH l )
(3.19)

Now, for large R, the minimum To of the function T(r~)
occurs at r~ = l/~3. If l is finite, then Eq. (3.19)
confirms that for the large black hole (r~ ) l/~3) the
heat capacity is positive, while for the small black hole

(rH ( l/~3) the heat capacity is negative. However, if
the cosmological constant vanishes (l ~ oo), then the
minimum To becomes infinite. In this case the hori-
zon size for the large black hole must become infinite
as R -+ oo. Therefore it is not possible to take the limit
R ~ oo while keeping the large black hole size fixed.
When the cosmological constant vanishes, only the small
black hole instanton can survive the R + oo limit. Corre-
spondingly, for l ~ oo the heat capacity (3.19) is strictly
negative.

The above results indicate that a black hole in infi-

nite space (R + oo) can be in thermal equilibrium if the
cosmological constant is negative, but not if the cosmo-
logical constant is zero. The same conclusion has been
reached by Hawking and Page [11].

Finally, consider the conserved charges associated with
the Schwarzschild —anti —de Sitter black hole. Since the
momentum surface density vanishes, there is no angu-
lar momentum (2.19) as expected. The conserved mass

(2.20) differs from the energy E by a factor of the lapse
function at r = R:

M = N(R)E
= —R(1 —2m/R + R'/l')

4n'R gl ——2m/R+ R&/l2 e'0(R) . (3.20)

We can view M as a function of the entropy 8 = m (r~)
and the boundary size R by expressing m in terms of rH
through Eq. (3.11). Then the mass varies with entropy
according to the relationship

BM BE BN ~H E BN
B8 BS BcS 2x 2xrH Br~

=N +E

fixed. If the cosmological constant is negative (l is finite),
then the temperature T will go to zero in this limit; if
the cosmological constant is zero (l + oo), then the tem-
perature will go to I/(4vrrH). In general, the result for
the heat capacity is

( BM ) (B(~~/2vr) )
lim Cg = lim

R-+oo Rmoo (Br' ) ( BrH )
( Bm

),B(~Jr/2m) )
(3.23)

Again, the term E(BN/Br') can be dropped if so is
chosen as in Eq. (3.10). Whether or not the term
T(BN/Br') = 2z'T r~—/R can be dropped as R ~ oo
depends on how the limit is taken. If r~ is held fixed
in the limit R ~ oo, then T(BN/Br~) indeed vanishes
(for both l finite and l ~ oo). Thus, with this defini-
tion for the limit, the expression Bm/B(mlr/2m) correctly
yields the heat capacity (3.19). On the other hand, if the
temperature T is held fixed as R -+ ao, then T(BN//Br~)
vanishes only for the small black hole. For the large black
hole, T(BN/Br') does not vanish because rH -+ oo as
RM 00.

IV. (2+1)-DIMENSIONAL BLACK HOLE

We now consider (2+1)-dimensional Einstein gravity
with a negative cosmological constant A. We will adopt
units in which K = z and set A = I/l2. The ax—ially
symmetric black hole solution obtained by Banados et al.
[12,17] written in stationary coordinates is

ds' = N'(r)dt' +—f '(r)dr + r'[V~(r) td+ d4]',
(4.1)

w~ere

depend on the choice of scale for the time coordinate t.
Likewise, the location at which N(R) = 1 depends on
the choice of time coordinate.

The heat capacity (3.17) can be expressed as

(BE)t-"R=/
BT /(BT)

(B(NE) BN ) (B(NT) BN i
BrH BrH ) k BrH BrH )

(3.22)

If E(BN/Br~) and T(BN/Br~) vanish as R -+ oo, then
in this limit the heat capacity becomes

where the result (3.12) and (3.14) has been used. Note
that BN/Br~ = —2z Tr~/R. If E(BN/Br~) vanishes
as R M oo, then in this limit BM/M is the product
of 1/(2z) and the surface gravity e~ This is indeed. the
case if we choose eo as in Eq. (3.10), since then E + 0 as
R ~ oo. Moreover, with this choice for eo, the conserved
mass reduces to M = m in the R + oo limit. However,
it is not correct to interpret M = m as the thermody-
namic internal energy and tc~/(2~) as the temperature
at infinity —the physical temperature (3.14) redshifts to
zero at infinity. In fact, i(;~/(27r) is the temperature at
the spatial location where the lapse function N(R) (the
inverse of the redshift factor) equals unity. Recall that
the conserved mass (2.20) and the surface gravity (3.13)

2

N (r) = f (r) = —m+ —
) +

~

—
~

(,2r )
(4.2a)

V~( )=r- '
2r2 (4.2b)

An analysis of the Hamiltonian for (2+1) gravity shows
that m and j are the ADM mass and angular momentum
at infinity [17,23]. The mass parameter m also can be ex-
pressed in terms of the initial energy density of a disk of
collapsing dust [26] in anti —de Sitter space or alterna-
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tively in terms of Casimir invariants in a gauge-theoretic
formulation (2+1)-dimensional general relativity [27]. As
with the Kerr solution, the lapse function N(r) for the
(2+1)-black hole vanishes for two values of r, namely, r+
and r, where

ml2 l
(r~)' = + -gm2lz P—.

2 2
(4.3)

The larger of these, r+, is specified as the black hole
horizon. Such a horizon exists only for m ) 0 and

~ j~ &
ml. (When

~j~ = ml, r+. ——r .)
Let Z be the interior of a t =const slice with boundary

B specified by r = R =const. The term eo in the energy
surface density is a function of R, and the term (jp);
in the momentum surface density is chosen to be zero.
Equations (2.15) and (2.16) imply

8(Rsp)-'(") =-
BR

(4.4)

since variations in the metric 0 g consist of variations in
the surface "area" 2mR.

Straightforward calculations yield

k = — = ——g—m+ R'/lz+ j2/(4R2)f(R)
R R (4.5)

for the trace of the extrinsic curvature of B and, as in
Eq. (3.6),

f(R)N'(R) Rz/l2 —jz/(4R2)
N(R) Rg m+ R2/l2 —+ jz/(4R&)

(4.6)

for the acceleration at Bof the unit normal u„ to the sta-
tionary time slices. From these results the energy surface
density (2.11) is given by

1 g—m+ R /l +j /(4R ) —sp(R), (4.7)xR

(4.io)

and the total angular momentum (2.19) associated with
the Killing vector field 8/8$ is equal to the parameter j:

and the total energy (2.17) is

E = —2g—m + Rz/lz + jz/(4Rz) —2m R sp(R) . (4.8)

The trace of the spatial stress (2.13) is

1 ~ R /l —
Z /(4R ) l 8(Rsp)

mR~ g—m+ 'Rz/l + jz/(4R ))
(4 9)

where Eq. (4.4) has been used.
For the (2+1) black hole, the only nonzero compo-

nent of the gravitational momentum (2.3) is P"~
r f(r)(V4')'/[4mN(—r)] = j/(4mrz) It —follows tha. t the

momentum surface density (2.12) is

J=j. (4.11)

This result is independent of the boundary size R. This
is because the cMerence in J between two surfaces Bq
and B2 of some slice Z is given by the matter momen-
tum density in the 8/8$ direction, integrated over the
region by Z bounded by Bq and B2 [7]. Since the mat-
ter momentum density vanishes for the (2+1) black hole,
the angular moment»m J is the same for any surface B
within the stationary slice Z.

The energy E and angular moment»m J will vanish
for the zero mass black hole [the metric (4.1) with m =
0,j = 0] if we choose

1
sp(R) = ——.

~l
(4.i2)

1

2m N(R)
(4.14)

For a given size black hole, the temperature redshifts to
zero as R —+ oo.

The thermodynamic surface pressure defined by the
energy E is equal to the trace of the spatial stress (4.9):

BE
8(2' R)

(4.15)

This result and the result (3.16) for (3+1)-dimensional
black holes dier by a factor of one half. The difference
stems &om the fact that the surface pressure is defined by
variations in E with respect to variations in the boundary
metric cr g that preserve the conformally invariant part of

Another natural choice is sp ———gl + R /l /(mR). In
this case, E and J vanish for anti —de Sitter spacetime.
With either of these choices, we find E ml/R for R )) l
so the energy vanishes as R ~ oo.

The results of Ref. [12] show that the entropy 8 of the
(2+1) black hole (4.1) is 4mr+, twice the "area" of its
event horizon. General arg»ments like those used in 3+1
dimensions show that 4mr+ is the entropy for any station-
ary black hole in (2+1)-dimensional Einstein gravity. We
will accept this result and identify the energy E as the
thermodynamic internal energy for the black hole space-
time within the spatial region bounded by r = R. Then
the corresponding temperature is given by

fBEi
gM)

1 t' (r+ /l) —(J/2r+)
g—m+R /l + (J/2R)2 ( 2mr+

(4.i3)

Here, E is treated as a function of entropy 8 = 4vrr+, an-
gular momentum J, and boundary "area" 2vrR by solv-
ing Eq. (4.3) for m as function of r+ and setting j = J.
The first factor in this expression for T is the Tolman
redshift factor 1/N(R) for temperature in a stationary
gravitational field. The second factor is the product of
1/(27r) and the surface gravity (3.13). Thus, just as in
3+1 dimensions, the temperature at R is given by
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the metric Ooi, /(~cr) J' . The factor of 2/d in Eq. (2.16)
shows that in 2+1 dimensions (d = 1) the variations in
~o have an extra factor of 2 relative to the variations in
vt0 for 3+1 dimensions (d = 2).

Next, we compute the thermodynamic chemical poten-
tial conjugate to angular momentum J. It is defined by

J/(2r+2) —J/(2R2)

i/ —m+ R'/P + (J/2R)2

V~(R) —V~(r, )
N(R)

(4.16)

Observe that the angular velocity of the black hole hori-
zon with respect to the spatial coordinate system is

V~(r+—). This can be verified by showing that the
Killing vector field y" = (B/Bt)" V4'—(r+) (B/BP)" is null
on the horizon [28]. By definition, the shift vector V&(R)
is the angular velocity of the spatial coordinate system
relative to the Eulerian observers at R whose four veloci-
ties are orthogonal to the stationary time slices t =const.
Therefore, V~(R) —V~(r+) is the angular velocity of the
black hole with respect to the Eulerian observers at R.
This is an improper angular velocity, in the sense that
it is taken with respect to coordinate time t. But coor-
dinate time t is related to the proper time of the Eule-
rian observers at r = R by a factor of the lapse function
N(R). Therefore we see that the chemical potential u of
Eq. (4.16) is the proper angular velocity of the black hole
with respect to the Eulerian observers at the boundary
B of the system. This is the expected result [4,8].

The definitions for temperature, surface pressure, and
chemical potential are captured in the first law of ther-
modynamics for the (2+1) black hole, namely, dE
T d8 + ur dJ —'Pd(2z. R) .

The heat capacity at constant surface "area" 2mR and
constant angular momentum J is

follows that the temperature T increases monotonically
from —oo at r+ = [J[l/(2R) to +oo at r+ —R. The
temperature vanishes for r+ ——g!J!l/2, so that T & 0
for r+ & g!J!l/2. Now, a simple calculation shows that
the derivative BE/Br+ is positive for r+ ) g!J!l/2 and
negative for r+ ( g!J!l/2. Therefore the sign of the heat
capacity (4.17) is the same as the sign of the teinperature.
In conclusion, there is a unique black hole with positive
temperature T at r = R and angular moment»m J, and
this black hole is thermodynamically stable (CR ~ ) 0).
Unlike the case in 3+1 dimensions, for T ) 0 there is no
negative heat capacity instanton.

From Eq. (2.18) we find that the conserved mass as-
sociated with the Killing vector field g = (B/Bt) is equal
to

J2
M = —

Qg = N(R)E+ (4.20)

Note that Eq. (2.20) cannot be used for this calculation,
since g is not orthogonal to the hypersurface Z. Consider
M to be a function of the entropy 8 = 4mr+, angular
momentum J, and boundary size R. If we choose the
function so as in Eq. (4.12), then for a given size black
hole E vanishes as R ~ oo. We then find, as in 3+1
dimensions, that M m m as R ~ oo and

t'BM l
llm

RJoo |J M j 27r
(4.21)

The heat capacity can be expressed as in Eq. (3.22)
(with rR replaced by r+) and the term E(BN/Br+) can
be dropped assuming eo is chosen appropriately. The
term T(BN/Br+) = 2zTz can b—e dropped if T = 0.
Thus we obtain

f BE) ( BT ) ( BT )
&BT) &B+) &B+r

(4.17)

where the energy (4.8) and temperature (4.13) are ex-
pressed as functions of r+, R, and J. The square root
factor that appears in both E and T is the lapse function
evaluated at R, which can be expressed in terms of r+ as

&9m
llm C~ J =

R~~ '
(B~ R/ 2)z

6 (r+/l)' —(J/2r+)' l= 4vrr+! E(r+/l)'+ 3(J/2r+)') ' (4.22)

N(R) = [ (J/2r+) ——(r+/l) + (R/l) + (J/2R) ]

(4.18)

It is straightforward to show that the derivative BT/Br+
is positive, so that the temperature is a monotonically
increasing function of r+. This means that there is a
unique black hole with a given temperature T(R) and a
given angular momentum J. Moreover, note that for R )
r+, the inequalities r+ & r+/R & ml /(2R) & !J!l/(2R)
follow from the explicit form (4.3) of r+ and the condition

!J!( ml. Thus, we find that r+ is limited to the range

where T —+ 0 as R ~ oo in such a way that the black
hole size r+ remains fixed. If r+ satisfies r+ & g!J!l/2,
then Eq. (4.22) shows that the heat capacity is positive
in the T —+ 0, R + oo limit. This agrees with the general
result CR, g & 0 for T & 0.

Note added. Spatially finite boundary conditions have
been used previously by Zaslavskii [29] to study the ther-
modynamical properties of the (2+1) black hole.
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