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Static charged black holes in (2+ 1)-dimensional dilaton gravity
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A one-parameter family of static charged black hole solutions in (2 + 1) dimensional general
relativity minimally coupled to a dilaton P oc ln(r/P) with a potential term e ~A is obtained.
Their causal strutures are investigated, and the thermodynamical temperature and entropy are
computed. One particular black hole in the family has the same thermodynamical properties as the
Schvrarzschild black hole in 3+1 dimensions. Solutions with cosmological horizons are also discussed.
Finally, a class of black holes arising from the dilaton with a negative kinetic term (tachyon) is briefiy
discussed.
PACS number(s): 04.70.Dy, 04.60.Kz

I. INTRODUCTION

(2+ 1)-dimensional gravity continues to be a source of
fasc'ination for theorists, primarily because of the poten-
tial insight into quant»m gravity that it offers. The lower
dimensional setting affords a significant amount of tech-
nical simplification of the gravitational field equations,
bringing into sharper focus conceptual issues that are of-
ten obscured in the more complicated (3+1)-dimensional
case. However, such technical simplicity is not with-
out consequence: for example, in the case of (2 + 1)-
dimensional general relativity the metric outside of a
matter source of finite spatial size is locally Sat, and the
mass affects the space-time only globally, seemingly im-
plying that 2 + 1 gravity will not admit black hole solu-
tions.

Fortunately the actual situation is significantly more
interesting. Recently, Banados et al. showed that by
identifying certain points of (2 + 1)-dimensional anti-
de Sitter space, one obtains a solution with almost aO
the usual features of a black hole [1]. This Banados-
Teitelboim-Zanelli (BTZ) black hole has so far attracted
much interest in its classical, thermodynamical, and
quantum properties [2). In particular, it is also a solution
to a low energy string theory [3]. Furthermore, by taking
the product of the (1 + 1)-dimensional string-theoretic
black hole of Mandal, Sengupta, and Wadia (MSW) [4]
with Si, another (2+ 1)-dimensional black hole solution
to the string theory may be obtained (hereafter referred
as 2+ 1 MSW black hole) —if a product with R is taken
instead, one gets a black string [5). One can further
conformally transform [5,6] this black hole such that the
transformed xnetric is a solution to an Einstein-Maxwell-
dilaton action with special values of the couplings. Since
causal structures are preserved under conformal trans-
formations, as long as the transformations are at least
finite outside (and on) the event horizon, one may ob-
tain in this manner another black hole solution to the
nonvacuuxn Einstein field equations in 2+1 dimensions.

Motivated by the above, we consider in this paper black
hole solutions to the Einstein-Maxwell-dilaton action

$3 R Q 2
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—e ~F„„F""+2e~A ~,

with arbitrary couplings A, a, b, and B, where R is the
Ricci scalar, P is the dilaton field, and I'„„is the usual
Maxwell field. We find that in addition to the afore-
mentioned black holes in 2+ 1 dimensions, there exists a
one-parameter family of static nonasyxnptotically anti —de
Sitter charged black hole solutions, as well as solutions
which admit cosmological horizons. We shall still refer
to A as the cosmological constant, although in the pres-
ence of a nontrivial dilaton, the space does not behave as
either de Sitter (A ( 0) or anti —de Sitter space (A ) 0)—
note that the sign of A differs Rom the conventional one.
The constants a and 6 govern the coupling of P to I"„„
and A, respectively. Without loss of generality, the pa-
rameter B in (1) can be set to 8 as usual. However, we
shall leave B as an arbitrary parameter so as to more
conveniently permit its continuation to negative values.
The BTZ and MSW black holes are two of the solutions
of the field equations which follow from (1), obtained for
particular values of the couplings a and b. Of course Eq.
(1) can be viewed as general relativity with an unusual
matter Lagrangian. For example, one can easily see that
the local energy density in the perfect Quid form is neg-
ative when P =const and A ) 0.

The corresponding action for the low energy string the-
ory can be obtained by setting B = 8, b = 4, a = 1 and
carrying out the conformal transformation [6]

g —e (wa —1) g
s '~ z

(2)

where S and E denote the string and Einstein metrics,
respectively, with n the number of spatial dimensions.
The corresponding string action is

8 — de —gse ~ Rg +4% —E +2A
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A number of other special cases of the action (1) have
previously been considered by a number of authors. Bar-
row et al. obtained the most general static and circu-
larly symmetric solutions for A = 0, as well as a solution
with a nonvanishing A, B = 2, F„„=0, b = —v 2, and
a = 0 [7]. They did not obtain any black hole solution.
Burd and Barrow [8], as well as Muslimov [9], discussed
the action (1) in the context of pure scalar field cosmol-
ogy; several exact solutions were obtained for a (2 + 1)-
dimensional spatially fiat Friedmann-Robertson-Walker
(FRW) model with B = 2 and b & 0. Shiraishi derived
static multicentered solutions for the A = 0 case [10).
We will later show that his solutions actually correspond
to those of massless charged particles. Note that Maki
and Shiraishi considered a similar type of action in more
than two spatial dimensions [6]. They found exact solu-
tions for a configuration of multiple black holes. It is also
worthwhile to point out that the action (1) describes a
Liouville-type gravity [11];in the absence of electromag-
netism, the action is an extension of the usual Liouville
action in curved spacetime to 2+1 dimensions. Exact
black hole solutions to the lowest dimensional (i.e. , 1+1)
Liouville-type gravity have recently been found [11].

The organization of this paper is as follows. In Sec. II
we adopt a static and circularly symmetric ansatz and
then write down and solve the field equations. In Sec.
III, we consider the solutions with B ) 0 (this corre-
sponds to positive kinetic energy in Bat space for the
dilaton). The quasilocal mass [12] associated with these
solutions is computed and a mass parameter identi6ed.
For positive quasilocal mass, we obtain a one-parameter
family of static charged black hole solutions. We dis-
cuss their causal structures and in Sec. IV compute their
relevent thermodynamic properties (i.e., Hawking tem-
perature T~ and entropy 8). We will see how a nontrivial
dilaton alters the causal structures and thermodynamical
properties with respect to the BTZ black hole. One black
hole solution has thermodynamical properties which are
the same as the (3 + 1)-dimensional Schwarzschild black
hole; in both cases, TIr ac (mass) . In Sec. V, we con-
sider solutions with cosmological horizons, and in Sec.
VI, we briefly investigate the case B & 0. In this lat-
ter case we find a solution corresponding to a massless
charged black hole. %e 6nd no black hole solutions of
positive quasilocal mass when A & 0. %e summarize our
work in a concluding section.

Our conventions are as by Wald [13];we set the grav-
itational coupling constant G, which has a dimension of
an inverse energy, equal to unity.

II. EXACT SGI UTIONS

ds' = —U(r)dt'+ + H'(r)d8'. (7)

This is different &om the usual ansatz for a circularly
symmetric metric, but turns out to simplify the calcu-
lations. For an electric point charge F„„has just one
independent component, Fei ———Fio ——e4 ~f(r) (the
magnetic field is a scalar in 2+ 1 dimensions and will not
be considered here). Adopting the metric (7), Eq. (5)
implies that

~(") = H()' (8)

where q is an integration constant. Now, Eqs. (4)—(8)
together yield

H'
U" + U' = 4e ~AH- '

H
= —2(+')' (10)

, H' H" ( s~
e4 &q')V' +U =2~ e'4'A

H' +4" /+&'4'— 4~e4ag 2

, ' +beb&A=O

(12)

where a prime = &„, denoting the ordinary derivative
with respect to r. The 6rst one is the B«equation. B«
and R„, together yield Eq. (10) and Res yields (11). The
last equation is the local energy conservation equation,
V'"T„„=0. From Eq. (10) it is easy to see that H2 oc

P =const. Thus one generally cannot have

g« ——:and gag
——r simultaneously in 2+1 dimensions

grr
when one has a nontrivial solution for the dilaton.

For the BTZ charged black hole, one has U(r) = —m+
Ar —2Q ln( —„" ) [15],H(r) = r, dang = u = b = 0. Itis
easy to check that the 6eld equations are satis6ed. For
the 2+ 1 MSW black hole, one can verify that conformal
transformation (2) [with P = ——ln($), P =const] yields
the Einstein metric

B
2
—(V"V„P) + 2ae ~F + be ~A = 0.

We wish to find static, circularly symmetric solutions to
these equations that have a regular horizon. In 2 + 1
dimensions, the most general such metric has two degrees
of freedom [14], and can be written in the form

R„„= V'„PV„P+ e ~(—g„F + 2F„E„—)P~ 2 P

—2g„eb4'A,

V (.-"4F„„)=0,

(4)

Varying (1) with respect to the metric, Maxwell, and
dilaton fields, respectively, yields (after some manipula-
tion)

ds = (8APr —2m—~r)dt + +p rde,
8A r —2m

(13)
where m is the square root of the mass per unit length

1
and p is an integration constant with dimension [L]~.
Equation (13) is an exact solution to Eqs. (9)—(12) with

q = 0, 6 = 4, and B = 8. If we perform the duality trans-
formation to the corresponding string metric, a charged
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solution can be obtained [5]. In terms of Einstein metric,
we have N P() (2ob)

ds = (S—Apr —2m'+ 8Q )dt

dr
+

(SAPr —2m' + SQz)
+p rd8, (14)

where Q is the charge. It can be verified that metric (14)
is also an exact solution to Eqs. (9)—(12) when Q = ~ P,
b = 4a = 4, and B = 8.

We see that when H = p r and H = r jn the Ein-
stein metric (7), one gets the MSW black hole (13) [or
(14)] and the BTZ black hole, respectively. Consider,
then, the ansatz

JI2 = y2rN

Since r and Hz have a dimension of [L] and [L]2, re-

spectively, the dimension of p is [L] ~ . In addition, we

further assume

+=kin/ —
/,

(rb
P&' (16)

where k is a real number. Inserting (15) and (16) in

(9)—(12), we get the exact solutions

dr2
ds' = —U(r)dt'+ + p'r~d8',

U(r)

with

sAp'-" sQ'
(3N —2)N N(2 —N)

and where

(17a)

(17b)

N(2 —N)
2B

4ak=bk=N —2, 4a = b. (19)

sxr2 8Q2

(3N —2)N (2 —N)N) ~

dt'

4r ~ —2dr2
+ + r2dg

N2 ~ Ar ~ —1 8At'~ 8Q~+ (3~ 2)N + (2 M)M

(2Oa)

where kom now on r denotes the usual radial coordi-
nate. We have absorbed p ~ into the constant A and
normalized P ~p 2 to 1. Now, Q2 = qz and

The constant of integration q in Eq. (8) is related to the
3p2 —N

charge Q via Q2 = ~ ~, , whereas A is {as we shall

subsequently demonstrate) a constant of integration pro-
portional to the quasilocal mass.

The solutions (17) depend on the dimensionless cou-
plings a and b (or alternatively N) and on the integra-
tion constants A and p. By performing the coordinate
transformation p2r~ -+ r2, (17) becomes

Before proceeding further we note the following. First,
it is obvious that as r ~ oo, P ~ oo too. However, the
kinetic term, Maxwell term, and the potential term in
action (1) all vanish in that limit when 2 ) N ) 0 (i.e.,
B ) 0). On the other hand, when B ( 0, they all diverge.
Second, for nonvanishing Q, when N ~ 2 (or equiva-
lently, a -+ 0 and b ~ 0) the metric diverges and the
present solution has no smooth connection to the N = 2
case, similar to the situation in Ref. [10]. [This can eas-
ily be seen as follows: one can write the charged metric
coefficient U as Uq —p + h(r); for N = 2 Eqs. (9)—(12)
imply h(r) = —2Q ln( —").When N g 2, the same set of
equations forces h(r) to be a constant, inversely propor-
tional to (2 —N)N. A smooth connection to N = 2 case
is possible only when Q = 0.] Third, when N = 1, (20a)
reduces to the 2+ 1 MSW charged black hole. Fourth,
if N = 2, Q = 0, and A = 0, one obtains the usual
vacuum one particle solution in 2 + 1 dimensions [16].
Fifth, if both A and A vanish, (20a) reduces to the Shiri-
ashi single-particle solution [10] in Schwarzschild form.
As we will later show that A is linearly proportional to
the quasilocal mass, we see that Shiriashi's solution in
fact describes a static massless charged particle. Sixth,
when Q = A = 0 (the vacuum solution), the metric (20a)
does not have an infinitely long throat for small r except
N = 2 (BTZ case). Also, (20a) fails to fulfill the fallofF
conditions given in [17] for asymptotically anti —de Sitter
spaces. Finally, as mentioned previously, the action (1)
is related to the string action (3) by a conformal trans-
formation (2) if b = 4a = 4 and B = 8. From (1S) and
(19) we see that this choice of parameters forces N = 1.
In addition, we have mentioned earlier that for the un-

charged N = 2 (BTZ) black hole it is a solution to string
theory (with an addition of a three form H~„„; see Ref.
[3] for details). If N difFers from 1 or 2, the solution (20)
"decouples" &om string theory.

III. BLACK HOLE SOLUTIONS
FOR2&N —,Aoo, A. 0

In this section we seek to determine under what cir-
cumstances the set of solutions (20a) has black hole event
horizons. The location of the horizon(s) will be given by
the real positive roots of gqq

——0. However, there exists
no general method to obtain roots for a general value of
N. In this section, we will restrict ourselves to the case
where both B and A are positive; the former condition
implies 2 ) N ) 0 [N g s, see (18) and (20a)]. We
first investigate the case 2 ) N ) —. The other case,

3 & N & 0, wil l be shown in Sec. V, to have cosmologi-
cal horizons.

We first determine the quasilocal mass associated with
the solutions (20a) when 2 ) N ) —. The spacetime
manifold M for these solutions is topologically the prod-
uct of a two-dimensional (2D) spacelike hypersurface and
a real line interval, Z x I, with the boundary of the former
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denoted by OZ = B. The boundary of~, OJH consists of
initial and final spacelike hypersurfaces t' and t" (whose
induced metrics are denoted by h;~) respectively, and a
timelike hypersurface 8 = B x I joining these (whose in-
duced metric is denoted by p;~-). Foliating the boundary
element 8 into one-dimensional hypersurfaces B with in-
duced one-metrics 0 g, the 20-metric p;~ can be written
as

served in the sense that Qg is independent of the particu-
lar surface B (within 8) that is chosen for its evaluation
(provided there is no additional matter stress energy in
the neighborhood of 8). This property is not shared by
the energy E. If ( is a timelike Killing vector, Q~ is the
quasilocal mass M of the system.

Comparing the decomposition of p;~ to a static metric
in 2+ 1 dimensions of the form

p;, Ch'dx' = —N'dt'+ ~.&(dz + V dt)(dx'+ V'dt), dr2
ds = —W (r)dt2+ +r d8, (21)

where N is the lapse function and V is the shift vector.
For the solutions (20a), V = 0. Using this decomposi-
tion it may be shown

the quasilocal energy E and mass M are then, respec-
tively, given by [12]

E= d z~ae,
B

E = 2[Vp(r) —V(r)] (22)

where 0 is the determinant of 0 g and c is the energy
density associated with the two-surface B for the system.
E is the total quasilocal energy defined by integration
over B [12]. There is also a Killing vector field (' on
the boundary 8 for the solutions (20a); in this case an
associated conserved charge may be defined as

qg = f d~z~ire'u (;'
where u' is the unit normal to the slices B. Qg is con-

and

M = 2W(r)[VO(r) —V(r)], (23)

provided the matter action contains no derivatives of the
metric. Here Vo(r) is an arbitrary function which de-
termines the zero of energy relative to some background
spacetime and r is the radius of the spacelike hypersur-
face boundry; we will choose Vo(r) = lig„„(r;A = 0) for
g„„given by (20a). For 2 ) N ) s, Eqs. (20a) and (23)
yield

(3N —2)N (2 —N) N (3N —2)N (2 —N) N

8Ai 8Q
(3N —2)N (2 —N) N

Since 2 ) (~ —1) the upper bound of the radius r is
infinity regardless of the sign of A. Taking this limit we

find M = — 2~ . It is obvious that if M ) 0 (positive
mass), A & 0 and vice versa. For convenience, we ab-

sorb the constant p~ into M (so that M has dimension

[L] ~ ). Thus one can identify

2M
N

(25)

Throughout this paper, we will restrict M ) 0 (A & 0).
The quasilocal energy can be calculated similarly. As
r —i oo, one can check that E m 0 in (20a), similar to
the BTZ black hole [12].

Substituting (25) into the metric (20a), the equation
—g„=0 gives

2M ~, SAi. 8Q
(3N —2)N (2 —N) N (26)

Note that with our choice of N, the middle and last terms
are always positive. The Grst term is always negative.
Event horizons exist only in the situations 2 ) N ) 2/3
and A &0.

2M i 2Q2
y —p @3+ (27)

2Qwhere we note that both 5& and ~+ are positive. A
straightforward graphical analysis shows that there are
three possible cases for Eq. (27). The first case cor-
responds to y; & 0 which is equivalent to the condi-

tion ~+ ) (z &) ~, for which (27) has no real positive
root. There is no black hole: the charge Q is too large

The location(s) of the event horizon(s) in the coordi-
nates (20a) will in general depend upon M, A, Q, and N.
Before proceeding to this general case we consider some

illuminating examples: there exist five rational numbers
within the range 2 & N ) 3 such closed form solutions
to (26) may be obtained. They are N = s, ~&, 4, 4s, and
1. The first two give a cubic equation to (26), the next
two give a quartic one, and the last a quadratic. This
latter case corresponds to the string-theoretic black hole
discussed in the preceding section. %e consider the other
four in turn. For each of these the metric is given by Eq.
{20a), with A as in Eq. {25).

Consider first the case N = 5, for which the solutions
to (26) are the zeros of the equation
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3 I'rl -a' t1n, + 2arctan
10Aapg I,rg +a)

(29)

1
where a = ( s& ) g = rag . The advanced and retarded null
coordinates are defined as u = t —r„v = t+ r„as usual.
Defining the Kruskal coordinates as

6
6Acsy ~

S

5+O.p s

6Acs~ S
S

5Aap s

the metric can be written as

/GMr~ t
/' 1 1 ) r +al

) Ea r) (r' —a)
1

—2arctan
xe dM dV

with respect to a given I and A, and the singularity is
naked. The second case corresponds to y;„=0, which

is equivalent to ~& ——(zz&) g, and has one real positive

root which is located at r; = (~~&)sg, corresponding
to an extremal black hole. Finally, if y; ( 0, then

& (zz&)* there are two real positive roots and the
black hole space-time has both an outer and inner hori-
zon. Generally, Eq. (27) has at most two real positive
roots. The above situations are qualitatively the same as
the Reissner-Nordstrom black hole in 3+ 1 dimensions.
In general, the (positive) roots of (27) are given by

S S

8M
r = — cos8, cos(38) = Q

15A )
' (2M)

(28)

which define the location of the horizons. When Q = 0
[implying cos(38) = 0] the horizon is at ra = ( s& ) g;
for the extremal case, cos(38) = 1 which implies rh ——

(zz&)g. In general the location of the outer horizon is
determined by the largest positive value of r in (28). For
example in the special case that Q2~A = ~(2Ms) g the

S
outer horizon is r+ ——( M~ ) g and the inner one is r
[(',")(~3- 1)]'

We consider next the causal structure of the N =
5

metric. Since Eq. (27) is cubic in rg and has at most
two real positive roots, we proceed by first obtaining the
causal structure in the uncharged case, and then deduc-
ing the structure for the Q g 0 space-time (a method
similar to Ref. [18]). The conformal radial coordinate

r, —:J V
—s"—"dr for N = —end q = 0 is given by

FIG. 1. Penrose diagram of the N = 6/5 and 4/3 un-

charged black holes. The double line indicates the curvature
singularity.

r=O r=O

(i.e., a timelike) line in the Penrose diagram. The hori-
zon is at r = rh, = as, which implies MV = 0. On
passing from r ) rh, to r & rg, the metric (31) changes

sign and one has to transform M —+ M = —Q so that the
time direction is still vertical. Now, QV = —( s, )2

5Aap s
when r = 0, indicating that the singularity is timelike as
well. It is lengthy but straightforward to check that the
Ricci and Kretschmann scalars diverge at r = 0. Thus
the space-time has a timelike scalar curvature singular-
ity. (A similar causal structure has been found for a class
of (1+ 1)-dimensional black holes in Ref. [19].) A test
particle may travel along a future directed timelike curve
kom region I, passing through rI, to region II. Without
hitting the singularity, it can reemerge &om region II and
enter another region I. In fact, one has an infinitum of re-
gions I and II. When charge is added, the manifold splits
into three different regions: region I (r ) r+), region II
(r+ ) r ) r ), and region III (r ) r). In this case,
whenever one crosses the horizons r+ or r, the space
and time coordinates interchange roles and the singular-
ity is spacelike. We can deduce that the charged black
hole has a causal structure that looks like Fig. 2, and
for the extremal case, it becomes Fig. 3. These causal
structures are similar to some of those found in Ref. [20],

and

uv= —
i

3

(5Aaps ) (rg + a)
(32)

r= 0 r=O

The Penrose diagram is given in Fig. l. As r + oo,
MV -+ —(,)ze, which corresponds to a vertical

5Aap s

FIG. 2. Penrose diagram for the N = 6/5 and 4/3 charged
black holes (generic case).
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FIG. 3. Penrose diagram of the 6/5 and 4/3 charged black
holes (extreme case).

M 4 Q
7A 2A

(33)

As with the previous case, a graphical analysis indicates
that there are three kinds of curves, corresponding to

) (z~&)s (a naked singularity), ~& —— (22~M&)s (an

extremal black hole), and ~& ( ( &~M&)s (a double-horizon
black hole) respectively. The roots are implicitly given
by

where the authors i.nvestigated dimensionally continued
Lovelock black holes with a cosmological constant A ) 0
in both odd and even space-time dimensions. It is in-
teresting to note that in their static charged black hole
solutions in both odd and even dimensions, they always
have a term Ar, similar to ours [see Eq. (20a)]. It is
tempting to consider the same kind of dimensional con-
tinuation with the presence of a dilaton; however, we will
not discuss it here.

We next turn to our attention to the case N = 7. The
analogue of (27) is now

FIG. 4. Penrose diagram of the N = 6/7 and 4/5 un-
charged black holes.

positive roots, one (the extremal case) or none. The K =
3 black hole, which has the same causal structures as the

N = s one, has the extremal condition ~& ——(z&) s; the

horizon is at rh = (z~&) s. For the N = E4 one, which has
the same causal structures as the N =

7 black hole, the

extremal condition is ~&
——( &&), and the horizon is at

rh = (4~&)2, respectively.
For general N such that 2 ) N ) 3, a similar graphical

analysis shows that we either get a black hole (generic or
extremal) or a naked singularity. We rewrite (26) as

z "—Az +b(A —1) =0,

M
21A

(1 —2 cos8) -(3N 2)(2 N)M- s~ —.

8%A
(35b)

cos(38) = —1+
/

—
/

(211 lQA)
gM) g2) (34)

It is easy to see that Q = 0 gives rz = (~~)~. F»
the extremal case, one has cos(38) = 1, which yields a
positive rg = ( zz&) ~ . As an intermediate example, if one

sets QA = 2(&&) /, then the outer and inner horizons

are r+ = ( 4M~ ) 4 (~3+ 1) ~ and r = ( 4M~ ) 4.
Following the coordinate transformations outlined

above, we can obtain the causal structures. We only
show the uncharged case (Fig. 4). It is similar to the one
for an extremal Reissner-Nordstrom (RN) black hole in
3+1 dimensions. There is a timelike singularity at which
the Ricci and Kretschxnann scalars diverge. The causal
structure for generic charged black holes is obtained &om
the one for generic RN black holes by a 2 rotation. For
the extremal one, it is simply obtained through a 2

ro-
tation of Fig. 4. Note that those causal structures are
similar to the ones in Ref. [20] for asymptotically flat
charged Lovelock black holes in even dixnensions.

Substituting K = s, s into (26) yields two quartic
equations. The analysis of the roots is similar to the
previous two cases, and we find that there are either two

The extremal condition is when b = 1, for which rh ——r
(i.e. , z = 1). For a given M and A two horizons exist if
b' ( 1, they coalesce if b = 1 and if h & 1 there is only a
naked curvature singularity.

So far we have been addressing A ) 0. %'hen A Hips
sign or vanishes, one can see from metric (20a) that there
is no event horizon for a positive mass. We also comxnent
that higher order polynomials (e.g. cubic or quartic) in
the variable in equation gqq

——0 for a generic static black
hole metric are not uncommon. For example, in the (3+
1)-dimensional charged Schwarzschild —de Sitter metric,
one has a quartic equation (see, e.g. , [21]) whereas in
(1+1)-dimensional string theory, higher loop corrections
may lead to higher order polynomials in g« ——0 for a,

charged black hole [18] and multiple real and positive
roots may be expected. [In (14) g« ——0 is a quadratic
equation in r since it corresponds to the lowest loop-order
string theoretic action (3).]

IV. THERMODYNAMICS

An important thermodynamical quantity in a static
black hole is the Hawking temperature TH. Given a static
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and circularly symmetric black hole metric, T~ is given
by

(36a)

along with a blueshift factor which may be computed
as in Ref. [12]. Using Eqs. (20a), (25), and (35) the
Hawking temperature becomes

AMp» (r+~
TH =

27ct+ '(r~p (36b)

T~ = (z02(A, h))' "—1.
27lXO p T~

(36c)

For extremal black holes, zo ——1 and T~ ——0. Thus they
are stable end points of Hawking evaporation.

For b = 0 (i.e., Q = 0), (36c) becomes

with r+ the location of the (outer) event horizon. It is
easy to check that for the uncharged BTZ black hole,
T~ =

2 /MA as expected; for the uncharged MSW

black hole, T~ ——~', independent of mass.
Given the outer horizon r+ as a function of M, Q, and

A, one can use Eq. (36) to get the Hawking temperature
in terms of these quantitites. For general N (including
the four cases discussed above) r+ is defined in terms of
these quantities via (35): for a given A and b, one can
numerically solve (35), obtaining r+ ——xo(A, b)r, where
zo is the largest positive root of (35), yielding

arbitrary dilaton and a point electric charge, as long as
B & 0. Thus the entropy cannot decrease with time in
all the black holes discussed above.

5 S 1 S S
For N = 5, T~ oc psA4M4 and S oc A 4M4

S 2 1 R 2
whereas for N = » T~ oc p' A s Ms and S oc A s Ms
We see that for these black holes their last breath is cold:
i.e., M = 0 ~ T~ ——0. On the other hand, for N =

7
7 S 1 S S

T~ oc psA&M ~; therefore S oc A ~M~, and the last
breath is hot (M = 0 ~ T~ +oo-). Finally (and perhaps
most interestingly), for N = s, T~ oc p2A2M i and
S oc A M . Thus this N =

5 black hole has the same
thermodynamic properties (apart Rom the blueshift fac-
tor) as the (3+ 1)-dimensional Schwarzschild one. We
believe that this is the first example of this kind among
lower dimensional black holes.

We close this section with some further comments on
the temperature. In Ref. [20] it was noted that in
27 = 2n (n & 2) even space-time dimensions, Lovelock
black holes radiate away with increasing temperature,
while in 17 = 2n 1(n &—2) odd dimensions, they cool ofF

as they radiate. In particular, the uncharged BTZ black
hole (a special case in Ref. [20]) has vanishing tempera-
ture as it radiates away all its mass. In our dilatonic case
with 'V = 3 we have both situations, the former for N & 1
and the latter for1& N & 2/3. So the additon of a dila-
ton indeed changes some of the generic thermodynamic
properties of (2+ 1)-dimensional black holes.

a(N —1)
p" A ((3N —2)M' SN 2-

)i
(37)

V. COSMOLOGICAL HORIZONS FOR
2&N yo, Ago

Note that (1) describes Einstein-Hilbert action coupled to
matter whose kinetic energy is quadratic; thus for those
"dirty black holes" the entropy is still given by S = 4vrrh

[22]:

((3N —2)M' 2~-2
S=4nrg =4m

~ 4A )
(38)

Using this relation between S and rp, it is easy to check
that Eq. (37) can also be derived Rom the quasilocal en-
ergy E given by Eq. (22), except that the blueshift factor

will beintroduced in Eq. (37). From Eq. (38), one
can also see that S can also be obtained through the
equation &M

——z of thermodynamics of event horizons
in 2+1 dimensions [23] and Eq. (37).

When Q g 0, the relation 8 = 4xr+ still holds since
the addition of a point electric charge in the matter ac-
tion in (1) will not change the fact that the entropy is
proportional to the area of the horizon [22]. Given such
a relationship between S and r+, following the argument
in Ref. [23], one can loosely see that in 2+1 dimen-
sions, the area of an event horizon (generated by null
geodesics) never decreases in time if R„„k"k»0, where
k" is the tangential vector field of the null geodesics in
a congruence. Similar to the Reissner-Nordstrom and
Schwarschild —de Sitter types space-times in Ref. [23],
this condition is always satisfied in action (1) with an

Another class of space-time horizons of physical in-
terest are the cosmological horizons. It is a mell-known
fact that for the de Sitter case, a cosmological horizon is
present. However, as we mentioned earlier, when there
is a nontrivial dilaton coupling, the case A & 0 no longer
behaves as a de Sitter space. Therefore, it is interesting
to see under what circumstances cosmological horizons
may arise.

Similar to Secs. III and IV, we still demand that B
0, or equivalently 2 & N & 0 and the mass is positive.
The existence of cosmological horizons is indicated by the
fact that as the radial coordinate goes large enough (but
still finite), the metric signature Hips sign. The limit r
oo cannot be taken to define quasilocal mass. However,
in the case of small A and M [12], we can take the limits

"+i » A, Ar2 «1 in Eq. (24) to identify the mass
parameter in our solution. It is easy to see that the mass
reduces to Eq. (25) and so we again identify A = —".

We first consider the "massless" case (i.e., A = 0).
Now the metric is

8A Q
((3N —2)N (2 —N)N]

4r ~ 2dr2

N P (3~ 2)~+( ~)~

This metric will have a horizon whenever (3~ 2) (
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0, with the (cosomological) horizon located at r,
Q ~2 ~l&. When A ~ 0, r —& oo and we recover the(2—3N)

Shiriashi solution [10].
We next consider the A = 0, A g 0 case. Now the

metric is

4r ~ —ldr2

N2p~ ( 2M'~ —1 + sQ
)N (2—N)N

(40)

For positive M, there is always a "cosmological" horizon
4q& N

located at r, =
(~ ~~lM)'-~.

Finally, for the neutral case, Q = 0, and s ) N ) 0, it
is easy to show that the cosmological horizon is located

N
at r, = ( ~s~~+zlM ) &-&~ . As a matter of fact, we can gen-

erally consider all A, M, and Q are nonvanishing. For
example, if 3 & N & 0 and A ( 0, a simple graphical
analysis shows that only one real positive root exists for
—

gqq ——0 which corrresponds to r, . We will not discuss
general cases in detail. If the assumption B ) 0 is re-
laxed, then further cosmological or event horizons may
exist. In next section we brie8y discuss the existence of
black holes in such situations.

VI. BLACK HOLES FOR N p 2, N & 0, A & 0

So far we have been assuming B ) 0 in our discus-
sion on cosmological and event horizons. Physically this
means that the kinetic energy of the dilaton (in ffat space)
is positive. In this section, we brieBy point out that black
holes can also arise if the dilaton acts as a tachyon field
(i.e. , B ( 0, a negative kinetic energy). Although we
can still identify A = —~~ as the quasilocal mass, these
black holes have a number of rather unattractive aad un-

physical properties. Speci6cally, whea the kinetic term is
negative, the terms in the action (1) involving the kinetic,
Maxwell aad dilaton potential all diverge as r ~ oo.

It is trivial to see that when B ( 0, oae must have
N & 0 or N & 2 [see Eq. (18)]. We will illustrate two
cases as examples.

Suppose N = —2. Now gqq ——0 yields

2Q 2 2Mr T + — s (41)

Obviously, the roots are given by r~

and the extremal condition is given by
Q4 = 2MA. One can further calculate the temperature
from Eq. (36). TH is zero in the extremal case. When
Q4 ( 2MA, (i.e., for sufficiently large mass), the horizon
disappears. In the pure charge case (M = 0), the event

horizon is located at rI, = Q &. The temperature of

such a black hole has the property T~ oc QsA 2. As
long as Q is a constant, T~ is nonvanishing, and it keeps
radiating. The entropy S is still related to rh through
Eq. (38). Since B ( 0, the area of the event horizon

does not necessarily increase with time. Note that for
typical black holes of charge Q and mass M, a naked sin-
gularity appears if the charge is too large with respect to
the mass, whereas in this case the situation is reversed.
It seems that the mass is playing the role of charge and
vice versa.

In addition to this, one special black hole solutioa in
the limit N m oo can be derived as follows. When one
takes the limit N ~ oo (or b ~ g 2B)—, the dilaton
becomes P =

z 1n($). Recall that M in Eq. (25) is in

fact, . We demand that p~N is finite in that limit
~m

and absorbed in M, and the charge Q is large comparable
to N. Equation (20a) now becomes

2M
T 3

4r 2dr2
d8+

(
—2M + SA~~ 8Q2)

+r d8,

where N(N ——2) is absorbed into 8Q2 [in fact, it can
be checked that (42) can be alternatively derived if a
linear dilaton is assumed, instead of a logarithm, then a
coordinate transformation is performed to get (42)]. In
this limit, an event horizon exists as long as A & 0. For
Q = 0, it is easily see that TH -+ As Ms. Thus T~ = 0
~hen M = 0.

VII. CONCLUSIONS

We have found a one-parameter (2 ) N & s2) fam-

ily of static charged black hole solutions for Einstein
gravity minimally coupled to a dilaton P oc ln( —) withP
an potential term e 4'A for the (2+1)-dimensional ac-
tion (1). Their causal structures, Hawking temperature,
and entropy were investigated. Oae particular black hole
(N = s) has the same thermodynamic behavior as the
Schwarschild one. Solutions of cosmological horizoas are
also found. In the presence of a tachyon field, black holes
are also obtained, which consist of a massless charged
black hole as a particular case. There are no black hole
solutions for positive quasilocal mass if A & 0.

One (perhaps unattractive) feature of the solutions
(20a) is that they do not asymptotically approach anti-
de Sitter space. This is because P does not approach a
constaat at spacelike in6nity. It would be interesting to
investigate whether black holes exist for an asymptoti-
cally constant dilaton 6eld. In this context we note that
the only asymptotically Bat black hole solutions to the
Einstein-Hilbert action minimally coupled to a dilaton
with a vanishing potential term, is the Schwarschild solu-
tion (P = 0) [24]. In 2+ 1 dimensions, this "Schwarschild
solution" is not a black hole at all but is instead locally
ffat space-time [16]. One should therefore not expect to
obtain any asymptotically Bat black hole solution in ac-
tion (1). The simplest black hole in (1) is the BTZ one
and it is nonasymptotically Bat.

We close by commenting on further possible extensions
of our work. Addition of angular momentum to our solu-
tions is an obvious generalization. Dimensional reduction
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of the solutions obtained in this paper to get a new class
of black holes in 1+ 1 dimensions would be another in-
teresting avenue of research. In the P = 0 case, this was
done by Achucarro [25]. On the other hand, one may
dimensionally continue our solutions in the context of
Lovelock gravity in Ref. [20]. Regardless, it is always
tempting to see how a nontrivial dilaton 6eld alters the

causal structure and thermodynamic properties of any
possible black hole solution.
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