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Model of a gravitational vive in Schwarzschild space-time

C. Barrabes
Physics Department, VER Sciences, Unieersite de Tours, 87800 Tours, Prance

and Department d'Astrophysique Relatieiste et Cosmologic, Obsereatoire de Paris, 92190 Meudon, France

P. A. Hogan
Mathematicai Physics Department, University ColLege Dublin, Belfield, Dublin g, Ireland

(Received 21 July 1994)

A model of a spherical impulsive gravitational wave propagating through the Schwarzschild Geld is
constructed. The vacuum part of the space-tixne to the future of the history of the wave is calculated
approximately as a Bondi-Sachs space-time, providing a model of the reaction of the Schwarzschild
Geld to the passage of the wave through it and implying the existence of backscattered radiation
due to the presence of the isolated matter distribution.
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I. INTRODUCTION

The study of gravitational radiation with wave &onts
homeomorphic to a two-sphere (and thus having an iso-
lated matter distribution as source) began with the pio-
neering papers of Robinson and Trautman [1,2], Bondi,
van der Burg, and Metzner [3], Sachs [4], and Newman
and Penrose [5]. A special case in which the spheri-
cal wave is an impulsive wave [and thus the field (Rie-
mann tensor) has a h-function singularity on the history
of the wave] is described by Penrose's [6] exact solu-
tion of Einstein's vacuum field equations, when the wave
is propagating through flat space-time. As a tentative
model of an explosion involving emission of a gravita-
tional wave &om an isolated source we consider in this
paper a spherical impulsive wave propagating through
the Schwarzschild space-time. The Schwarzschild space-
time must react to the wave because if one were to assume
that the Schwarzschild space-time were left behind after
the disturbance, then a calculation of the surface stress-
energy tensor on the history of the disturbance, using
the technique described in [7], reveals that the surface
stress-energy tensor does not vanish. This means that
a lightlike shell of matter and not a gravitational wave
is propagating through space-time. The surface stress-
energy tensor also does not vanish if the field behind the
wave is described by a Robinson-Trautinan [1,2] solution
of Einstein's vacuum field equations. Thus the Geld be-
hind the wave is unlikely to be a known exact, nonsta-
tionary space-time having an isolated matter distribution
as a source.

If one considers the Kruskal extension of the
Schwarzschild manifold then it is relatively straightfor-
ward to construct a model of an impulsive wave whose
history is the past (or future) horizon of the white (or
black) hole with the appropriate vacuum regions of the
Kruslml space-time on either side of the chosen horizon.
This emerges &om the study of perturbations of white
holes by Eardley [8] and later by Redmount [9]. The con-
struction is straightforward because the horizons in ques-

where m is the (constant) Schwarzschild mass and

po = 1+ —.'(~'+ y')- (1.2)

Then the hypersurfaces u =const are future-directed null
hypersurfaces generated by the null geodesics tangent to
the vector field 8/Br. These geodesics are shear-free and
have expansion r, where r is an affine parameter. We
shall use one of them, u = 0, as the history of an impul-
sive wave. Thus in this sense the wave we consider has a
spherical &ont. However the field of the wave will have a
singularity along a generator of u = 0 (see Sec. III below)
as well as having the 8-function singularity there and the
expected singularity at r = 0. It is in this general sense
that we will refer throughout this paper to a "spherical"
wave (cf. [1]). The region of space-time to the past of
the history of the wave will be denoted by u & 0 and its
vacuum subregion will be taken to be the Schwarzschild
space-time with line element (1.1). The vacuum part of
the region of space-time to the future of the history of
the wave will then correspond to u & 0. This latter re-
gion of space-time describes the gravitational field behind
the wave and embodies the reaction of the Schwarzschild
gravitational Geld to the passage of the wave through it.
It is the description of this space-time region which is
the main focus of attention in the present paper. We
Gnd that we are unable to describe it exactly. Neverthe-

tion are hyperplanes (generated by shear-free, expansion
free, null geodesics) and therefore from the point of view
of using them as histories of impulsive gravitational waves
have more in common geometrically with plane impulsive
waves than with spherical impulsive waves.

In this paper the reaction of the Schwarzschild field
to a spherical gravitation. al impulsive wave propagating
through it is studied. It will be convenient to write the
Schwarzschild line element as (cf. [1,2])

ds = rp& (dx —+dy )+2dudr+
~

1 —
~
du,( 2m'l

r )
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less the approximate model obtained in Sec. III, which
is an example of a Bondi-Sachs [3,4] space-time, enables
us to infer the existence of backscattered gravitational
radiation due to the presence of the isolated matter dis-
tribution left behind after the wave. To this end a brief
s»~mary of the well-known Bondi-Sachs theory is given
in a convenient formulation for our purpose in Sec. II.
The model of the impulsive wave is then constructed in
Sec. III, with some helpful calculations summarized in
the Appendix, and the paper ends with a discussion of
the model in Sec. IV.

QX Q2 QSp=ppi1+ —+ —+ —+" i,r r' (2.3f)

a2 =P2 ——0, (2.4)

with pp given by (1.2). To know the metric tensor com-
ponents up to and including the r terms all eighteen
functions of x, y, u appearing as coefficients of the vari-
ous powers of r in (2.3) are required. The vacuum field
equations and an outgoing radiation condition then yield
(see [10])

II. THE BONDI-SACHS SPACE-TIMES ao ——ai ——0 and bo ——bi ——0, (2.5)

A convenient form of the line element of the Bondi-
Sachs space-times is given by (see [10]) a. =1o —(1o ao)+ —(1'o Po)I,4

Bz By
(2.6)

with

ds2 (gi)2 (g2)2 + 2g3g4 (2.1)

1o =ao —(ao Po) ——(1o ao))4
Bz ' By

(2.7)

g = rp (e coshPdz+ e sinhPdy+ adu),
g = rp (e sinhPdz+ e coshPdy+ bdu),
8 = dr+ 2cdu,
e4 = du.

(2.2a)

(2.2b)

(2.2c)

(2.2d)

Ck2 A3
O. = —+ —+ —+r r2 r3

Pi P2 P3p= —+ —+ —+"
r r2 r3

ay a2 a3a =ao+ —+ —+ —+r r2 r3
bg b2 b3

b = bo+ —+ —+ —+",r r2 r3
cyC= 1+—+'
r

(2.3a)

(2.3b)

(2.3c)

(2.3d)

(2.3e)

The six functions a, P, a, b, p, c depend on all coordinates
z, y, r, u, and u =const are null hypersurfaces generated
by the geodesic integral curves of the vector field 8/Br
with r an one parameter along the geodesics. The fol-
lowing assumptions are made regarding the r dependence
of the six functions above:

e = o e = —,(~i+ Pi) es
1 2 2 (2.8)

There remain five field equations. The first is an equation
we regard as a propagation equation for ci(u, z, y) ofF
u =const.

M+i~i =0, (2.9)

1m = —2ci, '7 = (ki + Xpi. (2.11)

In the present formulation the remarkably simple equa-
tion (2.9), when averaged over a two-sphere, leads to the
well-known Bondi-Sachs mass-loss formula. The propa-
gation equations for as, b3 ofF u =const are

where the overdot denotes differentiation with respect to
'll) 8, 8

M = ao —qo —— —
(1oo ao) + —(Po bo)), (2.10)

2 Bz By

with

3 i . Bm 3 8 2 8 2 82pp 82pp
p() a43 pp pp (pp ol) + 8 (pp Pi) b28 8 a2 82 Bx Bx By BxBy Bx

Bpo Ba2 . Bpo-p.p. 8 (p. P) 8(p. ) -+
8 8 +2P

Bx By By By By

8, 8, Bpp (. Bb2 8 8
poal (p() ~1) + —(po 'Pi) —

l ~2 + —b2 —(in po) —a2 (in pp)Bz ' By ' Bz ), By By 8*

8 (1 Ba2 I. Bb2—po —i

— —— + 2aiPi
i

—
p() 'a2~i —

p() 'b2Pi,
)By i2 By 2 Bz (2.12)
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3 z
- Bm 3 -2 -2 g2po g2po

2pp +3 Po 8 Po 8 (pp pl) 8 (pp cII) a2 8 8 b2 8BQ Bx 19/' BZBQ Bp

po b2 . |9po"P' 8 (" ""8'" P' '8 8 'P"'8Bx |9vJ Bx Bx Bx
Bpo t'.

+Podl (Po pl ) ——(p, ol —
~
j2 + a2 (»po) —b2 —(»po)Bz '

By '
By ), Bz Bz By

8 $1 Bb2 1 Ba2—po
~

— —— —2IIIpl
~

+ po b2III po a2pl.Bz (2 Bz 2 By )
In the latter two equations,

1 4 t9po 2 3 0
s43 = a3 (b2pl + a2III) 92po po (po ~lpl)3 3 Bz 3 By

Opo+3 b3 (a2pl b2(I1) V2po '+ po (pQ ~lpl)3 3 By 3 'Bz

We also have the propagation equations for a3 P3 off u —const:

(2.14a)

(2.14b)

Ba, Bp, Bb2 Bo I Bb2 8plSas —4mal + 12cIIpl pl + 12pl

fail

—S~la I —al + b2 —3plBz Bz Bz 8 By By

Ba2 Bo(I ( Bpo Bpo l 2 2 2 Bas
+3pl —3b2 8 +4pp II1

~

a2 8 +b2 I +2po (a2 b2) 8By By Bz By ) Bx
(2.15)

&g

~ 2
'

2
' Ba2 Bcpl Bb2 Bpl Bb2 8~1

Sps —4mpl —20alc'II pl —4al pl —Spl pl —pl —b2 + 3al —3a2 —pl + a2
Bz Bz Bz Bz By By

3b, +4@,'p,
I
a, +b, ~+4p, a,b, = + . (2.16)

Ba2 Bpl 1 ( Bpo Bpo l 2 Bas Bbs

By By '
), Bz By ) ' By

A helpful guide to verifying these calculations using the computer algebra system REDUGE has been given in the
lecture notes of McCrea [llj.

The curvature tensor components, in Newman-Penrose notation, for the space-time with line element given by
(2.1)—(2.3) take the form

1 3
@o = —— YY(oss + 'Po) — (S' + S') ('Y —'Y) —2'Y ) +r5 2

1 3 I 8
-Y o (os + s Y s) + 3Y oO Y—

Y
(Y o ~)) + "

r4 2 2 Bz

Bg 28 /28M + V + 2po —I &o=(&o &) I
+r3 Bu 8$ )( Bz2, 8 f 8@3=—, POB I SQB (Po'&)

I

10 p44 ———— + ~ ~ ~

r OtL

(2.17a)

(2.17b)

(2.17c)

(2.17d)

(2.17e)

III. MODEL OF IMPULSIVE WAVEwhere z = @+ay.
It is useful to note that the complex shear 0 and the

expansion 8 of the null geodesic congruence tangent to
8/Br are given by

al + IPI 3(as + IP3) + 2aIPI0 +Orr2 r4
1 2'

In the terminology of Sec. II we want u = 0 to be the
history of an impulsive gravitational wave propagating
through the Schwarzschild Beld. We take the region of

(2 1Sa) sPace-time corresPonding to u ( 0 to be the Past of the
null hypersurface u = 0 and therefore to be, in its vacuum

(2 1Sb) subregion, the Schwarsschild space-time. The region u )
0 lies to the future of u = 0 and in its vacuum subregion
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a1 —a1(x, y) u8(u),

p1 = p1(~, y)u&(u),

(3.1a)

(3.1b)

where 8(u) is the Heaviside step function which is equal

to 1 if u & 0 and equal to 0 if u ( 0. The functions a1, P1
are required to satisfy

corresponds to the space-time left behind after the wave.
To construct such a wave we take a1, P1 in Sec. II to
have the form

a3 ——0, b3 ——0, (3.6)

respectively. To have the Schwarzschild field when u ( 0
we must therefore have, for all values of u,

a3 ——0, b3 ——0. (3.7)

Finally substituting into (2.15) and (2.16), the propaga-
tion equations for as, ps become

as ——2mn1u8(u) —3a1p, u 8(u) + a,u'8(u), (3.8a)

ps ——2mp1u8(u) + 3a,p1u 8(u) + p, u 8(u). (3.8b)

Bx ' By(po a1)+ —(po P1) =0

8
Bz ' By(po p) ——(po ) =o.

(3.2a)

(3.2b)

Since as, Ps must vanish for u ( 0, to ensure a
Schwarzschild vacuum when u ( 0, these equations give

a3 + ips ——4m(a1 + ip1)u 8(u)

+s(al 3alpl + 31alpl + 1i 1)u ~(u)'

A calculation helping to justify the choice of the Cauchy-
Riemann equations (3.2) is given in the Appendix. Now

(2.6) and (2.7) yield

(3 9)

We can now calculate the curvature tensor components
(2.17). The result is

a2 ——0, b2 ——0, (3 3)

m=o. (3 4)

To have the Schwarzschild field when u ( 0 we must
therefore have

m = const, (3.5)

and, using (2.8), the propagation equation (2.9) reduces
to

, (a, +iP, )u'8(u) +O(r '),
2r5

1I)'1 ——O(r s),

4& ————+ O(r ),
—4

r3

C, =O(r '),
dy

44 —— ' '
b(u) + O(r ').

(3.10a)

(3.10b)

(3.10c)

(3.10d)

(3.10e)

for all values of u. Moving on now to the propagation
equations (2.12) and (2.13), we find that they simplify
remarkably to

The impulsive wave is described by the r part of the
field which is contained in 44 and has the required 8
function profile.

IV. DISCUSSION

The line element of the space-time constructed in Sec. III is obtained from (2.1)—(2.3) with the appropriate
substitutions. It is given by

dsz = —rzyss ud(u)(du —dy )+ ud(u)dkdy+ u d(u)(du +dy )I
4P1 &1+P1' 2

r r

——po u 8(u)[a1(dx —dy ) +2P1dzdy) —r po (dx +dy ) +2dudr+
~

1 —
~

du +O(r ).
2r ' (4.1)

We can write this more compactly using z = x+iy and
the fact that (3.2) can be equivalently written as

u8 u
2

dso = 2r po dz+ —poH(z)dz + 2dudr + du .

a1 —iP1 —poH(z), (4.2) (4.4)

Here (4.4) is Penrose's [6] spherical impulsive wave in
Bat space-time in a coordinate system in which the met-
ric tensor components are continuous across the history
of the wave (see [12] for the construction of Penrose's so-
lution in this coordinate system). For u ( 0, (4.3) is the
Schwarzschild solution exactly [the O(r 2) terms vanish
in this case]. For u & 0, (4.4) is the line element of fiat
space-time (the necessary coordinate transformation to

where H(z) is analytic function. Then (4.1) takes the
form

where

2m, ~'et, ~l
ds =dss — du. + ' '(Iddz*+iddy )jsr 4

+0( '), (4.3)



C. BARRABBS AND P. A. HOGAN

confirm this is given in [12]) and so (4.3) is a vacuum
perturbatioa of Bat space-time in this case.

Two further observations on these results of Sec. III
are worth noting.

(1) From (4.2) we see that since pe ——1 + 4zz the
complex-valued function a i+iPi is singular when z = oo.
On u = 0 this corresponds to a generator of the null hy-
persurface. Thus the wave we have constructed in (3.10)
exhibits this directional singularity just as Penrose's wave
in Bat space-time does. We might speculate that the exis-
teace of this directional singularity is due to the absence
of a realistic source of energy to trigger the emission of
the wave in the first place. For finite positive values of
u and large values of r we see from (3.10) that the field
behind the wave is the Schwarzschild field, the dominant
term in the curvature being 4~ in this case, and thus the
existence of the wave is not due to a loss of mass by the
isolated matter distribution.

(2) For large positive but finite values of u at fixed r
we see from (3.10) that the field behind the wave is domi-
nated by 40. In this situation the curvature tensor is ap-
proximately Petrov-type N with propagation direction
crossing u =const& 0. Heace 40 represeats backscat-
tered radiation falling on the source. Since 40 vanishes
when m = 0, the backscattering occurs because of the
presence of the isolated matter distribution (the Penrose
wave in Bat space-time is unaccompanied by such radia-
tion). It is interesting to note that backscattered radia-
tioa is also found to accompany the emission of gravita-
tional waves during the collapse of a aonperfectly spher-
ical isolated distribution of matter, leading to the forma-
tion of a Schwarzschild black hole [13]. We finally note
that the approximations we have had to make prevent us
&om obtaining information about the space-time to the
future of u = 0 in the limit u -+ +so.

n = A(x, y, r), P = B(x,y, r), a = 0, b = 0,

t"' = 0, p = 0, (A2)

R33 = 0, R&3 = 0, Rgg+ R22 = 0, (A3)

for A = 1, 2. The vanishing of Rqq —R22 and Rq2 at
u = 0 is equivalent to

OA 1+ )
OF T

(A.4)

OB 1+-B=O,
OT P

respectively. We solve these with

(i(x, y) p(*, y)
(A6)

Now R34 vanishes identically at u = 0 while the vanishing
of B~4 for A = I, 2 at u = 0 yields the Cauchy-Riemann
equations

and (3) at u = 0 the second and subsequent derivatives
of a, P, a, b, c,p with respect to u are not necessarily zero.
Assumptions (1)—(3) ensure the appearance of Penrose's
impulsive wave [Eq. (4.4)] in the special case m = 0. We
now require that at u = 0 the Ricci tensor and all its
derivatives with respect to u should vanish. Denoting by
R g the components of the Ricci tensor on the half-null
tetrad defined via the one-forms (2.2) we find that, at
u=0,

ACKNOVV'LEDC MENTS
(A7)

We thaak Professor W. Israel and Professor I. Robin-
soa for enlightening discussions.

APPENDIX: A %PAVE FRONT EXPANSION

To motivate the choice of the Cauchy-Riemann equa-
tions (3.2) we examine the space-time to the future of
the history of the impulsive wave (i.e., for u & 0) not in
terms of the asymptotic expansions (2.3) but in terms of
expansions of the functions o., P, a, b, c,p in powers of u
about u = 0. The appropriate wave-kont expansion will
be obtained if we assume (1) when u = 0,

used in Sec. III of the text. The vanishing of the re-
maining Ricci tensor component R44 at u = 0 gives the
information

This process can readily be coatinued yielding more infor-
mation about the derivatives of a, P, a, b, c,p with respect
to u at u = 0. We see at this early stage though that we
can write

a=O, P=O, a=0, b=O, ~i(* ~) + 0( 2) (A10)

(A1)

where m is a constant, (2) with an overdot denoting dif-
ferentiation with respect to u we require at u = 0,

(A11)

for u & 0 with ai, Pi satisfying (A7) and (A8). To
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solve the (characteristic) initial-value problem for the sys-
tem of equations (2.9), (2.12), (2.13), (2.15), and (2.16)
we can first specify the two functions of three variables
aq, Pq. This we have done in (3.1) to ensure that we will

obtain an impulsive wave on u = 0. To have the choice
of (3.1) consistent with the wave front expansion results
(A10) and (A11) with (AV) and (AS) we have imposed
the conditions (3.2).
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