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Gravitational radiation from coalescing binary neutron stars
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We calculate the gravitational radiation produced by the merger and coalescence of inspiraling
binary neutron stars using three-dimensional nuxnerical sixnulations. The stars are modeled as poly-
tropes and start out in the point-mass limit at wide separation. The hydrodynamic integration is
performed using smooth particle hydrodynaxnics arith Newtonian gravity, and the gravitational ra-
diation is calculated using the quadrupole approximation. We have run several simulations, varying
both the neutron-star radius and the equation of state. The resulting gravitational wave energy
spectra dE/df are rich in information about the hydrodynamics of merger and coalescence. In par-
ticular, our results demonstrate that detailed information on both GM/Rc and the equation of
state can in principle be extracted from the spectrum.

PACS nn~ber(s): 04.30.Db, 04.80.Nn, 97.60.Jd, 97.80.—d

I. INTRODUCTION

Coalescing binary neutron stars are among the most
promising sources of gravitational waves for detection
by interferometers such as Laser Interferometric Grav-
itational Wave Observatory (LIGO) and VIRGO [1,2].
Recent studies [3] suggest that binary inspiral due to
gravitational radiation reaction, and the eventual coa-
lescence of the component stars, may be detectable by
these instrn~ents at a rate of several per year. The in-
spiral phase comprises the last several thousand binary
orbits and covers the frequency range f 10—1000 Hz,
where the broadband interferometers are most sensitive.
During this stage, the separation of the stars is much
larger than their radii and the gravitational radiation can
be calculated quite accurately using post-Newtonian ex-
pansions in the point-mass limit [4]. It is expected that
the inspiral wave form will reveal the masses and spins
of the neutron stars, as well as the orbital parameters of
the binary systems [2,5,6].

When the binary separation is comparable to the neu-
tron star radius, hydrodynamic eH'ects become dominant
and coalescence takes place within a few orbits. The coa-
lescence regime probably lies at or beyond the upper end
of the frequency range accessible to broadband detectors,
but it may be observed using specially designed narrow
band interferometers [7] or resonant detectors [8]. Such
observations may yield valuable information about neu-
tron star radii, and thereby the nuclear equation of state
[5,9,10].

Three-dimensional numerical simulations are needed to
calculate the detailed hydrodynamical evolution of the
system during coalescence. Rather than dwell on the
uncertain details of the physics of neutron-star interiors,
most studies of this problem have opted simply to model
the neutron stars as polytropes with the equation of state

P K~V K~1+1/n (I)
where K is a constant that measures the speci6c entropy
of the material and n is the polytropic index. A choice

of n = 1 (I' = 2) mimics a fairly stiff nuclear equation
of state. Shibata, Nakamura, and Oohara [11,12] have
studied the behavior of binaries with both synchronously
rotating and nonrotating stars, using an Eulerian code
with gravitational radiation reaction included. Rasio and
Shapiro [13,14] have simulated the coalescence of syn-
chronously rotating neutron-star binaries using the La-
grangian smooth particle hydrodynamics (SPH) method
with purely Newtonian gravity. Recently, Davies et al.
[15] have carried out SPH simulations of the inspiral and
coalescence of nonsynchronously rotating neutron stars,
focusing on the thermodynamics and nuclear physics
of the coalescence, with particular application to p-ray
bursts. All of these studies use the quadrupole formula
to calculate the gravitational radiation emitted.

Stars in a synchronous binary rotate in the same sense
as their orbital motion, with spin angular velocity equal
to the orbital angular velocity, as seen from a nonrotating
frame. In most close binary systems (for example, those
with normal main-sequence components) viscosity acts to
spin up initially nonrotating stars, causing them to come
into a state of synchronous rotation in a relatively short
period of time [16]. However, realistic neutron-star vis-
cosities are expected to be quite small, and recent work
suggests [17] that the time scale for synchronization of
neutron-star binaries is generally much longer than the
time scale for orbital decay and inspiral due to the emis-
sion of gravitational waves. Thus neutron-star binaries
are generally not expected to become synchronous as they
evolve toward coalescence.

As a complement to full three-dimensional (3D) hydro-
dynamical simulations, Lai, Rasio, and Shapiro [18,19]
have used quasiequilibri»m methods to focus on the last
10 or so orbits before the surfaces of the neutron stars
come into contact. During this time, as tidal e8ects grow,
the neutron stars are modeled as triaxial ellipsoids inspi-
raling on a sequence of quasistatic circular orbits. Using
an approximate energy vacational method these authors
have modeled both synchronous and nonsynchronous bi-
naries. They 6nd that, for su8iciently incompressible
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polytropes (n & 1.2), the system undergoes a dynamical
instability which can signi6cantly accelerate the secular
orbital inspiral driven by radiation reaction. (This insta-
bility is driven by Newtonian hydrodynamics; see [20) for
the case of an unstable plunge driven by strong space-
time curvature. ) They have calculated the evolution of
binaries as they approach the stability limit and the or-
bital decay changes &om secular to dynamical in char-
acter, and have investigated the resulting gravitational
wave emission [18]. Their results provide an important
component in understanding the behavior of the full 3D
hydrodynamical models.

We have carried out SD simulations of the coalescence
of nonrotating neutron stars using SPH, with particu-
lar application to the resulting gravitational wave-energy
spectr»~ dE/df Our. initial conditions consist of identi-
cal spherical polytropes of mass M and radius R on circu-
lar orbits with separations sufficiently large that tidal ef-

fects are negligible. The stars thus start out efFectively in
the point-mass regime. The gravitational 6eld is purely
Newtonian, with gravitational radiation calculated using
the quadrupole approximation. To cause the stars to spi-
ral in, we mimic the effects of gravitational radiation re-
action by introducing a kictional term into the equations
of motion to remove orbital energy at the rate given by
the equivalent point-mass inspiral. As the neutron stars
get closer together the tidal distortions grow and even-

tually dominate, and coalescence quickly follows. The
resulting gravitational wave forms match smoothly onto
the point-mass inspiral wave forms, facilitating analysis
in the &equency domain. We focus on examining the ef-

fects of changing R and the polytropic index n on the
gravitational wave-energy spectr»m dE/df .

This paper is organized as follows. In Section II we

present a brief description of the numerical techmques
we used to do the simulations. Section III discusses the
calculation of the gravitational wave quantities, including
the spectrum dE/df. The use of a frictional term in the
equations of motion to model the inspiral by gravitational
radiation reaction is discussed in Sec. IV, and the initial
conditions are given in Sec. V. The results of binary
inspiral and coalescence for a standard run with M =
1 4 Mo, R = 10 km, and polytropic index n = 1 (I' = 2)
are given in Sec. VI, with the &equency analysis and
the spectr»m dE/df presented in Sec. VII. Section VIII
presents the results of varying the neutron-star radius R
and the polytropic index n. Finally, Sec. IX contains a
summary of our results.

II. NUMERICAL TECHNIQUES

Lagrangian methods such as SPH [21]are especially at-
tractive for modeling neutron-star coalescence since the
computational resources can be concentrated where the
mass is located instead of being spread over a grid that
is mostly empty. We have used the implementation of
SPH by Hernquist and Katz [22] known as TREEs&&

this code, the Quid is discretized into particles of 6nite
extent described by a smoothing kernel. The use of vari-

able smoothing lengths and individual particle time steps

makes the program adaptive in both space and time.
Gravitational forces in TREESPH are calculated using a

hierarchical tree method [23] optimized for vector com-
puters. In this method, the particles are 6rst organized
into a nested hierarchy of cells, and the mass multi-
pole moments of each cell up to a 6xed order, usually
quadrupole, are calculated. To compute the gravita-
tional acceleration, each particle interacts with difkrent
levels of the hierarchy in difFerent ways. The force due
to neighboring particles is computed by directly sum-
ming the two-body interactions. The infiuence of more
distant particles is taken into account by including the
multipole expansions of the cells which satisfy the accu-
racy criterion at the location of each particle. In general,
the number of terms in the multipole expansions is small
compared to the number of particles in the corresponding
cells. This leads to a signi6cant gain in efficiency and al-
lows the use of larger n»mbers of particles than would be
possible with methods that simply sum over all possible
pairs of particles.

TREEsPH uses arti6cial viscosity to handle the shocks
that develop when stars collide and coalesce. The code
contains three choices for the artificial viscosity; we have
chosen to use the version modi6ed by the curl of the
velocity 6eld. This prescription reduces the amount of
artificial viscosity used in the presence of curl, and has
proved to be superior to the other options in tests of head-
on collisions of neutron stars [24] and global rotational
instability [25]. Since this has already been discussed in
the literature, we remark only that the artificial viscosity
consists of two terms, one that is linear in the particle
velocities (with user-specified coefficient a) and another
that is quadratic in the velocities (with coefficient P),
and refer the interested reader to Refs. [22] and [24] [see
especially their Eqs. (3), (5), and (6)] for details.

As has been noted above, the neutron stars are not
expected to be synchronously rotating due to their very
small physical viscosity. However, in computer simula-
tions numerical viscosity, either present in the method
itself or added explicitly as artificial viscosity, can have
a similar eKect and cause the stars to spin up. We have
monitored this efFect in our simulations and have found
it to be small; see Sec. VI below.

III. CALCULATION OF GRAVITATIONAL
RADIATXON

The gravitational radiation in our simulations is calcu-
lated in the quadrupole approximation, which is valid for
nearly Newtonian sources [26]. The gravitational wave-

forms are the transverse-traceless (TT) components of
the metric perturbation h;~'

~vv
4

where

p x;x~ —3b;,.r d r
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is the reduced (i.e., traceless) quadrupole moment of the
source and an overdot indicates a time derivative d/dt.
Here spatial indices i,j = 1,2, 3 and the distance to the
source r = (2: +y2+ z ) ) . In an orthonormal spherical
coordinate system (r, 8, (t)) with the center of mass of the
source located at the origin, the TT part of I,~ has only
four nonvanishing components. Expressed in terms of
Cartesian components these are (cf. [27]) EE= I dt. (12)

(3) indicates the third-time derivative, and the double
angle brackets indicate an average over several wave pe-
riods. Since such averaging is not well defined during
coalescence, we simply display the unaveraged quantity

(G/5c )I(-)I;.) in the plots below. The energy emitted
as gravitational radiation is

Sss = (I cos (t)+S„„sinP+ 5 „sin2(t))cos 8

+I, sin 8 —(I, cos P +I„,sin P) sin 28,

I~y = I sin P+ S„„cos(t) —S „sin2$,
Igy ——I~

= 2(I„„—S ) c os8 isn2$+ I scos8cos2$
+(S, sin P —Is, cos P) sin 8.

(4)

The angular momentum lost to gravitational radiation is

where e;~g is the alternating tensor. The total angular
momentum carried away by the waves is

The wave amplitudes for the two polarizations are then
given by

AJ; = dJ; dt dt. (14)

G1
h+ ————(Iss —I4)y),

G2-
hx = ——Ieyc4r

(5)

(6)

unaver agedAgain, we plot the quantity
(2G/5cs)e;~sI. S& for dJ;/dt.

The energy emitted in gravitational waves per unit &e-
quency interval dE/df is given by Thorne [28] in the form

For an observer located on the axis at 8 = 0, ()) = 0 these
reduce to

C X=
G

2(4«')f'(Ih+(f)I'+ Ih (f)I') (15)

h+1axxs

hx, axis =

G1- ~ ~

—,-(&* -Isw)c r
G2-——Ic4r

The angle-averaged wave forms are defined by [27]

(7)

(8) +oo

h(f) =— h(t)e' '~'dt (16)

where r is the distance to the source and the angular
brackets denote an average over all source angles. We
define the Fourier transform h(f) of any function h(t) by

(h', ) = ' f a h, n—
and

h(f) —= f h(j)e ~'df (17)

which give

(h*„)= —' f'h'„an, To calculate the angle-averaged quantity (~h+
~

+ (hx ( ),
we first take the Fourier transforms of Eqs. (5) and (6),
to obtain

+ 1 (y(2) I(2) )
2 + 14 (I(2))

2

(10)

c - -(2) -(2)4—rh+ ——Ig~ —I4,~,

-(2)4—rhx =2Ie
G

(18)

(19)

2(h2 ) 1(I(2) y(2))2 + 2(I(2))2 + 4(I(2))2

+ 4 (I(2))2

The Fourier transforms h+ and hx have the same angular
dependence, given by (4), as h+ and hx, respectively.
The angle averaging

[Note that Eq. (10) corrects some typographical errors in
Eq. (3.12) of [27].]

The standard definition of gravitational-wave luminos-
ity is

dE 1 G (3) 3)

(Ih+I ):4 f Ih+I

(2o)

where there is an implied sum on i and j, the superscript gives expressions analogous to (10):
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8

4 -(2) 2+ &~ II,.I (21)

We then assume that this energy change is due to a &ic-
tional force f that is applied at the center of mass of
each star, so that each point in the star feels the same
&ictional deceleration. Dividing the loss equally between
the two stars gives

C8
1 dE

dt PM
(25)

We then have

(II +(t)I'+ lI .(&)I') = (I&+(&)I') + (l~. (&)I') (22)

which may be substituted into expression (15) for dE/df
We use the techniques of [24] to calculate the

quadrupole moment and its derivatives. In particular,
I and I are obtained using particle positions, velocities,
and accelerations already present in the code to produce
very smooth wave forms. This yields expressions similar

to those of Finn and Evans [29]. However, I, requires
the derivative of the particle accelerations, which is taken
numerically, and introduces some numerical noise into I
and dJ;/dt This n.oise can be removed by smoothing; see

[24] for further discussion. We have applied this smooth-
ing in producing all graphs of L and dJ;/dt in this paper.

IV. MODELING INSPIRAL BV
GRAVITATIONAL RADIATION REACTION

Widely separated binary neutron stars (that is, with
separation a )) R) spiral together due to the effects of
energy loss by gravitational radiation reaction. Once the
two stars are close enough for tidal distortions to be sig-
nificant, these effects dominate and rapid inspiral and
coalescence ensue. In our calculations we initially place
the neutron stars on (nearly) circular orbits with wide

enough separation so that tidal distortions are negligible
and the stars are effectively in the point-mass limit. Since
the gravitational field is purely Newtonian and does not
take radiation reaction losses into account, we must ex-
plicitly include these losses to cause inspiral until purely
hydrodynamical efFects take over.

To accomplish this, we add a &ictional term to the par-
ticle acceleration equations to remove orbital energy at a
rate given by the point-mass inspiral expression (see [15]
for a similar approach). The gravitational wave 1nminos-

ity for point-mass inspiral on circular orbits is [26,30]

dE 32 G p2M3
L'PM =

5 5dt PM 5 C a

dE 64c5 1 (GM)
dt pM 5 G(5 (c2R) (24)

where p, = MqM2/(Mq + M2) is the reduced mass, M =
Mq+M2 is the total mass of the system, and the subscript
"PM" refers to point-mass inspiral. For equal mass stars
with Mq ——M2 = M and separation a = $R, we find

where V is the center of mass velocity of the star. Since
f acts in the direction opposite to V, this gives an accel-
eration

f 1 dE V
M 2M dt pM IVI2

(26)

V. INITIAL CONDITIONS

Since our neutron stars start out widely separated with
negligible tidal interaction, they are modeled initially as
spherical polytropes. Because the time scale for tidal
effects to develop is much greater than the dynamical
time tD for an individual star, where

qGM)

we start with stable, "cold" polytropes produced by the
method discussed in [24]. The stars are then placed on
a circular orbit with separation ao ——(OR in the center-
of-mass &arne of the system in the x-y plane. Locat-
ing the centers of mass of the individual stars at (z, y)
positions (+ao/2, 0) initially, the stars are then given
the equivalent point-mass velocities for a circular orbit
V„=k(M/2ap)'~2.

To ensure that the stars start out on the correct point-
mass inspiral trajectories, we also give them an initial
inward radial velocity V as follows. For point-mass in-

This term is added to the acceleration of every particle,
so that each particle in either star experiences the same
frictional deceleration. The net effect is that the centers
of mass of the stars follow trajectories that approximate
point-mass inspiral. This &ictional term is applied un-
til tidal effects dominate, leading to more rapid inspiral
and coalescence; see Sec. VI and Fig. 10 below. (Opera-
tionally, our assignment of a particle to a "star" is based
simply on which body it happened to belong to initially.
Since the frictional term is turned ofF before coalescence
occurs, the question of what to do after the stars have
merged does not arise. )

The dynamics of polytropes in purely Newtonian grav-
ity is scale &ee in the sense that, for a given polytropic
index n, the results of a calculation can be scaled for any
values of the mass M and radius R. Inspiral by gravi-
tational radiation reaction introduces the dimensionless
para, meter GM/Rcl, as is explicitly evident in Eqs. (24)
and (31) for our frictional model of inspiral. For neutron
stars, GM/Rc2 is determined by the nuclear equation of
state. In the calculations below, we will vary both R (and
hence GM/Rc2) and the polytropic index n.
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spiral the separation u(t) is given by [26] VI. BINARY INSPIRAL AND COALESCENCE

( t )1/4
o(&) = tI0

~

1 ——
~

I «) (28)

where ao is the separation at the initial time t = 0 and

5 e' a40

256 G3 ~M2 (29)

is the inspiral time, i.e., the time needed to reach sep-
aration a = 0. For equal mass stars, the initial inward
velocity is thus

V =—
dt t=o

1da
2dtt o

1ap
870

Since the stars have initial separation a0 ——(0R, this
gives

64 c (GM)
5 Q &c'R)

The use of the correct initial inspiral trajectory allows
us to match our gravitational wave forms smoothly to
the equivalent point-mass wave forms. This is important
when analyzing the signals in the kequency domain, as
discussed in Sec. VII below.

We take the case M = 1.4 Mo and R = 10 km (so
GM/Rcs = 0.2 a), with polytropic index n = 1 and initial
separation ao ——4R as our standard model, which we
refer to as run 1. The parameters of this model and
the other two models introduced in Sec. VIII below are
presented in Table I. The results of the simulations are
s»mmarized in Table II. Time is measured in»~~ts of
the dynamical time t~ given in Eci. (27); for run 1, tn =
7.3 x 10-' s.

The evolution of this system for the case of N = 4096
particles per star is shown in Fig. 1. Each kame shows
the projection of all particles onto the z-y plane. As
the stars spiral together, their tidal bulges grow. By
t 100t~ the stars have come into contact, after which
they rapidly merge and coalesce into a rotating barlike
structure. Note that the merger is a fairly gentle process
and, in contrast to head-on collisions, does not generate
strong shocks [14,24,31]. Spiral arms form as mass is
shed &om the ends of the bar. Gravitational torques
cause angular momentum to be transported outward and
lost to the spiral arms. The arms expand and eventually
form a disk around the central object. By t = 200tLI, the
system is roughly axisymmetric.

Contour plots at t = 200tn reveal more details of the
system. In Fig. 2(a), which shows a cut along the m-

y equatorial plane, we see that the core is essentially
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FIG. 1. Particle positions
are shown projected onto the
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N = 4096 particles per star.
Here, M = 1.4 Mo, R = 10 km,
polytropic index n = 1, and ini-
tial separation ao ——4R. The
stars are orbiting in the coun-
terclockwise direction. The ver-
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axisymmetric out to cylindrical radius m 2R, where
m = (x2 + y2) /2. As the spiral arms wind up, expand,
and merge, the disk grows increasingly axisymmetric. In
the process the arms expand supersonically, producing
shock heating that causes the disk to pufF up. This can
be seen in Fig. 2(b), which shows density contours (two
per decade in density) for a cut along the meridional x-z
plane.

The angular velocity 0(m) of the particles is shown as
a function of cylindrical radius m in Fig. 3. For our choice
of parameters, 0 = 1 (t& ) corresponds to a spin period
T,&, ——0.46 ms. At t = 150t~ the object is in the final
stage of its gravitational wave "ring down" (cf. Fig. 6
below). Fig. $(a) shows that the central core m & 2R is
still deferentially rotating at this time (with 0 m 0.4).
The disk tn 2R is also di&erentially rotating, with 0

~. By t = 200tD the central object has less difFerential
rotation and is more nearly rigidly rotating, with 0
0.65t&, giving a spin period T,~; 0.71 ms. The disk
is differentially rotating with 0 m 1 r. (Recall that
Keplerian motion has 0 m 1 s.)

The mass m contained wit»u cylindrical radius m is
plotted in Fig. 4, showing that 6%p of the mass has been
shed to the disk nr & 2B. Between the times t = 150ta
and t = 200t~, some of the matter in the disk is redis-
tributed out to larger radii. The speci6c spin angular
momentu~ j(m) within cylindrical radius u7 is shown in
Fig. 5. About 27% of the angular momentum has been
shed to the disk, with continued outward transport of
angular momentum within the disk taking place between
t = 150tD and t = 200t~.

The gravitational wave forms eh+ and rh„for an ob-
server on the axis at 8 = 0 and y = 0 are shown for
this run in Figs. 6(a) and 6(b), where the solid lines give
the code wave forms and the dashed lines the point-mass
results. For the first couple of orbits after the start of
the run (T~,blq

——2TGw) the code wave forms match
the point-mass predictions. As the tidal bulges grow,
the stars spiral in faster than they would on point-mass
trajectories, leading to an increase in the &equency and
amplitude of the gravitational wave forms (cf. [18]). The
gravitational wave amplitudes reach a maximum during

10 1 ' I ' I '
I

' I ' t ' 1

4
~ ~ ~

~ q ~ +

~
+ m ~ e~~ tJ
t P~

~ H oy
~ ~ ~~ ~ ~

~ ~

! I I I I

(a) t = 150 t

y/R

0

0.3 — :

8

0.1.—

' slope = —0.4

0.03— slope =

—10
—10 0

x/R
10

0.01
0.1 0.3

I

m/R

0 ' I ' I ' I ' 1 '
I

' I ' I ' I ' I '
I

' I ' I ' I '
I '

I

' t ' I ' I ' I1

200 t,D 1.'
\ ~ ~ ~ ~

~ g ~ ~ p
~ /P '+q P lpga

~ y ~

(b) t = 200 to

z/R 0.3—

0-

slope =

—10
—10

I . I, i . I . i . I . I . I . I . I . I . I . I . I . I . I

—5 0 5
x/R

10

FIG. 2. (a) Density contours are shown for a cut along
the x-y plane for run 1 with N = 4096 particles per star at
t = 200to. The contour levels are 0.3, 0.1, 0.03, 0.01, . . . (the
central density is 0.6M/R ). (b) The same density contours
as in part (a), but for a cut along the z-z plane.

0.01
0.1 0.3

I I g i a ~ I I

1 3 10
~/R

FIG. 3. The angular velocity O(uz), where
m = (x + y ) ~, is shown for run 1 with N = 4096 par-
ticles per star. 0 = 1 (l.e., to ) corresponds to a spin period
T&&I„:0 46 ms (a) t:150to& (b) t:200to,
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FIG. 4. The mass fraction m(m) is shown at t = 150to
and t = 200t~ for run 1 with N = 4096 particles per star.

the merger of the two stars at t 105 —110t~, then
decrease as the stars coalesce and the spiral arms ex-
pand and form the disk. The peak wave-form ampli-
tude (cs/GM)rh+ 0.4 corresponds to a value h
1.4 x 10 2~ for a source at distance r= 20 Mpc (the ap-
proximate distance to the Virgo cluster). By t 180tD
the gravitational waves have shut ofF and the system is
essentially axisymmetric.

Figure 7(a) shows the gravitational wave luminosity

L/Le (where Lo = cs/G), 7(b) the energy b,E/Mc2
emitted as gravitational radiation, 7(c) dJ, /dt for the
gravitational radiation, and 7(d) the total angular mo-
mentum 6J,/ J (where J is the initial total angular mo-
mentum of the system) carried by the waves. In all
the gravitational-wave quantities, the code results (solid
lines) initially track the point-mass case (dashed lines)
very well, departing significantly from the point-mass
predictions somewhat before the onset of dynamical in-

stability. The maxim»m l~mm. osity is 1.65 x 10 Lp.
This may be compared with the value of 5.3 x 10 4Ls
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found by [24] for the case of a head-on collision with
GM/Rcm = 0.21; for off-axis collisions on parabolic
orbits, the maximum obtained by those authors was

1.0 x 10 Lp. The total energy radiated away after the
luminosity departs &om the point-mass result by more
than 10%%uj'& is 0.032Mcs. Again this can be compared
with 0.0025Mc2 for a head-on collision and a maximal
of 0.016Mc2 for ofF-axis collisions obtained by [24]. Al-

though the collisions can achieve a higher gravitational-
wave luminosity, they radiate less energy in the form of
gravitational waves overall because they take place on
shorter time scales than the inspiralling binaries.

How sensitive are these results to the resolution of the
calculation? To answer this question we ran the same
standard model with difFerent numbers of particles per
star. Figure 8 shows a comparison of the wave form rh+
for the cases N = 1024, 2048, and 4096 particles per star.
It is clear that the diHerences in the wave forms are small.
We wiD see in Sec. VII below that there are only slight
difFerences in the frequency domain as well.

In numerical simulations viscosity, whether implicit in
the numerical method or added explicitly as artificial vis-
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FIG. 5. The specific angubLr momentum j(m), norma»~ed
to unity for the entire system, is shovrn at t = 150t~ and
t = 200t~ for run 1 arith N = 4096 particles per star.

FIG. 6. The gravitational +rave forms rh+ and rhx are
shown for an observer on the axis at 8 = 0, P = 0 for run
1 arith N = 4096 particles per star. The solid lines give the
code wave forms, and the dashed lines the point-mass results.
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PIG. 7. Various gravitational radiation
quantities are shown for run 1 with N = 4096
particles per star. The solid lines show
the code results, and the dashed lines the
point-mass values. (s) Gravitational wave
luminosity L/Lo, where Lo = c /G; (b) en-

ergy b,Z/Mc emitted as gravitational radi-
ation; (c) dJ,/dt; (d) the angular momentum
AJ, /J carried away by the waves, where J
is the initial total angular momentum of the
system.
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ties play negligible roles in spi~~ing up the stars in our
simulations.

For inspiraling stars, torquing due to the gravitation-
ally induced tidal bulges will cause a physical spin up
of the stars [14]. This is shown for the case N = 4096
particles per star in Fig. 9, which plots the spin angu-
lar momentum of oae star (normalized by the spia of a
synchronously rotating star at that orbital separation)
as a function of time. We see that the spin angular mo-

.80.
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FIG. 9. The ratio of J,~;, the spin angular momentum of

a star, to J,
„„„

the value for a syachronously rotating star at
that separation, is plotted vs time for run 1 with N = 4096
particles per star. This graph shows that arti6cial viscosity
does not signi6cantly spin up the star during the inspiral.
By t 100to the stars are in contact, and the rapid spin
up is due to gravitationally induced tidal torquing during the
merger process.

N = 4096

E. . . I. . . l. . . . l. . . . l. . . . l. . . . l. . . . i. . . . i. . . . l. . . . l

80 100 120 140 160 180 200
t/tD

FIG. 8. A comparison of the wave form rh+ for run 1 us-

ing N = 1024, 2048, and 4096 particles per star. The case
N = 2048 particles per star was only run for 150t~.

cosity, can cause problems by artificially spinning up the
stars [15]. To monitor tbis efFect in our simulations we
calculated the spin angular momenturo of each star about
its center of mass and compared this with the results ex-
pected for a synchronously rotating star (the expected
result in the limit of large viscosity). In general, we have
found that these nonphysical viscous effects always re-
main small in our simulations. For example, we ran a
test case consisting of initially nonspinning stars each
composed of N = 1024 particles on a circular orbit of
constant separation a = 4R, with artificial viscosity coef-
ficients o. = P = 0.3. After 100t~ ( 2.8 orbits), the stars
had spin aagular moments ( 2.$% of the synchronous
value. We conclude that numerical and artificial viscosi-
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ment»m of the star remains small until contact occurs at
t 100t~,. after this it increases sharply, reaching nearly
70Fo of the synchronous value at t = 105t~. (Each "star"
is composed of the particles that belonged to it initially,
with the orbital separation of the stars given by the dis-
tance between the two centers of mass. ) Comparison
with Fig. 1 con6~ms that this efFect is due to the tidal
torquing that occurs when the stars develop large tidal
bulges, come into contact, and merge.

Once the stars are close enough for this gravitation-
ally induced tidal torquing to be signi6cant, Newtonian
gravitational effects operating on a dynamical time scale
dominate the secular radiation reaction efFects, leading
to more rapid inspiral, merger, and coalescence [18]. We
should turn ofF the gravitational friction term at some
time after the Newtonian tidal torquing takes over and
before the merger occurs, since during the merger the
concept of equivalent point-mass trajectories is meaning-
less. We have experimented with turning ofF the gravi-
tational friction term at difFerent times and present the
results for our standard run with N = 1024 particles per
star in Fig. 10, which shows the center-of-mass separa-
tion of the two stars as a function of time. Here, the
solid line shows the result of running with the gravita-
tional &iction term left on, and the short dashed lines
show the results of turning this term ofF at (1) t = 70t~,
(2) t = 85t~, and (3) t = 100tD. The long dashed-line
shows the equivalent point-mass result.

In cases (1) and (2), the stars go into nearly circu-
lar orbits (with eccentricities appropriate to the inspi-
ral radial velocity at that separation) once the frictional
term is turned oiF. However, the trajectory in case (3)
is very similar to the result when the &ictional term is
left on, indicating that the Newtonian tidal efFects are
dominant by this point. The center-of-mass separation
of the two stars in this case is 2.5R at t = 100tD,
and then rapidly decreases. This result is in good agree-
ment with the prediction of a dynamical stability limit
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FIG. 11. The wave form eh+ is shown for run 1 with
N = 1024 particles per star with three different values of
the artifical viscosity coefBcients a and P.

at a = 2.49R by Lai, Rasio, and Shapiro [18]. On the
basis of these tests, we have turned ofF the gravitational
friction term at t = 100tD for our standard run, and all
the other plots in this paper for this run were done with
this choice. For each of the rn~s reported below with
difFerent values of the physical parameters, we have car-
ried out such experiments to determine the optimal time
to turn ofF the gravitational friction term, since the time
at which the Newtonian tidal efFects dominate difFers in
each case (cf. [18]).

Finally, we have experimented with the values of the
artificial viscosity coefficients a and P. For all r»~s we
used the values a = P = 0.3 during the inspiral phase.
However, since shocks occur during the merger, coales-
cence, and the expansion of the spiral arms, we ran some
tests with difFerent amounts of arti6cial viscosity during
these regimes. Figure 11 shows the wave form eh+ for
our standard run with N = 1024 particles per star during
this phase for three cases: solid line, a = P = 0.3; short-
dashed line, a = 0.3, P = 1; and long-dashed line, a = 1,
P = 2. Not surprisingly, the amplitude of the wave form
is damped as a and P are increased. The low viscosity
case conserves energy to 2%%uo during the period 100—
200t~ (after the frictional term is turned ofF), indicating
that the evolution of the system is not dominated by
strong shocks. Overall, the difFerences in energy conser-
vation for the three cases are not signi6cant. Therefore,
since the low viscosity case produces the least damping
of the wave form, we chose to use the values a = P = 0.3
in all of our runs.

0 . . . . i. . . . I. . . . i. . . . t. . . . i. . . . I. . . . i. . . . I. . . . i. . . . I1.
0 20 40 60 80 100 120

t/t. ,
FIG. 10. The separation between the centers of mass of the

stars for run 1 with N = 1024 particles per star is shown. The
solid line gives the result of leaving the gravitational friction
term on. The short-dashed lines show the eHect of turning
ofF the friction term at (1) t = 70to, (2) t = 85to, and (3)
t = 100t~. The long-dashed line shows the point-mass result.

VII. ANALYSIS IN THE PREQUENCY DOMAIN

Broadband detectors such as LIGO and VIRGO should
be able to measure the gravitational wave forms of in-
spiraling neutron star binaries in the frequency range
f ~ 10—1000 Hz. Comparison of these signals with wave
form templates derived &om post-Newtonian analysis is
expected to yield the neutron-star mass M [5,6]. It is
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important to develop techniques to measure the neutron-
star radius R since this information, coupled with M, can
constrain the equation of state for nuclear matter [10].

The actual merger and coalescence stages are driven
primarily by hydrodynamics and are expected to depend
on both R and the equation of state, here parametrized
by the polytropic index n. For most neutron-star bi-
naries, this will take place at frequencies f ) 1000 Hz.
In this regime, shot noise limits the sensitivity of the
broadband interferometers and so these signals may not
be detectable by them [1,2]. However, a set of specially
designed narrow-band interferometers [7] or resonant de-
tectors [8] may be able to provide information about this
high frequency region [9].

The merger and coalescence of the neutron stars take
place within several orbits following initial contact, after
which the gravitational radiation shuts off fairly rapidly
as the system settles into a roughly axisymmetric 6-
nal state [5]. This rapid shutofF of gravitational waves
is expected to produce a sharp cutofF in the spectrum
dE/df Sinc.e the frequency of the radiation calculated
in the point-mass approximation at separation a scales
as ~ a /' R /', a set of narrow-band detectors that
can locate the cutofF frequency where the energy spec-
tre~ dE/df drops sharply may in principle determine
the neutron-star radius B [5,9,32].

We have calculated the spectrum dE/df for our simu-
lations using Eq. (15). For point-mass inspiral, dE/df
f ~/s [28], where the decrease in energy with frequency
reflects the fact that the binary spends fewer cycles near
a given frequency f as it spirals in. To see any cutofF fre-

quency in our data, we need a reasonably long region of
point-mass inspiral in the frequency domain. Although
our runs do start out in the point-mass regime, the bi-
naries undergo dynamical instability and rapid merger
within just a few orbits. To compensate for this we match
our wave forms h+ and h„onto point-mass wave forms
extending back to much larger separations and hence
lower frequencies.

The energy spectrum dE/df for run 1 with 1V = 4096
particles per star is shown in Fig. 12. The solid line
shows the spectr~~m for the extended wave form includ-
ing point-mass inspiral, and the short-dashed line shows
the spectr~~m of the simulation data only. Note that the
two curves match closely. The separation at which the
data were matched corresponds to frequency 770 Hz,
which is well within the inspiral regime dE/df f
Figure 12 shows that the match is smooth, and does not
affect the merger and coalescence region of the spectrum.
We have also examined the effect of using different num-
bers of particles on dE/df The result is. shown in Fig. 13,
which plots the spectra for run 1 with N = 1024 and 4096
particles per star. The use of a smaller number of parti-
cles makes only a slight rliRerence to dE/df

Examination of Figs. 12 and 13 reveals several inter-
esting features. Starting in the point-mass regime, as f
increases, dE/df Srst drops below the point-mass inspi-
ral value, reaching a local minimum at f 1500 Hz. We
identify this initial dip with the onset of dynamical in-
stability. For the parameters of run 1, Lai, Rasio, and
Shapiro [18] found that dynamical instability occurs at
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FIG. 12. The gravitational wave-energy spectrum dE/df is
shown for run 1 with N = 4096 particles per star. The solid
line shows the result of matching to point-mass inspiral, and
the short-dashed line is the result of using the simulation data
only. The long-dashed line shows dE/df for point-mass inspi-
rsl. The frequency fz„=1566 Hz is the orbital frequency

(fGw = 2f,b) at which dynamical instability occurs [18]. In
addition, f~, q 2500 Hz snd f„, 3200 Hz mark the fre-
quencies of the initial and secondary peaks, respectively. The
frequency f, „&,t, corresponding to s circular point-mass orbit
at separation 2B is also noted.
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FIG. 13. The gravitational wave energy spectrum dE/df is
shown for run 1 with N = 4096 particles per star (solid line)
snd N = 1024 particles per star (dashed line).

separation a = 2.49R; for point-mass inspiral, the fre-
quency at this separation is f&„„=1566 Hz. The in-
stability causes the spectruro dE/df to drop below the
point-mass value, since the stars fall together faster than.
they would had they remained on strictly point-mass tra-
jectories. For reference, Fig. 12 also shows the frequencyf„t,q ——(I/2z)(GM/8 )~/2 2200 Hz, which is twice
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100:

1::

0.01:— 150 t

the orbital &equency (in the point-mass limit) at separa-
tion 2R.

This initial fallofF in the spectrum is rather slight. At
higher &equencies, dE/df increases above the point-mass
result, reaching a fairly broad maximu~ at f~,~ 2500
Hz, roughly the frequency of the waves in Fig. 6 near
t 125tD (the approximate time at which the gravi-
tational waves shut off). To further demonstrate that
this feature is associated with the late-time behavior of
the merged system, we have calculated the spectr»m
dE/df for the cases in which the wave forms rh+ and
rA. && (including the point-mass inspiral) were truncated
at t = 120t~ and t = 150tD. The results are shown in
Fig. 14, where the solid line shows the spectrum for the
complete wave forms and the dashed lines show the spec-
tra for the truncated ones. We see that this peak forms
between t = 120t~ and t = 150tD, and therefore as-
sociate it with the transient, rotating barlike structure
formed immediately following coalescence; cf. Fig. 1.
The angular speed of this structure is 0.65t& (see
Fig. 3), which corresponds to gravitational radiation with
&equencies near 2800 Hz. The conclusion that f~, &

is associated with a bar is strengthened by run 3 below,
in which the bar survives for a much longer time and the
peak is correspondingly stronger.

Beyond fz,~, the spectriim drops sharply, eventually
rising again to a secondary maximum at f„, 3200
Hz, too high to be associated with the bar. Figure 14
shows that this peak also appears between t = 120tD
and t = 150tD. We attribute this broad, high-&equency
feature to transient oscillations induced in the coalescing
stars during the merger process —the result of low-order p
modes with frequencies somewhat higher than the Kepler
&equency in the merging object (see, e.g. , [33]).

The three &equencies f4„,f~, i„andf„,serve as a
useful means of characterizing our run~. They are in-

dicated on Fig. 12 and are presented in more detail in
Table III below.

VIII. THE EFFECTS OF CHANGING THE
NEUTRON-STAR RADIUS AND EQUATION

OF STATE

The energy spectrum dE/df shows rich structure in
the &equency range f 1000 —3000 Hz in which the
merger and coalescence of the neutron stars take place.
To understand how observations of dE/df might provide
information on the neutron-star radius and equation of
state, we must investigate the eKects of changing R and
the polytropic index n. In this section we present the
results of two ru~s which begin to explore this parameter
space. We will continue this study in future papers.

Run 2 is the same as run 1 except that the initial neu-
tron star radius is R = 15 km. Taking M = 1.4 Mo, this
gives ClM/Bcz = 0.14; see Table I. This model was run
with N = 1024 particles per star. The gross features of
the evolution of this model are simi&ar to those found in
run 1. The stars first come into contact at t 250t~.
By the end of the run, the core m ( 2R is essentially
axisymmetric and has 92% of the mass and 65%%uo of the
angular moment»m. The disk extends out to ~ lOR.
The gravitational wave forms rh+ and rh„are shown
in Figs. 15(a) and 15(b) for an observer on the axis at
8 = 0, P = 0. Figure 16(a) shows the gravitational wave
luminosity L/Lo and 16(b) the energy b,E/Mc emit-
ted as gravitational radiation. As in Fig. 7, the time
dependence of the angular moment»m carried away by
the waves is quite similar to that of the energy, and is
not presented here. In these figures, the solid lines give
the code wave forms and the dashed lines the point-mass
results. Some interesting properties of this model are
summarized in Table II.

The energy spectrum dE/df for run 2 is shown in
Fig. 17. Again, we matched the code data to point-
mass inspiral wave forms for analysis in the frequency
domain. For run 2, the match occurs at &equency 420
Hz. Given the parameters of this run, dynamical insta-
bility is expected to occur at separation a = 2.49R [18];
the point-mass inspiral &equency at this separation is
f~„——852 Hz. Figure 17 shows that, as in run 1, the
spectrum drops below the point-mass inspiral result near
fd„.The spectrum does not then rise above the point-

10-'
300

t( 120 td

I

10
f (Hz)

I

3x10

TABLE I. Parameters of the models are given. Both the
initial radius R and polytropic index n have been varied. The
neutron-star mass is assumed to be M = 1.4 Mo in all cases.
Run 1 was also run with N = 1024 and N = 2048 particles,
as discussed in the text.

FIG. 14. The gravitational wave-energy spectrum dE/df is
shown for run 1 with N = 4096 particles per star for the cases
in which the wave forms were truncated at t = 120t~ and
t = 150t~. The solid lines show the spectrum for the complete
wave forms, while the dotted lines show the truncated cases.

Run 1
Run 2
Run 3

Model R
(&m)

10
15
10

4R
4R

4.5R

GM/Rc

0.21
0.14
0.21

S
(ms)
0.073 1
0.13 1
0.073 0.5

I' N

2 4096
2 1024
3 1024
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FIG. 15. The gravitational wave forms t h+ and rhx are
shown for an observer on the axis at 6 = 0, Its = 0 for run

2; compare with Fig. 6. The solid lines give the code wave
forms, and the dashed lines the point-mass results.

mass result at f„~ 1500 Hz as ia run 1; however, it
does drop sharply just beyond f&,~, rising again to a
secondary peak at f, , ~ 1750 Hz. See Table III.

We estimate the frequency of the waves in Fig. 15
at the time when the gravitational radiation shuts oH'

(around t 270tLI) to be 1300 Hz—that is, close to

TABLE II. Results of the simulations are s»~mazed.
The core mass Mcccc and angular momentum J, „referto
material with cylindrical radius m &2R. Peak values of
the wave form (c*/GM)rta and luminosity I/lo are given'0

(c /GM)rh ~ 0.4 corresponds to a value III ~ 1.4 x 10 o at
distance v = 20 Mpc. The quantity b,E/Mc is the energy
lost to gravitational radiation aRer the stars depart sig~i&-
cantly &om the point-mass trajectory. It is still increasing at
the end of run 3 due to the rotating nonaxisymmetric core.

Model Meara Jcaarc (c /GM)f'h la/lao 4E/Mc
Run 1 94'%%uo 73%%uo 0.4 1.65 x 10 0.032
Run 2 92'%%uo 65'%%uo 0.3 2.12 x 10 0.013
Run 3 93% 67% 0.4 1.20 x 10 ) 0.042

fpossIs The orbital angular velocity near the end of the
rua is 0 0.6tD or 4.5 x 10s rad/s; any residual nonax-
isymmetric material rotating at this speed would yield
gravitational waves at &equency 1500 Hz. Again,
we interpret the secondary peak as the result of high-
frequency oscillations in the merging system. The ab-
sence of a strong peak at f~,~ and the weaker maximum
at f„,is the result of weaker tidal forces at the point of
dynamical instability, leadiag to a less pronounced and
shorter-lived bar.

Since the &equency of the gravitational radiation for
point-mass inspiral is a 3/2 R /, we expect
the features in the spectrum for run 2 to occur at
lower frequencies than in run 1, roughly in the ratio
frun 1/frssn 2 ~ (Rcssn 1/Rrun 2) 1.8. Our numeri-
cal simulations do indeed show this behavior. For exam-
ple, the ratio of the frequencies at which the first peak
occurs is 2500 Hz/1500 Hz 1.7. The ratio of the fre-
quencies at which the secondary peak occurs is 3200
Hz/1750 Hz 1.8.

Run 3 is the same as run 1 except that we use poly-
tropic index n = 0.5 (I' = 3). This model was run
with N = 1024 particles per star, with initial separation
ao ——4.5R. The stars first make contact at t 167t~.
By the end of the run, the core m & 2R has 93% of the
mass and 67% of the angular momentum; the disk ex-
tends out to 50R. The gravitational wave forms rh,+
and rh&& are showa in Fig. 18 for an observer oa the axis
at 8 = 0, $ = 0. Figure 19(a) shows the gravitatioaal
wave 1IIITIinosity I, and 19(b) the energy b,E emitted as
gravitational radiation. Again, the solid lines give the

P
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1-
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I
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/
,
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~ ~ I a

FIG. 16. Various gravitational radiation
quantities are shown for run 2. The solid lines
show the code results, and the dashed lines
the point-mass values; compare with Fig. 7.
(a) Gravitational wave luminosity I/Io', (b)
Energy EE/Mc emitted as gravitational ra-
diation.
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Lai, Rasio, and Shapiro [18]found that the onset of dy-
namical instability occurs at separation a = 2.49R for the
parameters of run 1 and at a = 2.76R for the parameters
of run 3. From this we estimate that the ratio of &equen-
cies at which the various spectral features occur should
be f,„nq/ f,„as 1.2. Our simulations approximate this
behavior. For example, the ratio of the &equencies at
which the sharp drop occurs is 2500 Hz/2200 Hz 1.1.
The ratio of the &equencies at which the secondary peak
occurs is 3200 Hz/2600 Hz 1.2.

IX. SUMMARY AND DISCUSSION

10-'
300

I

10
f (Hz)

I

3 x10

FIG. 17. The gravitational wave-energy spectrum dE/df is
shown for run 2; compare with Fig. 12.

%e have carried out SPH simulations of the merger and
coalescence of identical nonrotating neutron stars mod-
eled as polytropes. The stars start out in the point-mass
regime and spiral together due to the effects of gravi-
tational radiation reaction. Once the stars come into
contact, they rapidly merge and coalesce. Spiral arms
form as mass is shed from the ends of the central rotat-

code wave forms and the dashed lines the point-mass re-
sults. Table II s~~mmarizes some features of this run.

However, unlike the previous cases, the core of the
merged object is slightly nonaxisymmetric, as shown in
Fig. 20. The efFect of this rotating, barlike core can be
seen in the gravitational wave forms eh+ and rh& in
Fig. 18. At late times the angular velocity of the core
is 0 0.5tD, corresponding to a gravitational wave freee

quency f 2200 Hz. This agrees with the wave fre-

quency calculated from Fig. 18 at t 290t~, con6rming
that the radiation at late times is due to the rotating
core. Rasio and Shapiro [14] also found that the coales-
cence of a synchronized binary with n = 0.5 resulted in
a rotating barlike core.

The energy spectrum dE/df for run 3 is shown in
Fig. 21. Here, the match to point-mass inspiral wave
forms occurs at frequency 640 Hz. Dynamical in-

stability is expected to occur at separation a = 2.76R
[18], which gives fear

——1342 Hz. Again we see that
the spectrum drops below the point-mass inspiral result
near fear The spec. trum then rises to a sharp peak at
f~,~ 2200 Hz, drops sharply, then rises again to a
secondary peak at f„, 2600 Hz. In this model the
gravitational radiation due to the rotating bar is in the
&equency range of the first sharp peak. See Table III.

TABLE III. Results of analyzing the simulations in the &e-
quency domain are summarized. All frequencies refer to the
spectrum dE/df; cf. Fig. 12. Dynamical instability is ex-
pected to occur at separation any these values are taken
from [18]. The quantity fs~ is the gravitational wave fre-
quency for point-mass inspiral at separation any .
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FIG. 18. The gravitational wave forms eh+ and rhx are
shown for an observer on the axis at 1st = 0, P = 0 for run 3;
compare with Figs. 6 and 15. The solid lines give the code
wave forms, and the dashed lines the point-mass results.
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FIG. 19. Various gravitational radiation
quantities are shown for run 3; compare with
Figs. 7 and 16. The solid lines show the code
results, and the dashed lines the point-mass
values. (a) Gravitational wave luminosity
LjLo, (b) 'energy AE/Mc emitted as gravi-
tational radiation.
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ing barlike structure. Angular momentum is transported
outward by gravitational torques and lost to the spiral
arms. The arms expand supersonically and merge, form-
ing a shock-heated axisymmetric disk. The central rotat-
ing core becomes axisymmetric for n = 1 with the grav-
itational radiation shutting off rapidly after coalescence.
For the stiffer equation of state n = 0.5, the rotating

y/R

I

0
«/R

core is slightly nonaxisymmetric and considerably longer
lived, and the gravitational waves decrease more slowly
in amplitude.

It is instructive to compare our results with other, re-
lated work. Davies et al. recently carried out SPH cal-
culations very similar to ours with n 0.71 (I' = 2.4).
Their results for nonrotating stars are similar to ours.
Basio and Shapiro [13,14] have performed SPH simula-
tions of synchronously rotating systems. They found that
polytropes with n = 1 produce an axisymmetric core,
and those with n = 0.5 yield a nonaxisymmetric core,
in agreement with our results. However, for their syn-
chronously rotating models, the amplitude of the gravi-
tational radiation drops off more rapidly after the merger
than in our models. This effect was also seen by Shibata,
Nakamura, and Oohara [ll] and may be due to the fact
that the synchronously rotating stars are not spi~~ing
relative to one another when they merge, leading to less
"ringing" of the resulting remnant.

We have also calculated the energy emitted in gravita-
tional waves per unit frequency interval dE/df We find.
that the spectrum gradually drops below the point-mass
inspiral value near the frequency at which the dynamical
instability sets in; this causes the stars to spiral together

(b) Run a
100:

~dyn

y/R

0.01 =

I. . . . i. . . . I. . . . i. . . . I. . . . i. . . . I . . . i. . . . I

—2 —1 0 1 2
«/R

PIG. 20. Density contours are shown for a cut through the
x —y plane of the central regions of (a) run 1 (n = 1) and
(b) run 3 (n = 0.5). The same contour levels are plotted in
both cases (as in Fig. 2); however, the central density in (b)
is lower than the top contour in (a).

f (Hz)

I

3x10

FIG. 21. The gravitational wave-energy spectrum dE jdf is
shown for run 3; compare with Figs. 12 and 17.
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faster than they would on point-mass trajectories. The
spectrum then drops sharply near the frequency at which
the waves &om the main coalescence burst fall oK Fi-
nally, the spectr»m rises again to a secondary peak at
larger &equencies, the result of oscillations that occur
during the merger.

The frequencies at which these features in the spec-
tr»m occur, as well as their amplitudes, depend on both
the neutron-star radius R and the equation of state spec-
ified by the polytropic index n. Our standard model, run
I, has R = 10 km and n = 1. When we change just the
radius in run 2 to R = 15 km, the spectral features occur
at &equencies that are lower by a factor 1.8 and the
"gentler" merger leads to a much lower amplitude in the
energy spectrum, both near f&,~ and in the secondary
maximum. When instead we change just the polytropic
index in run 3 to n = 0.5, the features occur at &equen-
cies that are a factor 1.2 lower. The stiH'er equation
of state results in a longer-lived bar and a substantially
stronger peak amplitude. Measurement of the three fre-
quencies fa„,fv ~, and f„„aloagwith the amplitudes
of the spectrum there (relative to the point-mass result),
thus may be used to obtain direct information about the
physical state of the merging neutron stars. While the
details of the peaks depend somewhat on the resolution
of our simulations, the general results described here do

not.
The gravitational wave forms and the spectrum dE/df

contain much information about the hydrodynamical
merger and coalescence of binary neutron stars. Our
results show that the characteristic &equencies depend
on both the neutron-star radii and the polytropic equa-
tion of state. We intend to expand our study to include
the e8ects of both spin and nonequal masses, as well as
gravitational radiation reaction. In particular, radiation
reaction can be expected to affect the evolution of the
rotating bar in run 3, leading to changes in the spectr»m
dE/df. We will present the results of these studies in
future papers.
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