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The Einstein equations for spacetimes with two commuting spacelike Killing field symmetries
are studied &om a Hamiltonian point of view. The complexified Ashtekar canonical variables are
used, and the sy~~etry reduction is performed directly in the Hamiltonian theory. The reduced
system corresponds to the field equations of the SL(2,R) chiral model with additional constraints.
On the classical phase space, a method of obtaining an infinite number of constants of motion,
or observables, is given. The procedure involves writing the Hamiltonian evolution equations as a
single "zero curvature" equation and then employing techniques used in the study of two-dimensional
integrable models. Two infinite sets of observables are obtained explicitly as functionals of the phase
space variables. One set carries sl(2,R) Lie algebra indices and forms an infinite-dimensional Poisson
algebra, while the other is formed from traces of SL(2,R) holonomies that commute with one another.
The restriction of the (complex) observables to the Euclidean and Lorentzian sectors is discussed.
It is also shown that the sl(2,R) observables can be associated with a solution-generating technique
which is linked to that given by Geroch.

PACS number(s): 04.25.—g, 04.20.Fy

I. INTRODUCTION

In classical general relativity one of the important
questions is that of finding exact solutions and extracting
their properties. This is hindered by the complexity of
Einstein's equations, and the discovery of a new solution
is rare.

It is therefore usual to simplify the problem by seeking
solutions that have certain syxnmetries. These are nor-
mally speci6ed by requiring the metric to have a number
of Killing vector fields, which leads to a simpli6ed set of
equations to solve.

One such set of reduced equations is obtained by re-
quiring the metric to have two commuting vector fields.
This simplification leads to a two-dimensional 6eld the-
ory, and has the advantage that it still leaves the grav-
itational field with two local degrees of freedom (unlike,
for example, the minisuperspace reductions, where only
a finite number of degrees of freedom remain). This
symxnetry reduction was 6rst studied in detail by Ge-
roch [1],who found that the resulting Einstein equations
have an in6nite-dixnensional "hidden" symmetry. These
syxnmetry transformations of the equations provide a
solution-generating technique, whereby, given one solu-
tion with two commuting Killing 6elds, a new family of
solutions can be generated. The solution-generating tech-
nique was later presented from other points of view [2—4].
These equations have also been studied using the inverse-
scattering method [5] to obtain solitonic solutions.

The question of exact solutions is related to that of
conserved quantities. It is expected, as for any dynam-
ical system, that exact solutions will be labeled by val-
ues of the conserved quantities. In general relativity, for
spacetixnes with compact spacelike hypersurfaces, the lat-
ter are also referred to as observables. This is because
if conserved quantities can be written explicitly as func-

tionals of the phase space variables (which should always
be possible), they would also be the fully gauge-invariant
variables.

It is useful to have phase space observables for the
classical theory, in particular, in attempts to prove inte-
grability. For example, in all the known two-dimensional
integrable models such as the Korteweg —de Vries (KdV)
and sine-Gordon equations, an explicit generating proce-
dure for observables may be used to prove integrability
[6,7].

Apart from the classical questions, in attempts to con-
struct a canonical quantum theory starting &om general
relativity, a complete set of such classical variables is a
prerequisite for certain quantization schemes, where the
quantum theory is to be obtained as a representation of
the Poisson algebra of observables [8—10]. This method
has been under study for the nonperturbative approach
to quantum gravity using the Ashtekar variables [9,11]
and the related loop space representation [12]. It has
been successful for the quantization of 2+1 gravity [13].

For the full Einstein equations, it is known that the
only "hidden" symmetries, apart &om cMeomorphisms,
are constant rescalings of the metric [14]. From this re-
sult it follows that no observables can be built as inte-
grals of local functions of the initial data [15]. However,
from the works mentioned above, the two Killing 6eld re-
duced equations are known to have an associated infinite-
dimensional symmetry group other than difFeomorphims.
It is then natural to ask what are the conserved quanti-
ties associated with these symmetries, and in particular,
what they are as functionals of the phase space variables.

In some recent work [16], a procedure based on meth-
ods used for finding conservation laws for soliton equa-
tions has been applied to the two Killing field reduced
Einstein equations. The starting point in this work was a
particular form of the metric with two commuting space-
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II. TWO KILLING VECTOR FIELD REDUCTION

The Ashte~~ Hami&tonian variables for complexified
general relativity are the (complex) canonically conjugate
pair (A', E ') where A' is an so(3) connection and E *

is a desensitized dreibein. a, b, . . . are three-Dimensional
spatial indices and i, j, . . . = 1,2, 3 are internal so(3) in-
dices. The constraints of general relativity are

g':=D E'=0,
C F'bE ' =0,

ijIcFn Eaj Ebic = 0ab '7

(2.1)

(2.2)

(2.3)

where D A' = 8 A'+e'~ A& A is the covanant derivative,
and F'b is its curvature.

Since the phase space variables are complex, reality
conditions need to be imposed to obtain the Euclidean
or Lorentzian sectors. These are A' = A', E ' = E '
for the former and A* + A' = 21'* (E), E ' = E ' for the

like Killing fields. The dynamical Einstein equations fol-
lowing from this were then studied using ideas fmm two-
dimensional integrable xnodels. If these quantities can
be written as phase space functionals, one would have
an infinite number of observables for this sector of Ein-
stein gravity. However it is not clear &om this work how
the conserved quantities can be rewritten in terms of the
Arnowitt-Deser-Misner (ADM) phase space variables.

This paper addresses the question of obtaining observ-
ables for two Kii&ing field reduced Einstein gravity. The
main result presented below is an explicit construction of
an infinite n»mber of phase space observables for space-
times with two commuting spacelike Killing fields, and
with compact spatial hypersurfaces. The observables are
obtaiaed for complexified gravity (i.e. , complex phase
space va, riables on a real manifold). The reality condi-
tions are then discussed for the Euclidean and Lorentzian
restrictions.

The natural starting point is the Hamiltonian form of
the Einstein equations. The Ashtekar Hamiltonian for-
mulation [9,11] is used for this, and in the next section
the two KiQing field symmetry is imposed in these vari-
ables to obtain a reduced first class Hamiltonian system,
which still has 2 local degrees of freedom. This reduc-
tion corresponds to the Gowdy cosmological models [17],
and has been studied earlier by the author and Smolin
[18]. In the third sectioa the reduced system is fully

gauge fixed, with the gauge fixing conditions chosen to
put the Hami&tonian evolution equations in a suggestive
form. This is discussed further in the following section,
where a zero curvature form of the evolution equations is
given. The fifth section gives the procedure for obtaining
the observables, and is based on methods used in two di-
mensional integrable models. There is also a discussion of
the Poisson algebra of the observables. The sixth section
describes a solution generating tech»ique for this sector
of the Einstein equations using the observables, as well

as its connection with the Geroch method. The paper
ends w'ith a summary and outlook for the quantization
of this sector of gravity.

(2.4)

A = A„= Ae ——Ae ——0.

These conditions may be viewed as impleraenting a par-
tial gauge fixing and solution to some of the constraints.
Details of these steps are given in Ref. [18]. The end
result below (2.5)—(2.7) is a simplified set of first class
constraints which describes a two-dimensional field the-
ory on S~ x R with 2 local degrees of freedom.

Renaming the remaining variables A:= Aes, E:=Ee3,

and AI, E, where a, P, . . . = z, y and I, J, . . . = 1,2,
the reduced constraints are

(2.5)

(2.6)

G:= BE+J =0,
C:=Fe E =0,
H:=-2~ Fe.E- E+F PE'Ep'6IJ

n P2EE ~&"BA—' + 2AEg —ltgg + g' = 0,
(2.7)

where 8 = (8/88),
X~: = A.'E~', (2.8)
J~ . 6IJAIEI J J . Jn (2.9)

and 612 1 = 621

The SO(3) Gauss law has been reduced to U(l), and
the spatial difFeomorphism constraint to Diff(S~). This
may be seen by calculating the Poisson algebra of the
constraints smeared by functions A, V, and the lapse N
(which is a density of weight —1):

2'
G(A) = d8 AG,

2m

C(V) = d8 VC,
0
2'

H(N) = 18 NH,
0

(2.10)

(2.11)

(2.12)

(G(A), G(A')) = (G(A), H(N)) = 0,

(C(V), C(V')) = C(CvV'),

(H(N), H(N') }= C(W) —G(AW),

(2.13)

(2.14)

(2.15)

latter. The I"(E) is the coaaection for spatial indices
and the bar denotes complex conjugation.

We now review the two commuting spacelike Killing
field reduction of these constraints, which was presented
in [18]. Work~»g in spatial coordinates x, y, such that
the Killing vector fields are (8/Bz) and (8/By) implies
that the phase space vmiables will depend on only one
of the three spatial coordinates. Specifically, we ass»me
that the spatial topology is that of a three-torus so that
the phase space variables depend on the time coordinate t
and one angular coordinate 8. This situation corresponds
to one of the Gowdy cosmological models [17]. (The other
permitted spatial topologies for the Gowdy cosmologies
are S~ x S and Ss.)

In addition to these Killing field conditions, we set to
zero some of the phase space variables as a part of the
symmetry reduction:

Ea3 Eys E81 Ee2 0
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where

W = E (NBN' —N'BN). (2.16)

(K~, K ) = b K~ —b~K,

(Kg, J ) = b J~ —b~J .

(2.17)

(2.is)
(2.i9)

This shows that Kg form the gl(2) Lie algebra, and
hence generate gl(2) rotations on variables with indices
o')P~ = »W.

The following linear combinations of K~ form the
sl(2,R) subalgebra of gl(2, R):

1 1
Lg ———(K„*+ Kg), I 2 ———(K —K„"),

1
Ls ———(K* —K").

2

The Poisson brackets algebra of these is

(L;, L~) = C; "Lg,

(2.2o)

(2.21)

where C&2s ———1, C2s~ ——1, Cs&2 ——1 are the sl(2,R)
structure constants. The corresponding linear combina-
tions of Jl are denoted by J;, i = 1,2, 3. Their Poisson
brackets are

This shows that C generates Ddf(S~). Also we note that
this reduced system still describes a sector of general rela-
tivity due to the Poisson brackets (H(N), H(N')), which
is the reduced version of that for full general relativity in
the Ashte~~ variables.

The variables K~ and J~ defined above will be used
below in the discussion of observables. Here we note their
properties. They are invariant under the reduced Gauss
law (2.5), transform as densities of weight +1 under the
Diff(S~) generated by C, and form the Poisson algebra

phase space variables.
Assuming that variables O[A, E] invariant under the

kinematical Gauss law and the spatial cMeomorphism
constraints have already been determined (which is rel-
atively easy), the flrst case would correspond to solving
for O[A, E] the equation

(H(N), 0) 0, (3.i)

where denotes equality modulo the constraints. The
second amounts to solving

(H, O) = 0, (3.2)

where the last equality is strong and H is a suitably
gauge-fixed Hamiltonian constraint. The second proce-
dure will be followed here since, with a particular gauge
choice to be described in this section, the Hamiltonian
evolution equations can be put in a rather simple form.

Full gauge fixing using the Ashtekar variables requires
a careful consideration of the reality conditions on the
phase space coordinate A'. This is because the (com-
plex) phase space variables depend on real coordinates.
For conventional gauge fixing, where some functions of
the phase space variables are chosen as the coordinates,
real functions must be chosen. But since the constraints
themselves are complex, two real conditions must be im-
posed for complete gauge fixing. Here we will gauge fix
the complex theory by requiring that certain (complex)
functions of the phase space variables vanish. This re-
sults in (complex) gauge-fixed evolution equations and
second-class constraints. The reality conditions are dis-
cussed below, where the metric resulting &om the gauge
fixing is compared with a standard metric for this reduc-
tion, and in Sec. V, where the observables are obtained.

We start by fixing the Gauss law (2.5) by imposing
the gauge-fixing condition A. = 0. This gauge condition
is second class with (2.5):

(3.3)

Also

(L;,J~) = C; "Jg, (J;,J~) = C;; Lg. —(2.22)
The standard procedure now involves imposing the Gauss
law strongly and then solving it [19,20]. This gives

(2.23)
E = c — d8'J 8', (3.4)

For discussing observables, it will turn out to be very con-
venient to replace the eight canonical phase space vari-
ables A. , E by the eight Gauss law invariant variables

III. GAUGE FIXING AND THE METRIC

The Dirac observables are defined as the phase space
functionals O[A, E] that have vanishing Poisson brack-
ets with all the first-class constraints of the theory. This
is because the first-class constraints generate local gauge
transformations via Poisson brackets. The question of
finding the observables can be equally well addressed
prior to, or after, partial or full gauge fixing of a first
class system. Fxch ~ill vield observables in terms of the

where c is an arbitrary integration constant. The canon-
ical variable E can now be replaced everywhere by the
right-hand side of (3.4), which is a function of the remain-
ing phase space variables. We will see below, after further
gauge fixing, that E eventually gets fixed to be the (non-
dynamical) constant c. (We note that the A = 0 gauge
condition is analagous to the axial gauge for electromag-
netism. It is in fact the axial gauge for two-dimensional
electromagnetism. The cMerence with the present case
is that our Gauss law is OE + J = 0 rather than just
BE = 0.)

Substituting (3.4) and the gauge-fixing condition
(which are the two strong second-class constraints), into
the difi'eomorphism and Hamiltonian constraints (2.6)
and (2.7) gives
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H= —2 c — d8' J(8') E e OA —K E +Kn n P

(3.5)

syinmetry reductions), if a time-dependent gauge con-
dition is not chosen for closed spacelike hypersurfaces,
then, with, for example, the gauge condition f (A, E) = 0,
(3.12) becomes

(3.6)
0 = (f,H(N)}, (3.13)

These remaining constraints are still Grst class. In par-
ticular, (3.5) satisfies the Poisson brackets relation

(H(N), H(N')) = C(W), (3 7)

with W given by (2.16), which is the usual Poisson
bracket of the Hamiltonian constraint with itself. Thus
(3.5) and (3.6) on the A, E I phase space still describe
general relativity with 2 local degrees of &eedom.

We now work with the eight Gauss-law-invariant den-
sities L;, J; and K, J introduced in the preceding sec-
tion instead of the eight remaining phase space variables
A, E . The evolution equations I" = (F, H(N)) with
H from (3.5) for these variables are

I; = —28 N c — d8' J(8') J,
) .

(3.8)

J; = 28 N c — d8' J(8') L; +4NC J,Ls,

(3.9)

c — d8' J(8') K,

28 N —c — d8' J(8') ~ J

(3.10)

(3.11)

t = 1 = (j,H(N)). (3.12)

The momentum conjugate to f is then identified as the
negative of the reduced Hamiltonian, and is obtained
by solving the strongly imposed Hamiltonian constraint.
(An example of such a gauge-fixing is given at the end of
this section. ) The reduced Hamiltonian is then used to
obtain the gauge-fixed evolution equations for the phys-
ical degrees of &eedom.

For our purposes, there are two points to note in this
procedure. The first is that for full general relativity (no

We would now like to gauge fix the Hamiltonian and
diffeomorphism constraints (3.5) and (3.6) in a way so as
to simply these evolutions equations.

The normal gauge-Gxing procedure for the Hamilto-
nian constraint [20) for closed universes involves imposing
a time-dependent condition, such as setting t = f (A, E),
where f is some function of the phase space variables that
is second class with the Hamiltonian constraint. The re-
quirement that this condition be preserved under time
evolution then gives an equation for the lapse function:

and the only solution for the lapse function is N = 0.
This is not suitable because it gives no evolution. (An
alternative way of seeing this is given in Ref. [20).) We
will see below that for the two Killing Geld reduced equa-
tions under discussion, N = 0 i8 not the only solution for
¹ The second is that it is not necessary to first ob-
tain a reduced Hamiltonian and then get the gauge-fixed
evolution equations via Hamilton's equations. Alterna-
tively, one may obtain the gauge-Gxed evolution equa-
tions by substituting the lapse function derived &om
(3.13), and the gauge-fixing condition, directly into the
evolution equations [such as (3.8)—(3.11)]. If this alter-
native procedure is followed, a reduced Hami&tonian that
gives the gauge-fixed evolution equations is not directly
identified. (This in fact is exactly what is done when
gauge-Gxing conditions are imposed in the second-order
Einstein equations: the conditions are directly substi-
tuted into the evolution and constraint equations. )

We now give a gauge-Gxing procedure for the Hamil-
tonian constraint. In the process we will see that a
time-independent gauge-Gxing condition is possible for
the two Killing Geld reduced system, which does not lead
to N = 0. (It should be stressed again that this is not
possible for the full Einstein equations, that is, the equa-
tions without any symmetry reductions. )

The gauge condition J = 0 is second class with the
Hamiltonian constraint (3.5). Requiring that this condi-
tion be preserved in time gives an equation for the lapse
function (3.10):

J = 0 = 2cB(NK). (3.14)

The reasoa that a reduced Hamiltonian is normally ob-
tained Srst is that one has a view to quantimation. The aoal
in the reduction is therefore to identify the true physical de-
grees of freedom and the reduced Ha~~&tonian as a function
of them. The Ha~i&tonian may thea be converted into an
operator and the Schrodinger equation written down.

This gives for the lapse N(8, t) = 1/K(8, t).
To fix the diffeomorphism constraint, we may choose

the 0 coordinate such that a specific real density on
the circle is a constant. We choose ReK=const and
ImK = 0. This is second class with the diffeomorphism
constraint, and it Gxes the shift function to be an arbi-
trary constant C. From (3.11),we see that this condition
is also preserved under evolution as required for consis-
tency.

The evolution equations (3.8) and (3.9) for the re-
maining variables, the six L;, J;, with the specific choices
N = 1/4, c = 2 (designed to put the equations into a
simple form), become
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I„-+J,'- =0,

J; —L;'+ C;~ L~ Jg ——0,

(3.i5)

(3.i6)

where the four functions I' and g p are four functions
of t, 8 only. On the other hand, the gauge choices made
above lead to the line element

~IJEnJgAI + L2 + L2 L2

E BA =0
(3.17)
(3.18)

where ' = 8 = 8/08. These, together with the strongly
imposed Hamiltonian and diffeomorphism constraints,

ds' = —
i

—+ C'
i

Ch' + Chd8
(1 1 5 C
g16 2~q ) ~q
1 2 2

+ d8 + qpdx dxP,
2~q ~q

(3.2i)

form the fully gauge-fixed set of two Killing field reduced
complex Einstein equations. There are 6 —2 = 4 local
phase space degrees of &eedom. We note that these are
written in terms of the original phase space variables, so
that Poisson brackets may still be calculated using the
fundamental (AI, E I) brackets. We note also that the
gauge fixing has reduced the gl(2, R) Casimir term in the
Hamiltonian constraint to the sl(2, R) Casimir term in
(3.17).

We emphasize again that the main purpose of the
gauge fixing was not to get an explicitly reduced Hamil-
tonian in terms of the 2 physical degrees of &eedom, but
rather to look at the full evolution equations (3.8) and
(3.9) in a convenient gauge, which is useful for obtain-
ing the conserved quantities. The J = 0 gauge is very
convenient for this. One can, however, obtain a non-
vanishing reduced Hamiltonian as a function of L;, J;
that leads to the evolution equations (3.15) and (3.16).
It is the Hamiltonian for the Sl(2,R) chiral model.

Since the gauge-flxed evolution equations (3.15) and
(3.16) involve only J;,L, , the conserved charges will de-
pend only on these. It is therefore important to check
that the charges commute with the second class con-
straints (3.17) and (3.18). The commutation with the
strong Hamiltonian constraint is guaranteed because the
variables J;,L; commute with J, K (which are the vari-
ables fixed in the gauge choice). To see this we only need
to note that

L; = (L;,H(N))i s=o = (L;,H(N)i z=o j, (3.19)

with the same equation holding for J;. This is another
reason why it appears natural to separate the phase space
variables into sl(2, R) variables J;,L;, with gauge condi-
tions imposed on the traces J and K. As we will see be-
low, the charges also commute with the diffeomorphism
constraint (3.18) by construction, since the charges will
turn out to be made from integrals of densities on the
circle.

We mill not solve the second-class constraints explic-
itly, since the goal is only to obtain the conserved quan-
tities. The second-class constraints imply that there are
two relations among the six J;,L;. In principle these can
be substituted into the conserved quantities to rewrite
them in terms of four independent reduced variables.

For comparison with the usual metric variables, it is
useful to see what form of the metric arises from the
gauge choices made above. A standard line element with
two commuting spacelike Killing fields is of the form [17]

where q~p is the matrix inverse of E EP, q = detq~p,
and C is a constant (the shift).

In arriving at (3.21), E ' has been fixed to be real
(reality condition), and the lapse and shift chosen to be
real constants. Note that while the reality conditions
on A' have not been imposed, this does not affect the
general form (3.21) of the Lorentzian metric that will

result.
That these two line elements are related by a coordi-

nate transformation and a gauge choice may be seen in
the following way. Since any two-dimensional metric is
conformally Hat, there is a coordinate transformation of
h, 8 that puts the h 8part o-f the metric (3.21) into con-
formally Hat form, at least locally. The conformal factor
so identified will be a function of the three functions q p.
The identification with the standard form is made corn-
plete by setting e2+ in (3.20) to be this factor. This is
the gauge choice. (The explicit form of the coordinate
transformation is given by a set of coupled partial dif-
ferential equations, solutions of which may be shown to
exist [21].)

We now point out another may of viewing the deriva-
tion of the simplified equations (3.15) and (3.16) from the
full equations (3.8)—(3.11). This is to simply consider the
former as an explicit by hand simplification of the latter
by setting J = 0, J = 0, which imply constant N and
K. In this way the simplified equations would be viewed
as a particular subset of the two Killing field reduced
Einstein equations, and all the analysis in the following
sections vrould amount to the derivation of conservation
laws for this subset. However, as me have seen above,
there is a canonical gauge-fixing procedure which leads
to the simplified equations (3.15) and (3.16), and so they
still represent the full two Killing field reduced sector
under consideration.

We now note an alternative natural gauge fixing which
may also be useful for this system but will not be used
in this paper. The Hamiltonian constraint (2.7) contains
the product AE, and E transforms like a scalar under the
reduced diffeomorphism constraint (2.6). This suggests
the (partial) gauge fixing ReE = h, ImE = 0, which
gives Hn .= —A as the (complex) reduced Hamiltonian.
Substituting this gauge condition into (2.5)—(2.7) gives
the first-class constraints

(3.22)

(3.23)

and the time-dependent reduced Hamiltonian

ds' = e (—Ch'+ d82) + g pd* d*~, (3.20) Hg = Ee BA + ——(K —KPK ). (3.24)
1
K 2K~
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The time dependence in HR is associated only with the
ultralocal part, which is also the gl(2, R) Casimir invari-
ant. This suggests that for small times the ultralocal
piece dominates the dynamics and that a perturbation
theory in t may be possible. The reality conditions on
the A's still need to be applied.

IV. EVOLUTION EQUATIONS AS A
ZERO-CURVATURE CONDITION

1 /'0 I) 1 &I 0
gl 21 1 0)l' g2 —21 0

(4.1)

1&0
gs=21 10 I,)

which satisfy the relations [g;, g~] = C, "gx, and g;g~ =
&C;."gI, . Defining the matrices

Ap ..——L;g, , Ag .——J;g;, (4.2)

The evolution equations (3.15) and (3.16) derived in
the preceding section can be rewritten in a compact form
using the sl(2,R) matrix generators

analagous to that given in the last section. This is a
direct consequence of the existence of two distinct sym-
plectic forms on the phase spaces of the models [6], which
is also the geometric way of viewing the Lax pair formula-
tion. Another consequence of the zero-curvature formu-
lation is a procedure for generating an infinite number of
conserved charges. We now apply this to the dynamical
equation (4.6) arising &om the two Killing field reduc-
tion. The resulting observables will be for complex grav-
ity and the reality conditions on them will be discussed
at the end of the section.

The transfer matrix used in the study of two-
dimensional models is analagous to the Wilson loop. For
the present case, it is the path ordered exponential asso-
ciated with the matrix aq.

The trace of the transfer matrix is preserved under time
evolution as may be seen by deriving its equation of mo-
tion using Eq. (4.6). We note first that

U'(0, 8) = U(0, 8)ai (8), U'(8, 2x) = ax (8)U(—8, 2z ) .

(5.2)

U[Ap, Ai](0, 8): = lim [1+ax(8;)&8]
Lie —+0 j—0

8:—P exp ai(Ap, Ai, A) d8' . (5.1)
0

the evolution equations (3.15) and (3.16) becoxne

OpAp + OgAg ——0,

BpAx —BxAp+ [Ap, Ai] = 0.

(4.3)

(4 4)

The time derivative of the first gives

U'(0, 8) = U(0, 8)ai + U(0, 8)ai
= U(0, 8)a, + U(0, 8)(ap —[ap) ai]) )

which may be rewritten as

Equations (4.3) and (4.4) are the first order form of the
SL(2,R) chiral model field equations.

The two evolution equations, (4.3) and (4.4), may be
rewritten as a single equation in the following way. De-
fine, for a real parameter A,

[U(0, 8) —U(0, 8)ap]' = [U(0, 8) —U(0, 8)ap]ax. (5.3)

Thus, since U(0, 8) —U(0, 8)ap satisfies the same equation
as U(0, 8), we get the equation of motion

1 1
ap .—,(Ap —%Ax), ai .—— (&Ap + Ai) U(0, 8) = U(0, 8)ap (8) —ap (0)U(0, 8) . (5.4)

(4 5) From this it follows that

Then Eqs. (4.3) and (4.4) follow Rom the single "zero-
curvature" equation

ai —ap + [ap ai] = 0. (4.6)

This equation, together with the strong constraints (3.17)
and (3.18), form the two spacelike commuting Killing
Beld reduction. The dynamical equation (4.6) is used in
the following section to obtain the conserved charges.

M[Ap, Ax](A):= TrU(0, 2z.) (5.5)

is conserved in time. The conservation of this trace fol-
lows in basically the same way as the conservation of the
Wilson loop observable when there is a zero-curvature
constraint on the phase space, such as in 2+1 gravity
[13]. That M is a spatial diffeoxnorphism invariant fol-
lows &om noting that aq transforms like a density under
the Diff(Sx) generated by (3.6):

(C(V), ax) = —B(Vax), (5.6)

V. OBSERVABLES

The field equations for all the known two-dimensional
integrable models have zero curvature formulations

f'rom which it follows that (C(V), M) = 0.
Expanding M in a power series in A gives explicitly

the phase space observables, which are the coeKcients of
powers of A: The first three observables are
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q:= M)g —p = TrPexp
~

de A1
~

=:TrV(0, 2z),
I o )

(5.7)

BM 'q':= „,= de T [V(0, 8)AO(8)V(8, 2~)],BA' p

(5.8)

and

2'
= —2 d8Tr[V(0, 8)AI(8) V(8, 2z)]

0

2' 2'
d81 d82 O(82 —81)

0 0
xTr[V(0, 81)Ap(81)V(81, 82)Ap(82)

x V(82, 2z)], (5.9)

where O(8 —8') = l, 8 & 8' and zero otherwise. It
is straightforward to verify directly the conservation of
these functionals using the equations of motion (4.3) and
(4.4).

The structure of the general observable can now be
seen and we can write down the observable with n inser-
tions of Ap in the holonomies V:

21r 2'q:= del ' ' ' de~0(ea —Hn 1) O(82 81)Tr[V(0)81)AO(81)V(81)82)AO(82) ' ' ' Ap(era)V(8~, 271')] ~ (5.10)
0 0

This has a remarkable resemblance to the T variables used in 3+1 gravity [12]:

T '"' "[A E~'](zI, . . . , z„;cI):=Tr[U~(zo) z1)E '(zI)U~(zI, z2) . E "(z„)U~(z„,zp)]) (5.11)

where the holonomies U are based on the loop, a are made from Ashtekar's connection A', and the insertions in the
product of holonomies are the conjugate momenta E ' instead of Ap. The other difFerence is that in Eq. (5.10) there is
an integration over all the point insertions of Ap [which gives invariance under the remaining spatial diffeomorphisms
Diff(SI) in the present reduction].

Another set of observables is obtained by looking at the first term in (5.9) where there is an insertion of AI in the
holonomies instead of Ap. The general observables of this type is similar to (5.10) but with n insertions of AI..

2' 2'
P":= d81 d8„0(8„—8„1) O(82 —81)Tr[V(0, 81)AI(81)V(81, 82)AI(82) ~ AI (8„)V(8„,2z )]. (5.12)

0 0

The Poisson algebra of the observables (5.10)—(5.12)
may be calculated using the trace identity

Tr[Xg*]Tr[Yg~] = Cq*'(Tr[Xg"Y] —Tr[Yg X]), (5.13)

2' 2m

q& ~ = d8 Ap —— d8 L.g
0 0

which gives the three sl(2,R) charges

(5.17)

for SL(2,R) matrices X,Y and 2x2 generators g'. We
find

(P,P") = o,
(q-, q") - q-+"-'+ q-+"-', m, n & 1,
(qo quan) qm+1

(5.14)

(5.15)
(5.16)

There is another method for generating conserved
charges for two-dimensional chiral models [22], which can
be applied here to generate observables. This is useful for
comparison with the above procedure. Also, as discussed
below, the resulting observables for the Killing field re-
duction give a solution-generating technique which may
be viewed as the Hami&tonian analog of Geroch method
[1]. This procedure for obtaining observables has also
been applied to self-dual gravity [23,24].

The start1ng point 1s the dyIlanllcal equatloIls (4.3) and
(4.4). We note that (4.3) is already like a conservation
law and so the first conserved charge is

2'
q~ ~= dHL;.

0
(5.18)

These observables were obtained earlier in [18).
The current g„:=A„(p, v, . . . = 0, 1) is conserved(~) .

so there exists a (matrix) function f(1)(t,8) such that

g(I) vg f(1) (5.19)

We now define the second current by

g( ) .—D f( ) = g f( ) + A y(1) (5.20)

%ith this definition of a derivative operator, the equation
of motion (4.4) may be rewritten as [Dp, DI] = 0. The
conservation of &~ ) is easy to show:
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2m
(~) d8 ~(n) (5.22)

The second conserved charge is

2'
q( ): = d8 Dof(' (8, t)

0

(=f ~e —Ax(8, t) + Ao(8, t) d8' Ao(8', t) I
.

(5.23)
In terms of the sl(2, R) phase space functions this is

b""8 g( ) = b""B„D f(') = b""D c) f(')
p, V P, gL

=b" e" D„J ) =b""e" D„D f() =0,
(5.21)

where the last equality follows because Q„=D„f (

A» where f( ) is the identity matrix, and [Do, Di] = 0
by the equation of motion (4.4). This procedure general-
izes, and it is straightforward to give an inductive proof
that g("+x):= D„f(") is conserved, assuming J„'(") is
conserved. The observables are

In the steps above, we have obtained a gauge-fixed
version of complex two Killing field reduced gravity, and
given two methods for obtaining observables. The ob-
servables are for the complexified theory and reality con-
ditions must be imposed on them to obtain their restric-
tions on the Euclidean or Lorentzian sections.

The restriction to the Euclidean section involves just
setting the L;, J, to be real. The Lorentzian restric-
tion requires setting the triads to be real, and impos-
ing A + A = 2I' (E). This reality condition implies
that the complex conjugate of the observables are also
observables. Therefore when the triads are set to be
real, if Q[A, E] is an observable, so is Q[A, E]. Thus
Q[A, E] + Q[A, E] is a real observable for the comp/ex
theory. The real observables for the Lorentzian section
in terms of the original phase space variables may then
be obtained as

(Q[&,E]+ Q[& E])I
-="-

The observables found in this section are expressed in
terms of the spatial triad E and the Ashtekar connec-
tion A . They may be reexpressed in terms of the triad
and the extrinsic curvature of the ADM phase space vari-
ables by recalling that [9]

2» t 1 s

q; = d8 —J;+ C;~ L, —d8' LI, . (5.24) ~'. = r'. (E) + 'X'. ,i (5.29)

2&

q~ = d8 —L;'+ C,~
L~ JI,

jI——C
2

J' d8' LI, + L~ d8' J~
l ~

~
C, ' L, Jx, + —C, ' (J,LI, —L, Jx,) ~

= 0.
1

(5.25)

The Poisson brackets of the first two charges is

(5.26)

The conservation of this may be checked directly using
(3.15) and (3.16):

where Kr = K~&EPI and K~& is the extrinsic curvature
The sl(2, R) variables K;, J; used above are therefore con-
tractions on the internal indices of (5.29) with E I, using
br~ or el~: K E o (I'+ i)C) and J E x (I'+ iK).
Thus the observables may be easily written in terms of
the triad ADM variables.

We do not know the physical or spacetime geometric
interpretation of the observables presented above. This
in fact is also an open question for integrable systems
such as the KdV equation, where the physical interpre-
tations of most of the conserved quantities are not known,
except for the few associated with the (manifest) Galilean
invariance of this equation [6]. In general, it is easy
to find physical interpretations of observables associated
with manifest syxnmetries of equations. The task is much
more difBcult for infinite dimensional hidden symmetries,
as is the case here.

Since q( forxn an sl(2,R) so(2, 1) Lie algebra, it follows

that all the observables q;" with sl(2, R) indices will have
the Poisson algebra

(i) (n) ) C k (n) (5.27)

The Poisson algebra of the higher observables q, with
themselves is more involved and there are in general,
nonlinear combinations of observables on the right-hand
sides. We note that given the first two observables

q, , q. , the remaining observables may also be gener-
ated by taking Poisson brackets of these with themselves.
Another feature of this set is that they are sl(2,R) Lie al-
gebra valued whereas the first set obtained above, using
M (5.5), are traces of SL(2,R) group elements.

VI. SOLUTION-GENERATING TECHNIQUE

In this section we discuss the relation between the sec-
ond set of observables obtained above and the solution-
generating technique for spacetimes with two commuting
Killing fields given by Geroch [1]. We note only the gen-
eral features of the method, which are unchanged by the
reality conditions.

A solution of the Einstein equation with two commut-
ing spacelike Killing fields is a phase space trajectory
labeled by values of the conserved quantities q; . A new
solution can be generated &om a given one by consid-
ering the Hamiltonian Bow of the phase space variables

L, , J, generated by the observables q, . This Bow may
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be parametrized by a parameter s, and speci6ed by giv-

ing three "shift" functions F'(s):

(6.1)

Integration of these equations, with the initial condition
that I;(t, 8; s = 0), J;(t, 8; s = 0) lie on the given solu-
tion, gives the values of these variables on the new solu-
tion at, say, 8 = 1.

We therefore see that a new exact solution of the Ein-
stein equations may be constructed &om a given one by
specifying a curve p(s) (0 & s & 1) in a three-dimensional
vector space with tangent vector F'(s), and with p(0) at
the origin. But these are precisely the conditions given
by Geroch for generating new solutions &om a given one
[1]. In particular, the intermediate equations (6.1) that
need to be integrated as a part of the procedure are of ex-
actly the same form as those present in Ref. [1]. Thus the
infinite number of sl(2,R) observables obtained in the pre-
ceding section may be viewed as the phase space analogs
of the generators of Geroch's transformation.

VII. DISCUSSION

The main result given in this paper is the explicit con-
struction of an infinite number of phase space observables
for spacetimes with two commuting spacelike Killing vec-
tor fields. The previous studies of this reduction of the
Einstein equations, in particular Geroch s work, provided
strong indications of the existence of such observables.

Our approach involved rewriting the Hamiltonian evo-
lution equations using the Ashtekar variables, and then
choosing a particular gauge 6xing which allowed these
equations to be rewritten as those of the SL(2,R) chiral
model [(4.3) and (4.4)]. From this form of the equations,
two known methods were used to obtain the observables.
The first made use of the conservation of the trace of
the monodromy matrix M (5.5), which acts as the gen-
erating functional for the observables. The second made
use of a recursive procedure given by Brezin et al. [22) to
calculate nonlocal conserved charges in two-dimensional
models.

One set of observables obtained &om the monodromy
matrix have a structure similar to that of the loop ob-
servables that have been used to study the quantization
of full 3+1 gravity [12]. This is interesting and suggests
that it should be possible to obtain the quantized two-
Killing-6eld reduction directly &om the the full 3+1 ob-
servables.

The second set have an infinite-dimensional algebra,
which does not appear to have a simple form. However,
as discussed in Sec. VI, these observables can be used to
give a solution-generating method for this sector of the
Einstein equations. In particular, the solution-generating
procedure has exactly the same ingredients as Geroch's,
which indicates that ours is the phase space analog of his.

One of main reasons for addressing the observables
problem is that it provides one way to address the quan-
tization issue. For generally covariant theories the ob-
servables are also the fully gauge-invariant phase space
variables. A quantum theory may be constructed by 6nd-
ing a representation of the Poisson algebra of a complete
set of classical observables. From the results given above,
the second set of observables q;" may be suitable for this
provided their Poisson algebra can be put into a more
manageable form. Previous work [4] on a simpler method
of obtaining the Geroch procedure provides a hint that
this Poisson algebra may actually be an SL(2,R) Kac-
Moody (affine) algebra. The task is then to see if the

q;" can be replaced by some functions of them such that
the Poisson algebra simplifies to this. This is under in-
vestigation.

A further question regarding the observables that has
not been addressed is the question of completeness: Can
any invariant phase space variable be expressed as a sum
of products of the observables obtained here? In partic-
ular, is there any relation between the observables ob-
tained using the two difFerent methods? These questions
are important for studying quantization, which has been
previously studied in the loop space representation in
Ref. [18]. It was found that there are an infinite number
of observables in the quantum theory that form a gl(2)
loop algebra. However, surprisingly the classical counter-
parts of these observables was not known. It is likely that
the observables given here form a subset of these quan-
tum observables, and the correspondence merits further
study.

A question related to completeness of the observables
is that of integrability. While we have given an infinite
set of conserved quantities, we have not shown that there
are an infinite number of sums of products of them that
are in involution. Therefore integrability of this system
remains to be shown.
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