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The discovery by Gott of a remarkably simple spacetime with closed timelike curves (CTC's)
provides a tool for investigating how the creation of time machines is prevented in classical gen-
eral relativity. The Gott spacetime contains two in6nitely long, parallel cosmic strings, which can
equivalently be viewed as point masses in (2+1)-dimensional gravity. We examine the possibility
of building such a time machine in an open universe. SpecificaQy, we consider initial data speci6ed
on an edgeless, noncompact, spacelike hypersurface, for which the total momentum is timelike (i.e.,
not the momentum of a Gott spacetime). In contrast to the case of a closed universe (in which Gott
pairs, although not CTC's, can be produced from the decay of stationary particles), we find that
there is never enough energy for a Gott-like time machine to evolve from the speciled data; it is
impossible to accelerate two particles to a suRciently high velocity. Thus, the no-CTC theorems of
Tipler and Hawking are enforced in an open (2+1)-dimensional universe by a mechanism difFerent

from that which operates in a closed universe. In provi. ng our result, we develop a simple method
to understand the inequalities that restrict the result of combining moments in (2+1)-dimensional
gravity.

PACS number(s): 04.20.Gz, 04.20.Cv, 04.20.Dw, 98.80.Cq

I. INTRODUCTION

Absent some restriction on boundary conditions and
energy sources, it is possible for the spacetime metric of
general relativity to wreak havoc with our intuitive no-

tions of "going forward in time. " We can imagine metrics
in which the world line of a test particle, locally restricted
to the interior of its forward light cone, can loop around
to intersect itself—a closed timelike curve (CTC). Indeed,
it is easy to construct solutions to Einstein's equations
that exhibit such behavior [I—3].

Nonetheless, because of the causal paradoxes associ-
ated with such a time machine, it is tempting to believe
that CTC's exist only in spacetimes that are in some way
pathological. That is, we would expect that the laws of
physics somehow act to prevent the occurrence of CTC's
in the real universe. This expectation has been dubbed

the "chronology protection conjecture" [4].
In the context of classical general relativity, a coun-

terexample to the chronology protection conjecture
would be a solution to Einstein's equations that describes
the creation of CTC's, using only ordinary materials, in
a local region of a spacetime that is &ee of CTC's in the
past. There is evidence, in the form of theorems proven

by Tipler [5] and Hawking [4], that no such solutions ex-

ist. These results demonstrate that CTC creation in a
local region free of singularities (i.e., with a compactly
generated Cauchy horizon) is incompatible with the re-

quirement that only normal matter be used (i.e., that the
weak energy condition be satisfied). The Tipler-Hawking
theorems, however, leave open the possibility of CTC for-

mation if a singularity appears (rendering the local region
of spacetime noncompact). It is tempting to assume that
any such CTC's will be hidden behind an event horizon,

but that has not been proven. We review the Tipler-
Hawking theorems in Appendix A.

Scientific interest in CTC's has been invigorated by
Gott's [8,9] construction of an extraordinarily simple
solution. to Einstein's equations that contains CTC's.
Gott's solution describes two inanitely long parallel cos-
mic strings moving past each other at high velocity. The
situation at early times is portrayed in Fig. 1, which
shows the two strings approaching each other. Each
string is associated with a deficit angle removed &om
the space, which we have oriented in a direction opposite
to that of the motion of the string. Opposite sides of
the excluded wedges are identified at equal times. Gott
found that, as the strings approach each other, it becomes
possible to traverse a closed timelike curve encircling the
strings in the sense opposite to their motion. The space-
time is topologically equivalent to Minkowski space2 and
&ee of singularities and event horizons.

It is interesting to ask how the Gott solution is recon-
ciled with the Tipler-Hawking theorems. Although cos-
mic strings have never been observed, there is no reason
to believe that they are unrealistic forms of energy and
momentum; certainly they satisfy the weak energy con-

Indeed, the cosmic censorship conjecture (on which this as-

sumption is based) has recently been brought into question
by numerical simulation [6]. Moreover, Ori [7] has recently
argued that the singularities required by the Tipler-Hawking
theorems need not prevent the creation of CTC's.

In discussing the topology of the Gott universe we are treat-
ing the strings as objects with a small but nonzero thickness.
They are nonsingular con6gurations and are not excised from
the spacetime.
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dition, as required for the no-CTC theorems. However,
the strings in Gott's solution are in6nitely long, so the
CTC's clearly do not arise in a local region. Thus, in
their original form, the theorems of Tipler and Hawking
have nothing to say about the Gott time machine.

With further analysis, however, it can be seen that
the infinite length of the strings does not &ee the Gott
spacetime from the implications of arguments similar to
those of Tipler and Hawking. The relevance of the theo-
rems can be established by exploiting a special feature of
the Gott spacetime: its equivalence to a spacetime with
point masses in 2+1 dimensions. Any (3+1)-dimensional
spacetime populated solely by in6nitely long parallel cos-
mic strings is invariant under boosts and translations
along the direction of the strings, so the trivial depen-
dence of the metric on this direction can be ignored.
The strings are then described as particles in 2+1 dimen-
sions, and the Gott time machine consists of two parti-
cles moving toward each other at high speed. Although
the Tipler-Hawking theorems were originally proven in
the context of (3+1)-dimensional general relativity, they
may be extended to the (2+1)-dimensional case, as we
discuss in Appendix A. The reconciliation of these theo-
rems with the Gott spacetime, therefore, involves issues
inore subtle than the infinite length of the strings.

In an investigation of the causal structure of the Gott
spacetime, Cutler [10] showed that it contains regions
&ee of CTC's, and constructed a complete spacelike hy-
persurface for which there are no CTC's in the past. A
simpler example of such a hypersurface is shown in Fig.
1; the past light cone of any point on this equal-time-
surface extends through similar surfaces arbitrarily far
into the past, implying that no timelike curve through
such a point can be closed. As the two particles approach
one another, each will ultimately collide with the trailing
deficit angle of the other, at which time this coordinate
system will fail; CTC's will then arise. These CTC's,
however, do not originate in a compact region of space-

Identify

Identify

FIG. 1. A spacelike slice through the Gott spacetixne. Two
parallel cosmic strings perpendicular to the page, represented
by dots, move past each other at high velocity. A deficit angle
(shaded) is removed from the space around each string, with
opposite sides identified at equal times. (If the deficit angles
were oriented in any direction other than along the motion
of the string, the identifications would be at unequal times. )
Note that no CTC's pass through this spacelike surface, as
explained in the text.

time; the chronology horizon (the boundary of the region
containing CTC s) extends indefinitely in the past direc-
tion, although it never intersects the hypersurface of Fig.
1. Thus even when we consider Gott's spacetime as a
(2+1)-dimensional iiuiverse of point particles, the CTC's
are still not compactly generated.

Nevertheless, in order to explore how classical general
relativity complies with the Tipler-Hawking theorems,
one can imagine attempting to construct a Gott-like time
machine. Suppose, in a (2+1)-dimensional universe pre-
viously &ee of CTC's, that two particles are accelerated
toward each other in an attempt to reach the velocity
needed for a Gott time machine. Since the consequences
of this acceleration would be con6ned to the future of the
region in which it occurs, the chronology horizon could
not extend inde6nitely toward the past, as it does for
the full Gott spacetime. In analogous situations in 3+1
dimensions, it is conceivable that the creation of CTC's
is permitted, and the theorems merely imply that sin-
gularities are produced in the process. If so, the CTC's
may or may not be hidden by event horizons. Alterna-
tively, the creation of CTC's might be strictly forbidden.
One could imagine, for example, that any attempt to
create a time machine would be thwarted by energy loss
due to gravitational radiation. In 2+1 dimensions, how-

ever, neither singularities nor gravitational radiation can
occur. The theorems of Tipler and Hawking imply, how-

ever, that some mechanism must prevent the formation
of a Gott time machine in these circumstances. Because
these (2+1)-dimensional systems are exactly solvable we

will be able to study this mechanism in detail.
The (2+1)-dimensional theory has been the object of

extensive investigation [11,12]. It has been found that the
metric in vacuum is necessarily Hat, while in the pres-
ence of a single particle with mass M, the external metric
is that of Minkowski space &om which a wedge of angle
a = 8vrGM has been removed and opposite sides have
been identified (G is Newton's constant). Solutions with
several static particles are easily constructed by joining
several one-particle solutions, in which case the space has
a net de6cit angle given by the sum of the deficit angles
of the constituent particles. If the total de6cit angle of
a space with static particles exceeds 2x, then the spa-
tial sections of the spacetime must be closed [13]; the
topology is S2, and the total deficit angle is necessar-
ily exactly 4'. By joining appropriately boosted single-
particle spacetimes, the exact solutions with moving par-
ticles [12] and nontrivial decays and scatterings [14] may
be constructed.

In their seminal paper on (2+1)-dimensional gravity,
Deser, Jackiw, and 't Hooft [12] noted that a spinning
point particle would give rise to CTC's. They added,
however, that "such closed timelike contours are not pos-
sible in a space with n moving spinless particles, where
angular momentum is purely orbital. " When stated with-

We will always assume that the cosmological constant
vanishes.
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out quali6cation, this sentence is apparently contradicted
by the existence of the Gott solution. What is true, as
implied by the (2+1)-dimensional version of the Tipler-
Hawking theorems, is that CTC's cannot be created &om
scratch in a local region. The mechanism by which these
theorems are enforced will be the main subject of this
paper.

The energy and moment»m of a collection of particles
can be conveniently characterized by the Lorentz trans-
formation that a vector undergoes upon being parallel
transported around the system [12,15]. (In the pres-
ence of CTC's we must be careful in choosing the loop
which surrounds the particles, as we explain below. ) The
Lorentz transformation belongs to the (2+1)-dimensional
Lorentz group, SO(2,1). Deser, Jackiw, and 't Hooft [16]
have shown that the group element corresponding to the
Gott time machine is boostlike, i.e., equivalent under sim-
ilarity transformation to a pure boost. Each element of
SO(2,1) can be identified with a three-vector, which we
will refer to as the energy-moment»m vector of the sys-
tem. The energy-momentum vector for a single particle
is timelike, while that of the Gott two-particle system is
spacelike (tachyonic), despite the fact that each particle
is moving slower than c.

The possibility of timelike momenta combining to form
a spacelike momentum arises because the momentum of
a system of particles is not the s»m of the individual mo-
menta. In (2+1)-dimensional gravity, unlike special rela-
tivity, the composition law for energy-momentum vectors
is nonlinear. Hence it becomes possible for a system com-
posed of ordinary, subb~minal matter to have the same
energy-moment»m vector as a tachyonic particle.

One might guess that this discovery reveals why it is
impossible to build a Gott time machine from slowly
moving particles: because the momentum is tachyonic
and we can exclude tachyons as unphysical. In fact, we
will argue that the momentum of Gott's time machine is
not uaphysical: it is possible, givea sufficient energy, to
produce a Gott pair &om the evolution of initially static
particles, even in a theory that does not contain funda-
mental tachyons.

There are, nevertheless, insuperable barriers to creat-
ing a Gott time machine, by which we mean a system of
particles with spacelike total momentum that leads to the
creation of CTC's. In an open universe, the obstacle is
that there is never si~+cient energy. In our previous pa-
per [14] we examined a specific scenario, the decay of two
initially static particles in aa open universe, and showed
that the offspring particles could never move fast enough
to make a Gott time machine. In this paper we gen-
eralize the result by examining the evolution determined
by arbitrary initial data speci6ed on an edgeless spacelike
surface S. A necessary condition for a Gott time machine
to evolve &om such data is tha, t a subsystem of particles

in the domain of dependence of 8 (or on the boundary of
the domain of dependence) have a spacelike momentum.
We show that if 8 has the topology of R and the total
moment»m passing through S is timelike, then there is
insufEcient energy for a spacelike subsystem to arise. In
this sense, a Gott time machine cannot be created in an
open universe with timelike total momentum.

As the key step in our demonstration we associate with
every collection of particles an element of the universal
covering group of SO(2,1), and show that an element
corresponding to an open hypersurface with timelike mo-
mentum is never the product of an element representing
the Gott time machine and any n»mber of elements rep-
resenting massive particles. The proof can be constructed
by algebraic manipulation; however, an elegant geomet-
ric demonstration is achieved by introducing an invariant
metric on the parameter space of the group, in which case
the group manifold becomes (2+1)-dimensional anti —de
Sitter space. 5

In a closed universe, this result no longer holds —we
have found that it is possible to construct a spacetime
in which a pair of particles with tachyonic momentum is
created from initially static conditions (i.e., by the decay
of massive particles). However, 't Hooft [17) has shown
that causal disaster is avoided in this case, since the uni-
verse shrinks to zero voln~e before any CTC's can arise. s

He goes on to argue that this phenomenon will always re-
sult Rom an attempt to build a time machine in a closed
universe. Therefore, neither closed nor open»~iverses in
2+1 dimensions can evolve Gott time machines &om ini-
tial conditions with slowly moving particles. These cases
provide concrete illustrations of the mechanisms that en-
force the theorems of Tipler and Hawking.

II. ENERG'Y AND MOMENTUM

A. Overview

This section is devoted to a detailed discussion of the
use of holonomy, the Lorentz transformation associated
with parallel transport of a spacetime vector around a
closed loop, to quantify the energy and momentum of
gravitating point particles in 2+1 dimensions. With a
suitable choice of coordinate system, the holonomy is a
simple function of the velocities and de6cit angles of the
particles enclosed by the loop.

The parameter space of SO(2,1), the group of Lorentz
transformations in 2+1 dimensions, can be given an in-
variant metric, establishing a correspondence between
the group manifold and (2+1)-dimeasional anti —de Sitter

The energy-momentum vector, however, does not tell the
whole story. The external spacetime associated with a funda-

mental tachyon is diferent from that associated with a Gott
time machine, as we will make explicit in Sec. II.

We are very grateful to Don Page and Alex Lyons,
who pointed out to us the relationship between the (2+1)-
dimensional Lorentz group and anti —de Sitter space.

In a note added to our previous paper [14] we erroneously
claimed that CTC's would arise. V7e thank G. 't Hooft for
informing us of our mistake.
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space. We find that there are inequalities that relate the
momentuxn of a system of particles to the momenta of
the constituents, and that these inequalities can be ex-
pressed compactly by referring to the causal structure of
the anti —de Sitter metric. In the process we find it use-
ful to extend SO(2,1) to its»»reversal covering group, in
which rotations are not identified modulo 2m, and which
can therefore distinguish between (for example) a ii»-
verse with no matter and a n~iverse with total deficit
angle 2m or 4x.

We wish to comment that many of the tools we use are
standard results in the theory of Lie groups and symmet-
ric spaces [18]. Any Lie algebra has a natural metric, the
Cartan-Killing form, given in components by

gpv = & per& vA )

where the c p~ are the structure constants. For semisim-
ple groups, this xnetric can be uniquely extended to a left-
and right-invariant metric on the entire group manifold.
The resulting space will be maximally symmetric, and
paths from the identity defined by T(A) = exp( —iAX),
where X is an element of the Lie algebra, will be geodesics
of this metric. However, it is straightforward for us to de-
rive these results for the case at hand, which we will do
for clarity. (A similar discussion of the universal cover of
SO(2,1) in a difFerent context can be found in Ref. [19].A
more mathematical discussion can be found in Ref. [20].)

B. Holonomy

tained by boosting to the particle's rest frame, rotating,
and boosting back. Thus, we associate with the xnoving
particle a xnatrix

T = B($)R(n)B '((), (2)

where g = v arctanh[v~ is the rapidity of the particle and
B(f) is a boost bringing the rest vector to the velocity
of the particle.

If there are several particles moving with respect to
one another, then the holonomy around any loop can be
coxnputed by deforming the loop so that it goes around
the particles one at a time. The holonomy is then a
product of matrices, each of which has the form of Eq.
(2).

The discussion of multiparticle systems is particularly
simple in the context of a spacetime (or region of space-
time) free of CTC's, since in this case we can construct
a foliation into spacelike surfaces. Specifically, the mo-
mentuxn of a system of particles contained in a bounded,
simply connected region of a spacelike surface is charac-
terized by the holonomy of the (counterclockwise) loop
that forms the boundary of the region. (We consider the
particle world lines to be part of the manifold, so such
world lines do not render a region multiply connected. )
The base point of the holonomy can be thought of as
the position of the observer, and defines the coordinates
in which the holonomy transformation is measured. The
relation between this holonomy and the properties of the
individual particles is easily seen by continuously deform-
ing the loop into one that encircles the particles one at a
time, as shown in Fig. 2. Such a deformation can always

We begin by recalling the characterization of energy
and momentum in (2+1)-dimensional gravity [12,15]. In
any number of dimensions, spacetime curvature can be
characterized by the holonomy transforxnation that de-
scribes the result of parallel transporting a vector around
a closed loop. In 2+1 dixnensions this technique is espe-
cially convenient, since the holonomy of a (contractible)
closed loop can be thought of as reBecting the energy
and momentum of the matter passing through the loop.
Further, since space is Bat outside sources, any two loops
that can be deformed into each other without crossing
any particles will yield the same transformation. (The
holonomy will, of course, depend on a choice of ft. arne at
the base point of the loop. If the choice of kame is varied,
the holonomy will change by a similarity transformation. )

In a general manifold, the holoxnony around a loop
is a path-ordered exponential of the connection. In the
case at hand, however, the natness of spacetime in vac-
uum adfords a considerable simplification. As an ex-
ample, consider a single particle that is stationary in a
Minkowskian coordinate system &om which a wedge of
deficit angle o. has been removed, with opposite sides
identified. A vector parallel transported in a counter-
clockwise loop around the particle has constant coxnpo-
nents until it crosses the identified edges, where it un-
dergoes a rotation by o,. The holonomy of this loop is
therefore a counterclockwise rotation matrix R(a). For a
particle in a similar coordinate system but moving with
velocity v, the appropriate transformation can be ob-
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FIG. 2. The deformation of a loop into a succession of sin-
gle particle loops. Part (a) shows three particles contained
in a shaded region, bounded by the counterclockwise loop C
with base point Q. To deform the loop, Srst draw noninter-
secting paths P; connecting each particle to the base point, as
shown by the dashed lines in (b). (These paths are arbitrary,
but in a connected region they can always be constructed. )
Then deform the loop so that the area inside shrinks, contin-
uing until all parts of the loop come into contact arith either
the particles or the paths P;. The result is a path C', as
shown in (c), which encircles the particles one at a time.
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be constructed by 6rst choosing nonintersecting paths P;
to connect each particle to the base point Q. (In a coor-
dinate system adapted to this picture, the deficit angles
would not cross the paths P; but otherwise may extend
in any direction. ) The original loop C is then deformed
to the loop C' by continuously shrinking the area inside
the loop, continuing until all parts of the loop come into
contact with either the particles or the paths P;. The
parallel transport of a vector around the path C' is thus
the product of the parallel transport transformations of
the loops around the individual particles, so

3 ~ 3 0

Ttog = T~T~ y. . .Ty

where the particles are enclosed in the order 1, 2, . . . , N.
Here each T; has the form of Eq. (2), where the velocity
of the ith particle is determined by parallel transporting
the velocity vector to the base point q along the path
P;.

As a system of N particles evolves via decay or scat-
tering into a system of M particles, a loop around the
systexn at one tixne can be deformed to a loop around
the system at a later time (i.e., on a subsequent space-
like surface). Since the deformation carries the loop only
through regions of Hat spacetime, the resulting transfor-
mation matrix is not changed. Therefore, conservation
of energy and moment»m is expressed as the equality of
Lorentz transformations at diH'erent times:

FIG. 3. Two distinct regions containing the same particles.
The shaded regions in (a) and (b) each contain the same par-
ticles, 1 and 2. Nonetheless, the boundary loops C and Cq
cannot be continuously deformed into one another without
crossing particle 3, and therefore, the holonomies of the two
loops will be unequal.

which runs along C,„b,and then returns along the same
path. Then note that the loop C~ ~ can be viewed as a
sequence of two loops, as shown in Fig. 4(c). The 6rst is
a loop C,„b,surrounding the subsystem and the second is
a loop C,~„that surrounds the remainder of the system.
The holonomy for the full system can then be written as

Ttot —TelseTsub

C,l„,however, is a loop surrounding a simple connected
region, so it can be decomposed into its single particle
contributions as in Eq. (3). Thus, Tt q can always be

This will hold regardless of the orientations of the paths
P;, as long as the base points of the two loops lie in the
same Minkowskian coordinate patch. This rule was used
in Ref. [14] in constructing the spacetime for one particle
decaying into two.

Later in this paper we will be concerned with the re-
lation between a system of particles and a subset of the
system. The subsystem is de6ned by specifying the re-
gion of the spacelike surface that it occupies. To obtain a
holonomy that can be compared with the holonomy of the
full system, the base point Q of the full holonomy should
also lie on the boundary of the subregion, and should
be taken as the base point for its holonomy. Note that
the speci6cation of the region contains more information
than a simple listing of the particles in the subsystem;
Fig. 3 shows an example of two distinct regions that
contain exactly the same particles. To understand the
relevance of the extra information, recall that the holon-
oxny de6nes the energy and moment»~ of the subsystem,
and therefore must include a speci6cation of the relative
velocity of the two particles. The velocity of particle 2
as seen by particle 1, however, depends on the path used
for the observations. That is, the velocities can be com-
pared only by parallel transporting one to the other, a
path-dependent process.

The generic form of a system and subsystem are shown
in Fig. 4(a). The loop around the system is called Cq t,
and the loop around the subsystem is called C,„b.To
relate the total holonomy Tq q to the holonomy of the
subsystem Ts„b,6rst deform C«t to Ct t, as shown in
Fig. 4(b). The deformation consists of adding a detour

(a)
tot

(b) c tot

(c)
h

tL
/It'~I]I

Q
gPF

C,„b

Followed
By

FIG. 4. The relation between a subsystem and the entire
system. Part (a) shows a generic system and subsystem,
bounded by loops C&~& and C,„b,respectively. The loop C«&

can be deformed, as shown in (b), by extending it along the
path of C,„band then back again. Part (c) shows how the
new loop, C& t, can be viewed as the concatenation of two

loops: Csub& which surrounds the subsystem, and Ce]seq w+ch
surrounds the remainder of the system.
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written as

Tt,zt, = T~T~ y TyTsub

is a measure of the momentum of the particle and o,' is
de6ned by

where the T; denote matrices of the form of Eq. (2), for
each particle not part of the subsystem. This equation
implies that no matter how the subsystem is chosen, the
complete system can always be separated cleanly into
the subsystem plus other particles. Equation (6) will
be used later to prove an inequality relating the energy-
momentum of a subsystem to that of the system in which
it is contained.

We turn now to a speci6c representation of the holon-
omy transformations T by 2 x 2 matrices. The standard
basis for the Lie algebra of SO(2,1) consists of the rota-
tion generator J and two boost generators Kq and K2,
with the commutation relations

A A
tan —= cosh(tan —.

2 2

Note that a' may be thought of as a boosted deficit angle,
when the excised wedge is taken to lie along the direction
of motion (as in Fig. 1).

C. The metric on SU(l, l)

We now turn to the geometry of the parameter space
of SU(l, l). The space of 2 x 2 matrices is spanned by
the group generators g„{y,= 0, 1,2) and the identity
matrix, so an arbitrary 2 x 2 matrix can be written as

[Ki, K2] = iJ, —
[J,Ki] = iK2,
[J,K2] = iKi .

1 An Mg (8)

where Co]2 = 1 and indices are raised and lowered by the
Lorentz inetric g„„=diag[ —1, 1, 1]. Explicitly, Qs ——J,
gi ———K2, and Jg ——Ki.

A rotation by angle o, is given by

(
R(a)=e ' ~=

0 e'

Following the conventions used in Ref. [14] we take J =
zo's and K; = (i/2)o;, where the o's are the standard
Pauli matrices. When exponentiated, these 2 x 2 matrices
generate the group SU(l, l), which is a double cover of
SO(2,1). Since our ultimate concern will be the universal
cover common to SO{2,1) and SU(1,1), for convenience
we will work with SU(1,1) in what follows.

The generators J and K; are components of an an-
tisymmetric Lorentz tensor M„„,with J = Mq2 and
K; = M;0. Since we are working in three spacetime di-
mensions, however, we can de6ne a set of three-vector
group generators by using the Levi-Civita tensor:

(14)

where y" = (t, x, y) and io, t, z, and y are complex.
SU(l, l) consists of those matrices T satisfying

detT =+1 (15a)

(15b)

where

(1 0l
(0 —1

The form of this equation suggests that we consider the
three-dimensional space indicated by Eq. (15) to be em-
bedded in a four-dimensional space with the metric

d82 dC2 + dz2 + dy2 d~2 (18)

It is shown in Appendix B that these conditions are
obeyed if and only if (t, z, y, ur) are real numbers sat-
isfying

+x +y —m = —l.2 2 2 2=

and a boost is given by

B(g)
—it K & cos & e-'&siW&&

(10)

—ipe'&
ipe

/1 + p2esn'/2
)

where ( =
~g~ is the magnitude of the rapidity and P is

its polar angle. The matrix T associated with a single
particle is found by evaluating Eq. (2):

It is natural to take the metric on the parameter space of
SU(1,1) to be the metric induced by this embedding. Afi-
cionados of de Sitter spaces will recognize this as (2+1)-
dimensional anti —de Sitter space (see Ref. [3]). The group
SO(2,2) which leaves this metric invariant will map the
submanifold defined by Eq. (17) into itself, so the em-
bedded three-manifold is maximally symmetric. Further-
more, it will be shown in Appendix B that the metric is
group invariant, that is, either left or right multiplication
by an element of SU(l, l) is an isometry of the metric.

To put coordinates on SU(l, l), note that we can de-
compose any element into a boost times a rotation:

where

Ckp—:sinh$ sin—
2

(12)

T = B(g)R(e)
( e is~ cosh~ e*~e~ slsjnh~ )

2 2

(
e*~-'~'+'&s nh~ e'~'cosh~
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x = sin —sinh —,
2 2'

(20)

y = cos —sinh —,
2 2'
8

m = cos-cosh- .
2 2'

The anti —de Sitter metric on SU(l, l) is the metric in-
duced. by Eq. (18) on the submanifold defined by Eq.
(17). In the coordinates (8, t,', @), it is obtained by plug-
ging the transformations (20) into Eq. (18) yielding

ds = —4cosh —d8 + 4d( + 4sinh —dQ (21)

Thus 8 acts as a timelike coordinate.

D. The energy-momentum vector

Elements of SU(l, l) suKciently close to the identity
may be written as exponentials of elements of the Lie
algebra:

T = exp( —iP"g„). (22)

Since P" describes a tangent vector at the identity of
SU(1,1) we can compute its norm using the metric de-
fined above. One could use Eq. (21), but it is easier to ex-

I

where (' is the magnitude of the boost, b is its polar angle,
and 8 is the angle of rotation. [Note that this is a different
parametrization than the variables (a, (, P) used in Eqs.
(ll)—(13).] Comparing Eq. (19) to Eq. (14) and defining

Q = 2h —8 we obtain
8

t = sin —cosh —,
2 2'

pand T to first order in P", and then to compare with Eq.
(14) to determine the parameters (dt, dz, dy, diU) needed
in Eq. (18). The result is

(23)

Not surprisingly, the group invariant metric in the vicin-
ity of the identity coincides, up to a factor, with the usual
(2+1)-dimensional Minkowski metric g„„.If ~P~ ( 0 we
will call the vector "timelike, " keeping in mind the dis-
tinction between the timelike direction in the spacetime
manifold and that on SU(l, l). Note that ~P~ is actually
the length of the curve defined by T(A) = exp( —iAQ" Q„),
where A varies from 0 to 1, as can be seen by 6rst calcu-
lating the length of the segment from A to A+ dA.

To understand the properties of P" let us write the
holonomy of a loop around a single particle in the form
T = exp( —iP"g„).Under a Lorentz transformation I in
the physical spacetime, the group element exp( —iP"P„)
transforms as

I exp( —iP"g„)1' = exp( —iA"„PJ'„), (24)

where I is an element of the 2 x 2 representation of
SU(1,1) and A is the corresponding matrix in the 3 x 3
(adjoint) representation. In the rest &arne of a sin-
gle particle T is a pure rotation and P" is equal to
(a, 0, 0) = (8zGM, O, O). Using Eq. (24) one sees that
in an arbitrary &arne P" = 8m'G(pM, pMv), in agree-
ment (up to a factor) with the energy-momentum vector
of special relativity. It follows immediately that any mas-
sive particle (moving slower than the speed of light) will
be associated with a P" that is timelike. (By convention,
the holonomy of a counterclockwise loop corresponds to
a future-directed energy-momentum vector. ) If several
particles are combined, however, then Pt" t is not the sum
of the individual momenta; rather, &om Eq. (3),

exp(-i&~.i&.) = exp(-i&~&. ) exp(-i&~ i~.) 'xp(-'&i &.) (25)

In the G ~ 0 limit, on the other hand, each exponential
can be expanded to lowest order, and one finds that Pt" 1

approaches the sum of the individual P,". Since P,", is
a conserved Lorentz three-vector which approaches the
ordinary special relativistic energy-momentum vector in
the G -+ 0 limit, we will call it the energy-momentum
vector. However, it should be recognized that it is a
somewhat unconventional energy-momentum vector in at
least two respects. First, and more importantly for our
purposes, the energy-momentum vector for a group of
particles is not the sam of the individual momenta. Sec-
ond, it is constructed &om the Lie algebra of the Lorentz
group, rather than the tangent space of the spacetime.
Nonetheless, in 2+1 dimensions the Lorentz generators
can be rearranged to form a vector, as in Eq. (8). The
expansion of a group element in terms of these generators
gives rise to a three-tuple P", which transforms accord-
ing to Eq. (24) as a vector in the tangent space of the
spacetime. The tangent space is constructed at the loca-
tion of the base point of the closed loop used for parallel
transport, which might be thought of as the location of

the observer.
For some purposes it will be convenient to write P"

as a parameter A tiines a normalized vector n~; if P" is
timelike ~n~ = —1 and for P+ spacelike ~n~ = +1. For
n" timelike, the explicit form for T is

'4A'A Zp —cos
2

p ~ A

2cos ——zA sin 2
—g'Q S1Il 2

A

2

(n + in ) slil
0cos —+ in sin 2 )

(26)

If multiple observers are stretched along the loop, or along

any deformation of the loop that intersects no other particles,
then the observers will agree on the energy-momentum vector
in the following sense: if the vector measured by one observer

is parallel transported along the loop to another observer, it
will agree with the vector measured by the second observer.
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and for n~ spacelike we obtain

e '"" +" = cosh ——2in"J„'sinh
2

cosh —"—cnos1nh —"

(nz —ini) sinh z

2

(nz + ini)sinh~z

cosh2 + ~A slnh20 ~

(27)

1;~~~ cos —" for n" timelike,—Tre '
2 cosh z for n" spacelike . (28)

It follows that

Taking the trace of these two equations we can see that
a general matrix obtained by exponentiation satis6es

an SO(2,1) vector does not distinguish between the two
cases.

E. Constraints on the energy-momentum of systems

We now return to the anti —de Sitter geometry of
SU(1,1). For fixed n", we may consider Eqs. (26) and

(27) as defining curves parametrized by A. The crucial
observation is that these curves are geodesic in the met-
ric (21), which can be checked directly. For example, by
comparing Eqs. (19) and (26), one sees that the curve
defined by (26) is equivalent to

(,8 = 2arctan n tan—

i T [
—iAfl Q&] (29)

for all cases.
From Eq. (29) it is easy to show that the SU(l, l)

matrix corresponding to the Gott time machine is not
the exponential of any generator. For simplicity we take
a configuration where the two particles approaching each
other (as in Fig. 1) each have a rest frame deficit angle
o. and rapidity (, with Pi ——s', Pz ——0. Then we can use
Eqs. (3) and (11) to write T~ = TzTi as

(1+ Pz)e ' —Pz —2P/1+Pepsin z

I
—2P/1+ Pz sin z (1+Pz)e' —Pz

where p and a' are given by Eqs. (12) and (13). The
trace is then given by

ziTrT~ = (1+Ps)cosa' —Pz

= 1 —2cosh Ir sin
. 2O,

2
(31)

The condition that such a configuration contain closed
timelike curves is [8]

cosh( sin —) 1,
2

or ziTrT~ ( —1. Thus, from Eq. (29) it follows that T~
cannot be written as an exponential.

However, SU(1,1) is a double cover of the Lorentz
group, so the matrices +7~ correspond to the same ele-
ment of SO(2,1). We will see in the next section that Ta-
can be written as an exponential. Since z Tr( —T~) ) 1,
Eq. (28) implies that it is the exponential of a spacelike
generator. The corresponding element of SO(2,1) can be
obtained by exponentiating the corresponding generator,
and thus the element of SO(2,1) associated with a Gott
pair is spacelike or tachyonic (equivalent under similar-
ity transformation to a pure boost). This is the sense
in which we say that the Gott time Inachine has tachy-
onic momentiim [16,14], even though T~ 6 SU(l, l) is not
equivalent to the exponential of a spacelike generator—
parallel transport of a spinor around a single tachyonic
particle is not equivalent to parallel transport around the
Gott two-particle system, although parallel transport of

( = 2 arcsinh g(ns) ~ —1 sin—
2

(33)

n'
g = —2 arctan —= const .

n2

It is straightforward to con6rm that this solves the
geodesic equation

d2z" „dzl'dz
dg2

+ (34)

for x" = (8,(,g). This fact can be seen more directly by
starting with a simple path, such as T(A) = exp( —iA Jp),
and verifying that this solves the geodesic equation. Then
by Eq. (24) a Lorentz transformation A" „willtake this
curve into another curve of the form exp( —ikey"g„),with

Since the action of SU(1,1) is an isome-
try, the resulting curve must also be a geodesic. Finally,
the isometry property also ensures that a curve of the
form T(A) = To exp( —iAn" J„')[To Q SU(1,1)] will be a
geodesic through Tp.

A simple way to visualize anti —de Sitter space is in
terms of its Penrose (conformal) diagram [3]. We define
a new coordinate (' by

(' = 4arctan(e~~ ) —m,

restricted to the range 0 ( t,
"' ( z. The metric (21)

becomes

ds 2
I

~

—d8 + dt,
" + sin —dQ

~

. (36)
4 cosz +z & 2 j

The Penrose diagram is shown in Fig. 5; the angular co-
ordinate Q is suppressed. The light cones at each point
are lines drawn at 45'. The right-hand side of the rect-
angle is the surface (' = x, which represents spacelike
and null in6nity. The lower left corner is the origin,
&om which we have drawn typical spacelike and time-
like geodesics. The lower and upper boundaries are the
surfaces 8 = 0 and 8 = 4z, which are identified [the topol-
ogy of SU(l, l) is thus S x Rz]. An important feature
of this diagram is that timelike geodesics &om the origin
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TQ Tg Tg

and 6I = 2m. Then the shaded region of Fig. 5 is mapped
onto the wedge which is covered by spacelike geodesics
emanating kom the origin. This is consistent with our
earlier statement that the Gott time machine holonomy
Tr, written as an element of SO(2, 1), can be expressed
as the exponential of a spacelike generator, even though
the SU(1,1) element for the Gott time machine cannot
be expressed as the exponential of any generator.

Consider a system of particles represented by an ele-
ment Tq«of SU(1,1). As in Eq. (6) we divide this system
into a subsystem represented by an element T,„band the
remaining N individual particles represented by T;:

A

e=o
('=0

FIG. 5. The conformal diagram of SU(1,1), the double
cover of SO(2,1). The group manifold of SU(l, l) with the in-
variant metric is shown. The g direction is suppressed; hence,
each point away from the (' = 0 line represents a circle. The
top and bottom edges, 8 = 4' and 8 = 0, are identi6ed. The
identity element is in the lower left-hand corner; we have in-

dicated some spacelike and timelike geodesics from this point.
Elements of SU(1,1) that can be expressed as exponentials of
generators lie on such geodesics. The product T~ of two such
elements T& and Tz is represented by a curve constructed
&om two consecutive geodesic segments, as shown. In this
case the product lies in the shaded region, which represents
elements that cannot be expressed as exponentials of genera-
tors. The Gott time machine lies in this region.

refocus at the point (8 = 2', (' = 0), as can be seen
directly &om Eq. (33) (note that (' = 0 is equivalent to
t,
' = 0). Therefore, points that are spacelike separated
from (8 = 2m', (' = 0) cannot be joined to the origin by a
geodesic. These points correspond to the shaded region
of the diagram.

Since every element of SU(l, l) that can be written
as the exponential of a generator lies along a geodesic
through the origin, points in the shaded region corre-
spond to group elements that cannot be reached by ex-
ponentiation. The element Tc; corresponding to the Gott
time machine lies in this region. The element —T~, on
the other hand, can be obtained &om T~ by subtracting
2m from 8, so —T~ lies in the region that is spacelike
separated &om the origin. Thus —T~ can be reached by
exponentiation, as was claimed in the previous section.

The product of two elements T~ = exp( —iP& j~) and

T~ = exp( —iP&J„')corresponds to traveling in the direc-
tion of P+& along a geodesic to T~, then traveling along a
difFerent geodesic (not through the origin) to T~T~. As
shown in the diagram we can easily reach the shaded re-

gion, and hence the Gott time machine, in this manner.
The parameter space of SO(2,1) can be visualized by cut-
ting the diagram in half, identifying the surfaces 8 = 0

Ttot —TN ' T1Tsub

This relation can be represented on the Penrose diagram
by a future-directed nonspacelike curve &om T,„bto Tt t,
constructed from geodesic segments representing each of
the T;. It is clear that the periodicity in the 0 direction
allows any two points to be connected in this way —as
far as SU(1,1) is concerned, any system of particles can
contain a subset with arbitrary energy and momentum.

However, the identification 8 ~ 8+4+k obscures an im-
portant difference between physically distinct situations.
To make this difFerence apparent we must go to SU(l, 1),
the universal cover of SU(1,1) and SO(2,1). In terms of
the Penrose diagram we no longer identify 8 = 0 with
8 = 4', but instead we extend the picture infinitely far
in the positive and negative 8 directions (Fig. 6). The
timelike geodesics &om the origin will refocus at 0 = 2',
then continue onward, refocusing again at 0 = 2mk for
every integer k. Therefore the wedges of points that are
spacelike separated from (8 = 27rk, (' = 0) for k g 0 can-
not be reached kom any geodesic through the origin. All
of these points may be said to correspond to tachyonic
momenta, since they map to elements of SO(2, 1) lying
on spacelike geodesics &om the origin.

To describe a multiparticle system using SU(1, 1) we

express Tt«as a product as in Eq. (3), with each T, rep-
resenting a single particle. Any particle in its rest kame
has a deficit angle o. & 2', so one can uniquely define
T; in the universal covering group by using Eq. (2), in-

terpreting R(n) as the element of the universal covering
group described by (8 = a, (' = 0), where 0 ( cr ( 2'.
Similarly B(lr) can be chosen to lie in the sector of the
universal covering group that is spacelike separated &om
the identity. [In this case, however, any other choice
would be equivalent. The ambiguity consists of any num-
ber of factors of the group element corresponding to a ro-
tation by 2m, and this element commutes with all other
elements. Therefore, in Eq. (2), the ambiguous factor
would cancel between B and B .j

Nate also that an arbitrary leep, encircling some particles
clockwise and others counterclockwise, will correspond te a
sequence of both future- and past-directed geodesic segments.
However, we will limit eur attention te loops that encircle all

particles counterclockwise.
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e=4~—

0=2@

('=0

FIG. 6. The universal cover of SU(1,1). In the universal
covering group, the identification of 8 with 8+4m' is removed,
so that 8 takes values from —oo to oo. The element T~,
representing a Gott time machine, does not lie to the past
of any point ou the (' = 0 line between 8 = 0 and 8 = 2s'.
Since all open hypersurfaces with timelike total momentum
lie on this line (in their rest frame), no such hypersurface can
contain a Gott time machine.

elements T;, as was done in Eq. (3). For this purpose we
introduce an alternative de6nition. Recall that an ele-
ment of the covering group G of any group G is uniquely
defined by specifying an element g E G, and by specify-
ing, up to continuous deformation, a path in G connect-
ing the identity element to g. To make use of this fact,
imagine that the mass of each particle is rendered non-
singular by sxnearing it over a sxnall region. To define the
SU(1, 1) holonomy of a loop C, start with a trivial loop
in Dc (i.e., one which encircles no particles), and deform
it through D~ into the loop C. At each stage of the de-
forxnation there is an unaxnbiguously defined holonomy
element of SO(2,1), and therefore the deformation pro-
duces a continuous path in SO(2, 1) from the identity to
the holonomy group element for the loop C. Although
the precise path in SO(2,1) will depend on the loop de-
formation that is chosen arbitrarily, the speci6cation of
D~ guarantees that the path will be determined up to
continuous deformation, precisely what is needed to de-
fine an element of the covering group SU(1, 1). Finally,
this de6nition can be shown equivalent to the one given
two paragraphs above by considering in particular the
deformation of the loop which starts as a trivial loop,
and expands to cover each of the particles one at a time,
in the same order as the factors appearing in Eq. (3).

Since the element Tt t 6 SU(1, 1) depends only on t

and D~, relationships derived by the continuous defor-
mation of loops, such as the conservation law of Eq. (4)
or the isolation of a subsystem described by Eq. (37),
are valid equations in SU(1, 1).

We can now describe the key step in our argument that
a Gott time machine cannot be created &om initial con-
ditions specified on an open spacelike hypersurface with
timelike total momentum. Consider an arbitrary subset
(possibly the entire set) of particles crossing a spacelike
hypersurface S, with a moment»m characterized by a
holonomy element T,„bof SU(1, 1). Then (37) implies
that the holonomy of all particles crossing 8 can be writ-
ten as

Ttot —TN ' T1Tsub ~ (38)
We will continue to use the word "holonoxny" to refer

to the group element Tt t E SU(1, 1), although there is no
type of physical particle that we could parallel transport
around a closed loop which would distinguish between
elements of SU(1,1) separated by a 4n rotation. Unlike

a true holonomy, however, the SU(1,1) element is not
uniquely defined by the loop C alone: it is also necessary
to specify, up to continuous deformation, a disk Dc of
which C is the boundary. This disk allows a unique spec-
ification of which particles are inside the loop, so that Eq.
(3) can be written. [If the loop C were drawn on an S2
surface, for example, there would be two inequivalent ar-
eas that it would bound. The two resulting elements. of
SU(l, l) would difFer by a 4m rotation, so the specification
of Dc is needed to resolve the ambiguity. ]

The definition of Tq t E SU(1, 1) given above is con-
veniently explicit, but we must show that the result is
independent of the arbitrary paths P; that were intro-
duced to write Tt t as a product of single-particle group

where the T; represent the individual particles compris-
ing the rest of the system. The right-hand side of this
expression must correspond to a point in the future light
cone of T,„b,since each T; can be represented by a seg-
ment of a future-directed timelike or null geodesic. For an
open hypersurface with timelike total momentum, how-
ever, Tt t in the rest kame corresponds to a rotation by
the total de6cit angle, which we will show must be less
than or equal to 2'. Thus, Tt, t must lie on the (' = 0
axis, between 0 = 0 and 0 = 2'. However, the holonomy
element of a Gott time machine, T~, lies in the shaded re-
gion that is spacelike separated from the point (8 = 2~,
g' = 0), as shown in Fig. 6. Since T,„bmust lie to
the past of Tt t, T,„bcannot represent the moment»m of
a Gott tixne machine. Thus, no subset of the particles
crossing 8 can comprise a Gott time machine.

To complete the argument we must investigate the cir-
cumstances under which one can find a spacelike hyper-
surface 8, as was used in the previous argument. The
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complication is the possibility of CTC's, which cannot be
discounted a priori, as we are trying to prove that they
cannot be created. In the presence of CTC's a spacetime
will not necessarily admit a foliation into spacelike hyper-
surfaces, so it may not be possible to choose a holonomy
loop so that all of the particles contribute positively. In
addition we must prove that the total de6cit angle of
an open hypersurface must be less than or equal to 2'.
These steps are completed in the next section.

III. RESTRICTIONS ON TIME MACHINE
CONSTRUCTION

In this section we consider an attempt to build a Gott
time machine in a universe that is open, in the sense
that it contains an edgeless spacelike surface S with the
topology of IR . We will further limit our attention to
the case where S is acausal (no timelike or null curve
intersects S more than once); in that case S is called a
partial Cauchy surface. Then we can speak of the total
momentum of the particles passing through S, defined by
the element Tg of SU(1, 1) computed from the holonomy
of a non-self-intersecting loop in S at in6nity, enclosing
all of the particles. When all of the particles in the uni-
verse intersect S, we may think of Tg as defining the total
momentu~ of the universe; we will usually consider this
situation, although it is not strictly necessary to our ar-
gument. In the case where Tg is timelike, we will show
that a group of particles with the momentu~ of a Gott
time machine can evolve from the data specified on S
only if the rest frame deficit angle is greater than 2z.
We then show that this deficit angle must be less than
or equal to 2z if S has the topology of R2, i.e., if the
(2+1)-dimensional universe is open.

We begin with some basic definitions; more complete
discussions can be found in Refs. [2,3,5,21j. Consider a
spacetime containing a partial Cauchy surface S. The fu-

ture domain of dependence D+(S) is the set of all points

p such that every past-directed inextendible timelike or
null curve through p intersects S. Thus, initial data spec-
ified on S suffice to determine the evolution throughout
D+(S). The past domain of dependence, and analogous
terminology, is de6ned in the obvious way and denoted
by replacing the plus sign by a minus sign. The full do-
main of dependence, D(S), is defined as D+(S)UD (S).
The future boundary of D+(S), past which information
speci6ed on S is no longer suKcient to determine the evo-
lution, is a null surface called the future Cauchy horizon
H+(S). There are various circumstances under which

a Cauchy horizon may arise, including the creation of
CTC's. Any point p that lies on a CTC in the future of
S, or in the future of any such CTC, is not contained in
the domain of dependence D+(S), since there will exist a
past-directed inextendible timelike curve through p which
wraps forever around a CTC without ever intersecting S.

We also define a partial ordering in the group SU(l, 1):
we say that T; ( T~ if and only if T; lies in the past light
cone of T~, in the anti —de Sitter metric of Eq. (21). The
light cones used in this definition are easily visualized by
using the conformal diagram of Fig. 6.

We will show that if the momentum associated with S
is timelike, then no Gott time machine can evolve from
the particles passing through S. That is, no group of
particles in the future domain of dependence D+(S), or
on the Cauchy horizon H+ (S), can have the holonomy of
a Gott time machine. Thus, either the Cauchy horizon
does not exist, or it arises due to an eKect other than the
creation of a Gott time machine.

First let S' be any Cauchy surface for D(S), and let
C be a non-self-intersecting loop on S', which defines a
holonomy T~. %e may decompose Tp into T~ times the
positive contributions of other particles passing through
S', as in (37). Hence Tc must be less than or equal to
T~, in the ordering defined above. But since S' is a
Cauchy surface, the particles that cross S' are exactly
those that cross S. The loop defining Tg can therefore
be deformed into the loop de6ning Tg without crossing
any particle world lines. This deformation can be carried
out even if the particles undergo merges or decays, so in
all cases Tg ——Tg. Thus, T~ & Tg.

Now consider the general case where S' is any con-
nected edgeless spacelike surface in D(S) and C is again
a non-self-intersecting loop on S'. We will show that
T~ ( Tv by showing that T~ can be embedded in a
Cauchy surface S", reducing this situation to the case of
the previous paragraph.

We begin by using the method of Geroch [22) to
defineio a time coordinate A on D(S). Choose a mea-
sure on D(S) so that the total volume of D(S) is 1 and
let V+(Jr) denote the volume of the future of a point p
in this measure. Similarly, let V (p) denote the volume
of the past, and let A = ln(V /V+). Clearly A increases
on any timelike curve. Geroch shows that A is continu-
ous and that it takes all values kom —oo to oo on any
inextendible timelike curve.

We now construct a coordinate system on D(S) as fol-
lows: let (z, y) be coordinates for S and then let (Ao, z, y)
denote the point where A = Ao on the integral curve of
V'A through (x, y). Since S has the topology of R, D(S)
has the topology of R, and in particular is simply con-
nected.

In the absence of CTC's, it is reasonable to de6ne open

universes as those which may be foliated by spacelike sur-

faces with IR topology. Such a foliation may not be possible

when CTC's are present, however, even in spacetimes which

we would intuitively classify ss "open. " Hence, we will take

the existence of a single such surface as the de6ning charac-

teristic of an open universe.

'
&n Ref. [22] Geroch restricts his construction to the inte

»or «D(S). HoNrever, with the present definition of D+(S)
(which follows [3,21] snd ddFers slightly from that of Geroch)
th& condition that S be edgeless imphes fhst D(S) is open.
The construction, therefore, applies to sjl of D(S)
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We now show that since S' is spacelike, edgeless, and
connected, it divides D(S) into two regions: the past and
the future of S'. For any point p p D(S) we let I' C D(S)
be a curve &om p that intersects S' at least once, and we
let p' denote the first such intersection point. The point p
will be said to lie to the future or the past of S' according
to whether I' approaches p' from the future or the past
side of S'. This is well defined, because if two curves I'
and I' from p approach S' from diferent sides, we would
be able to join I' and I" by a curve through S' to obtain a
closed curve. An arbitrarily small distortion would then
produce a curve that crosses S' exactly once. But such
a curve is impossible: the topology of D(S) implies that
the curve would be contractible, but the edgelessness of
S' implies that the number of crossings can only change
by an even number. One can similarly show that S'
is achronal, since any nonspacelike curve connecting two
points on S' could also be used to construct a closed
curve that crosses S' exactly once.

The loop C and the interior of C in S' together com-
prise a compact region D~. Within D~, A assumes a
maximum value A and a minimum value A;„.The
desired surface S" can then be defined by the relation

f(z, y), where the function f(z, y) is defined by
the following procedure, illustrated in Fig. 7. If for the
given z and y there is a point (A, z, y) 6 S' with A

, then let f(z, y) = A. If not, then the points
(A;„,z, y) and (A, z, y) are both on the same side of
S'. If they are in the past let f(z, y) = A; if they
are in the future let f(z, y) = A;„.Note that f(z, y) is
continuous and is bounded by A;„&f(z, y) ( A

To complete the argument we must show that S" is
a Cauchy surface for D(S), i.e., that any inextendible
timelike curve p intersects S"exactly once. For any point
(A, z, y) let A = A —f(z, y). The surface S" is then
described by A = 0, with A positive in the future and
negative in the past. Since A takes all values &om —oo
to oo along the curve p, the same must be true for A, and
hence S" must be intersected at least once. Following
p toward the future we see that at the first crossing of
S", A changes &om a negative value to a positive one.
But then there can be no further crossings, since at the
next crossing A would have to change &om positive to
negative, which implies that 7 would cross the spacelike
surface S" toward the past. Thus there is exactly one
intersection of p and S", so S" is a Cauchy surface for
D(S) Since C lies .on S" we find by the earlier argument
that Ta & Ts = Ts.

An equivalent result holds for particles passing through
the Cauchy horizon. To see this consider a non-self-
intersecting loop C on H+(S). We will deform C into the

oc

~min

FIG. 7. The construction of the Cauchy surface S". Given
an edgeless spacelike surface S' in D(S) and a closed region
D~ C S', the procedure described in the text serves to de6ne
another surface S" such that D& & S", and S" is a Cauchy
surface for D(S) In t.his figure, S;„andS „aresurfaces
de6ned by A = A;„and A = A „,respectively, where A

and A are the minimum and maximum values of the func-
tion A on the region D~.

interior of D(S), where the previous result can be used.
Let V be any continuous timelike vector field defined on
D+ (S)UH+ (S). From each point of C, follow the integral
curve of V backward through D+(S) until it reaches a
surface S' defined by A = A', where A' is a constant.
Call the resulting loop C' and let 6 be the cylinder that
connects C to C', as shown in Fig. 8. Choose A' large
enough (i.e., S' late enough) so that no particle world
line intersects A. The holonomy T~ is then equal to T~,
which is less than or equal to Ts by the argument above.

We will now show that any spacetime containing a
complete spacelike surface with the topology of R2 and a
timelike total momentum must have a rest frame deficit
angle less than or equal to 2'. We first consider the case
of an arbitrary two-dimensional (2D) surface that is fiat
everywhere except for the interior of a loop L; only the
intrinsic properties of the surface will concern us in this
paragraph. Let Z be the interior of L and K be the
scalar curvature of Z. The Gauss-Bonnet theorem (see,

~ ~ ~ ~ ~ ~ ~ I \ ~

S

See, for example, p. 2Q4 of [3].
H+(S) is null, rather than spacelihe, but the definition of

the holonomy of a system of particles can be trivially extended
to this case, as long as no particle world line lies on H+(S) If.
such a particle world line did exist, the holonomy would not
be de6ned, since the holonomy loop would intersect it.

FIG. 8. Holonomy of a loop on the Cauchy horizon. The
loop C is joined by a timelike cylinder A to a loop C' embed-
ded in S', a spacelike surface in the domain of dependence of
S. No particles pass through 4, so the holonomy of C is equal
to that of C', which arises from the contributions of particles
passing through the shaded region, the interior of C' in S'.
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e.g. , [23]) tells us that, for surfaces with the topology of
1R2,

EdA =2' — —ds.dP
ds

(39)

Here, P is the angle between the tangent vector of L
and an arbitrary vector parallel transported along L in
the two-dimensional surface. We call the right-hand side
of this equation the turning deficit angle Ot„,„aud we
will show below that it is equal to the holonomy deficit
angle 8, de6ned earlier. As the surface is Bat outside
the loop (by hypothesis), it follows that the left-hand
side of Eq. (39) gives the integrated curvature over the
entire surface. We can then invoke a theorem of Cohn-
Vossen [13],which states that the integrated curvature of
a geodesically complete surface with the topology of 1k~

is less than or equal to 2', &om which it follows that

d
Ot„,„=2m' — —ds & 2m .

S
(40)

Thus, a two-dimensional surface that is Bat outside of
a loop L and has IR2 topology necessarily has a turning
deficit angle less than or equal to 2'.

Our task, then, is to find such a surface in our space-
time. The surface S whose existence we have hypothe-
sized is not necessarily sufficient —even though the por-
tion of S that lies outside the loop L is locally embedded
in Minkowski space, there is no guarantee that it is in-
trinsically Bat, and it is therefore hard to apply the above
reasoning. However, it is possible to de6ne a Bat metric
on this portion of S, by the following procedure. I et t
denote the future-directed unit vector left invariant by
the holonomy around I. If the holonomy is a rotation by
a multiple of 2m, then choose t to be any future-directed
timelike unit vector. In either case, t can be consistently
parallel transported throughout the portion of S exterior
to L. In a (three-dimensional) neighborhood of any point
on S we can construct a Minkowskian coordinate system
(t, z, y) with metric dsz = dtz+dh2+ dy—2, such that the
direction of the t axis coincides with t. Since S is space-
like we may use (x, y) as coordinates on S locally, and
then define the metric on the region covered by these co-
ordinates to be dx + dy . Note that this need not agree
with the induced metric &om the spacetime, as S may be
curved in the latter xnetric. Note also that the Bat met-
ric is uniquely de6ned: the local Minkowskian coordinate
system is specified up to translations or rotations in the
x-y plane, under which the metric dx + dy is invariant.
We thus have a well-defined Bat metric on S, outside the
loop L.

Now we must show that the turning deficit augie 8q„,„

is equal to the holonomy de6cit angle Op, defined by the
rotation angle of Ts C SU(1, 1) in its rest frame. For
this purpose we will use the alternative de6nition dis-
cussed in Sec. II for defining the holonomy Tp in the
nn~versal covering group. By this de6uition, the ambigu-
ity of rotations by 2z that occurs in SO(2,1) is resolved
by continuous deformation of the loop. We introduce a
oue-parameter class of loops Lp, each with the saxne base
point Q, where Io is a trivial loop that encircles no par-

ticles aud Lq ——L. As in Sec. II we imagine that the
mass of each particle is smeared over a small region, so
the holonomy changes continuously as the loop is var-
ied. Let Tg denote the holonomy of Lp, and note that
it is uniquely defined in SU(l, 1) by requiring that it be
continuous in A, with To = I (the identity element). For
definiteness we describe the loop Lp iu parametrized form
as Li(s), where 0 & s & 1. Let Vi(s) denote the tangent
vector of Li, at s, mapped to the tangent space at Q by
parallel transporting backward (i.e., clockwise) along Li, .
Thus, V~(s) traces out a continuous curve in the tangent
space at Q. The tangent vector inust return to its origi-
nal value at s = 1, but Vi, (1) is defined so that its value is
modi6ed by parallel transport clockwise around the loop
Lp. Inverting this transformation we have

TiV~(1) = Vi(0) (41)

Equation (41) allows us to define a continuous loop in

the tangent space at Q by noting that SU(1, 1) is simply

connected, so a curve gg(s) in SU(l, 1) satisfying g~(l) =
I and g&(2) = T& can be constructed uniquely, up to
continuous deformation. Then define a closed curve Vi (s)
in the tangent space at Q by concatenating Vg(s) and
g~(s) V~(1):

Vp(s) if 0(s&1,
gp(s)Vp(1) if 1 & s ( 2 . (42)

Since gi (1) = I and gi(2) = Ts, the integrated change in
the azimuthal angle of Vi(s) for 1 ( s & 2 is equal to the
holonomy de6cit angle Op. Since Vp is knowu to make
one counterclockwise loop around the origin we have

Vg(s) is confined to the spacelike part of the tangent
space, which is not simply connected (note that the zero
vector is not spacelike). Vo(s) makes one counterclock-
wise loop around the origin as s is varied &om 0 to 2,
so by continuous deformation the same statement must
hold for all A, and in particular for A = 1.

Now we must connect the behavior of the 3D tangent
vector V [defined in the (2+1)-dimensional tangent space
at Q] to the 2D tangent vector in the surface S, which
was used to de6ne the turning angle. We use the same
local Minkowskian coordinate system (t, z, y) that was
used to construct the Bat metric, and again we take x
and y to locally de6ne coordinates on S. The compo-
nents of the 2D tangent vector are then equal to the x
and y components of the 3D tangent vector, and in both
the 2D and 3D spaces these coxnponents are unchauged
by parallel transport. For any infinitesimal segment of
loop, the turning angle dP of the 2D tangent vector, as
calculated in the Bat metric, is equal to the change in the
azimuthal angle of the 3D tangent vector (i.e., the angu-
lar change of the projection of the 3D tangent vector into
the 2:-y plane). Thus, the integrated change in the az-
imuthal angle of the tangent vector Vi(s) for 0 & s & 1
is equal to the total turning angle:
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d—ds+8g =2K
q

L d8
(43)

which shows that Stum = ~5.
In the case at hand, this suffices to show that the holon-

omy Tg must lie on the conformal diagram of SU(l, 1) in
the triangle to the future of the identity and the past of
the region describing Gott time machines. Since we have
argued that the holonomy of any group of particles in the
domain of dependence of S, or on the Cauchy horizon (if
it exists), must have a holonomy less than or equal to Tg,
it is not possible for these particles to comprise a Gott
time machine. We have therefore established that Gott
time machines cannot be created in open universes with
timelike total momentum.

IV. CONCLUSIONS

The role played by closed timelike curves is an im-
portant issue in classical general relativity, and. may be
important in an ultimate quantum version of the the-
ory. The general theorems of Tipler and Hawking are
strong statements about the difficulty of creating CTC's,
but incomplete in that they do not specify what will go
wrong with any particular attempt at time machine con-
struction. In this paper we have studied some specific
obstacles to the creation of time machines of the type
discovered by Gott [8], using the considerable simplifi-
cation afforded by working in the toy model of (2+1)-
dimensional gravity. These obstacles are most easily un-
derstood by considering the anti —de Sitter geometry of
the three-dimensional Lorentz group, in which we find
that Gott time machines cannot lie to the past of col-
lections of particles with timelike momentum and deficit
angle less than 2m. We then use this fact to show that
a Gott time machine cannot be created in an open uni-
verse with a timelike total momentum, essentially be-
cause there can never be enough energy in an open uni-
verse to achieve the Gott condition.

This result is situated within an ongoing discourse con-
cerning the appearance and significance of CTC's in gen-
eral relativity including discussions of whether physics
can be consistent in the presence of CTC's [24]. Consid-
erable eKort has recently been invested in understand-
ing the creation of CTC s in (3+1)-dimensional space-
times with traversable wormholes [25]. Such spacetimes
seem to easily develop CTC's, but the maintenance of
a traversable wormhole requires violation of the weak
energy condition (WEC). While quantum field theory
in curved spacetime can allow WEC violation, there is
evidence that quant»m Buctuations serve to destabilize
the mould-be time machine, preventing the appearance of
CTC's [4,26]. This issue has led to several investigations
of the behavior of quant»m fields on background space-
times with CTC's [27]. These studies, which ask whether
CTC creation is possible when the WEC is relaxed, are
complementary to the one presented in this paper, which
examines the nature of obstacles to CTC creation when
the WEC is enforced.

It is unclear, however, what the implications of our re-

suit are for CTC creation in the real (3+1)-dimensional
world. We have seen that in 2+1 dimensions, where the
unique property that spacetime is mat in vacuum pre-
cludes the possibilities of black hole creation and en-

ergy loss through gravitational radiation, this same prop-
erty leads to a restriction on the total energy of an
open universe with timelike total moment»m, which in
turn presents insuperable obstacles to time machine cre-
ation. However, the notion of a timelike momentum is
rather intimately connected with the nature of the (2+1)-
dimensional theory, so it seems inevitable that the Tipler-
Hawking theorems in 3+1 dimensions must be enforced
by other means. Thus, a general understanding of the
status of time machine creation remains elusive.

The issue of closed timelike curves in 2+1 dimensions,
moreover, has not been completely resolved; while we
have pointed out in Sec. III that the Tipler-Hawking the-
orems apply in this context, there remains the possibil-
ity of time machines (distinct from the type proposed
by Gott) with noncompactly generated Cauchy horizons.
Waelbroeck [28] has shown that a two-particle system
with timelike momentum does not support CTC's and
Kabat [29] has presented arguments suggesting that this
result is more general. Menotti and Seminara [30] have
discovered restrictions on the existence of time machines
in stationary and axially symmetric spacetimes. A com-
prehensive proof (or counterexample) is worth searching
for.

Meanwhile, the interpretation of holonomies in terms
of the anti —de Sitter geometry of SO(2,1) sheds light on
the "tachyonic" nature of the Gott two-particle system.
While the energy-momentum vector of such a pair is
properly described as spacelike, this fact does not render
such a pair unphysical, as the energy-momentum vector
does not tell the entire story. In the universal cover-
ing group of SO(2,1), the region containing Gott pairs is
disjoint &om that containing tachyons. The obstacle to
creating a Gott time machine is not the tachyonic mo-
mentum as such, but the absence of sufficient energy in
an open»adverse. This is seen most clearly by consid-
ering the case of closed universes. In our earlier paper
[14] we argued that it is impossible to produce two parti-
cles satisfying the Gott condition by the decay of slowly
moving parent particles»n&ess the total rest kame deficit
angle exceeds 2~. In a closed universe, where the total
deficit angle is 4x, this does not constitute an obstacle.
It is easy to construct a closed»niverse containing two
particles, each with deficit angle between x and 2x, and
a number of less massive spectator particles which bring
the total deficit angle to 4m. Using the description of de-
cays given in Ref. [14] we have found that the two mas-
sive particles can decay in such a way that each emits an
offspring at sufficiently high velocity that the total mo-
mentum of the two fast-moving particles is tachyonic.
Thus, in a closed (2+1)-dimensional umverse it is possi-
ble to "build a tachyon. " However, as we mentioned in
the Introduction, 't Hooft [17] has shown that the size

Our construction is described by 't Hooft in [17].
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of the i~~iverse begins to shrink aRer the decays, leading
to a crunch (zero volume) before any CTC's can arise.
There is thus a sense in which general relativity is Bex-
ible enough to permit tachyons, but works very hard to
prevent time travel.

H+(S)
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APPENDIX A: THE TIPLER-HAWKING
THEOREM S

In this appendix we review the theorems of Tipler [5]
and Hawking [4], who make rigorous the notion of "build-
ing a time machine in a local region of spacetime, " and
then show that such construction is impossible using only
normal matter, in the absence of singularities. We also
explain how the theorems may be extended to 2+1 di-
mensions.

The future Cauchy horizon H+(S), defined in Sec. III
as the boundary of the future domain of dependence
D+(S), is a null surface which can be thought of as the
union of null geodesic segments known as "generators. "
The generators of H+(S) have no past end points and
they never intersect in the past. They may have future
end points if the generators intersect; the set of such end
points forms a set of measure zero. The notion of "cre-
ating a time machine in a local region" can be de6ned
precisely by considering Cauchy horizons for which every
generator, when followed into the past, enters a compact
region of spacetime B and remains there. (Note that a set
which would otherwise be compact can be rendered non-
compact by the appearance of a curvature singularity. )
Hawking [4] refers to such horizons as "compactly gener-
ated. " These are the types of time machines that could,
in principle, be constructed by an advanced civilization.
Since the generators can have no past end points, each
generator entering the region B must wind round and
round within B [4].

The situation is thus as we have portrayed in Fig. 9.
A compact set B lies in the future of a partial Cauchy
surface S. The Cauchy horizon H+(S) emerges from
the compact set B, which may be thought of as the place
vrhere CTC's are created. Tipler and Hawking essentially
prove that this picture will never describe a spacetime

FIG. 9. Time machine creation in a local region. A partial
Cauchy surface S is pictured, in the future of which CTC's
evolve. The Cauchy horizon, labeled H+(S), emerges from a
compact set B.

obeying the weak energy condition (that the energy den-
sity measured by any timelike observer is non-negative).
Since we believe that "ordinary" matter obeys the weak
energy condition, this theorem demonstrates that (in the
absence of singularities) a time machine cannot be con-
structed in a local region —any attempt to do so w'ill ei-
ther fail, or render B noncompact by creating a singular-
ity (or both).

The theorems of Tipler [5] and Hawking [4] reach
slightly di8erent conclusions &om slightly different as-
sumptions. Tipler assumes that there are tidal forces
somewhere on the Cauchy horizon inside B. Specifi-
cally, he requires at least one point q on H+(S) il B at
which K"K"K~ R~j„„p,K jg 0, wher'e K" is the tan-
gent vector to the generator of H+(S) at q, and square
brackets denote antisymmetrization. (The connection
between this condition and tidal forces is discussed in
Ref. [3].) Hawking, on the other hand, assumes that the
universe is open, i.e'. , that the surface 8 is noncompact,
without making any assumption about the existence of
tidal forces. Thus, neither theorem applies to Taub-NUT
(Newman-Unti-Tamburino) space, which features a com-

pactly generated Cauchy horizon without violating the
weak energy condition, but which describes a closed uni-
verse fxee of tidal forces.

Both Tipler's and Hawking's theorems were originally
formulated in the context of (3+1)-dimensional general
relativity, but we may easily extend their analysis to the
(2+1) dimen-sional case. The only aspect of the proof

.that depends on the number of spacetime dimensions is
the use of the (Newman-Penrose) optical scalar equa-
tions. These equations describe the behavior of a con-
gruence of null geodesics in terms of scalar quantities,
rather than the tensor quantities that appear in the Ja-
cobi equation. In 3+1 dimensions four scalars are re-
quired (the expansion, vorticity, and two components of
shear), while in 2+1 dimensions only one (the expansion)
is needed. The Tipler-Hawking proof uses the equation
obeyed by the expansion to show that the generators of
a compactly generated Cauchy horizon must intersect in
the past if the WEC is satis6ed. However, it is a general
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property of future Cauchy horizons that the generators
cannot intersect in the past, so the theorem is proven.
The equation governing the behavior of the expansion in
2+1 dimensions is obtained from the (3+1)-dimensional
expression by oxnitting the shear and vorticity terms, as
may easily be checked; it is then straightforward to show
that the dimensionally reduced equation also implies that
the generators of a compactly generated Cauchy horizon
must intersect in the past. Therefore, the theorem ap-
plies equally in 2+1 or 3+1 dimensions.

APPENDIX B:SOME PROPERTIES OF SU(1i1)

Combining this result with Eq. (84c) one has

b*=c.

Thus, T can be written as

b* *

where from Eq. (85) we have

a*a —b*b = 1 .

(87)

(88)

(89)

b)T=i
d

where a, b, c, and d are all complex. As stated in the
text, SU(1,1) consists of those matrices T satisfying

detT = +1 (82a)

In this appendix we demonstrate two technical proper-
ties concerning SU(l, l) and the embedding of its param-
eter space that is introduced in Sec. IIC. First, we prove
the statement made in the text concerning the conditions
under which a 2 x 2 matrix belongs to SU(1,1). Next we
demonstrate the group invariance of the metric described
in the text.

To derive the conditions under which a 2 x 2 matrix be-
longs to SU(1,1) we begin by parametrizing an arbitrary
2 x 2 matrix as

Comparing with the parametrization

(;ty+, )
~

y —ix w +it )
(Blo)

used in the text, one sees that m, t, x, and y are all real
and satisfy

—t +x +y —m = —1.2 2 (811)

Conversely, it is easily shown that if m, t, z, and y
are all real and satisfy Eq. (Bll), then the matrix (810)
belongs to SU(1,1).

Next, we wish to verify that the metric defined in Sec.
IIC is group invariant. A group transformation on the
group parameter space can be defined by xnapping each
element of the parameter space to the element obtained
by multiplying on the left by a fixed element of the group,
which we call T. Thus, the mapping is defined by

where
(82b) y'+ax' - w —at y+ax

~
y' —ix' w'+it'

) ~
y —ix w+it )

o l
0 —1 Note that the metric of Eq. (18) can be written as(83

From Eqs. (82) one has immediately that

a*a —c*c= 1,

b*b d*d 1

b*a —d*c = 0,

(84a)

(84b)

(84c)

where

d8 = —dt +dz +dy —dul

= det(dT),

dw —idt dy+ id+ ~

( dy —idz dw + idt )

(813)

(814)

and
ad —bc=1. (85)

a(d*d —b*b) = d* .
Using (84b) this reduces to

(86)

We are grateful to Ted Pyne for discussions on this point.

If Eq. (84c) is solved for c and the result is inserted
into (85) one finds

Since detT = 1, it follows immediately that det(dT') =
det(dT), so the metric is invariant. It is similarly clear
that the metric is invariant under multiplication by a
fixed group element on the right.

[It is not needed in our derivation, but it is interest-
ing to note that the full invariance group of the metric
given by Eq. (18) is SO(2,2), for which the Lie algebra
is identical to SU(1,1)xSU(1, 1). One of the two SU(1,1)
subgroups has generators that are self-dual (in the four-
dimensional w t x yspace), an-d -th-e other has generators
that are anti-self-dual. Transformations of the form de-
scribed by Eq. (812) make up one of the SU(1,1) sub-
groups, while the other subgroup corresponds to multi-
plication on the right. ]
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