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Generalizing a method presented in an earlier paper, we express the complex potentials 8' and
4 of all stationary axisymmetric electrovac spacetimes that correspond to axis data of the form
E'(z, O) = (U —W)/(U+ W), 4'(z, O) = V/(U+ W), where U = z + Uqz+ U2, V = Vjz+ V2,

R = W&z + R'z, in terms of the complex parameters U&, V» W&, Uz, Vz, and W&, that are directly
associated with the various multipole moments.

PACS number(s): 04.20.Jb

I. INTRODUCTION

with

U —W V
U+W' U+W '

This is the second paper of a short series of papers,
all of which are concerned with those stationary axisym-
metric solutions of the Einstein and the Einstein-Maxwell
equations that are characterized by axis data of the form

An additional complexity of the electrovac problem
arises &om the fact that, while all the vacuum solutions
could be constructed from Minkowski space by applying
successive quadruple-Neugebauer Backlund transforma-
tions [3], or double-Harrison Backlund transformations

[4], there was no single known Kinnersley-Chitre transfor-
mation that could yield all the electrovac solutions with
axis data of the type we are considering. This forced us
to consider what we call a complezified Cosgrove trans-
formation, which will be defined in this paper.

U=) U.z"-,
a=0

v=) v.z"-,
a=1

W=) W.z"-,

(1.2a)

(1.2b)

(1.2c)

II. THE AXIS RELATION

Using the Hauser-Ernst axis relation [5,6], one can al-

ways identify a Kinnersley-Chitre transformation that
will, in principle, produce from Minkowski space a space-
time with any specified axis data. Of course, it may be
difficult to solve in closed form the associated homoge-
neous Hilbert problem (HHP).

A. The vacuum case

where E' and 4 are the complex potentials of Ernst, z is
the Weyl canonical coordinate, and the coefficients in the
polynomials are complex constants.

In the first paper [1] of this series, to which we shall
henceforth refer as Ref. [1],we found that it was extraor-
dinarily simple to construct the general solution of the
vacuum problem (V = 0) for the case n = 2. That is,
we described a procedure that allows one to express the
complex potential 8' and the metrical fields tu and p of an
exact vacuum solution (V = 0) directly in terms of the
complex parameters U, W (a = 1, . . . , n) with Uo ——1.
In particular, we showed that the resulting family of so-
lutions contained as a special case the vacuum limit of
an electrovac solution published recently by Manko et al.
[21.

In the present paper, we undertake the extension of
the methods of Ref. [1] to electrovac fields (V g 0). This
extension is far Rom trivial, and to construct it we found
that it was necessary to attain first an understanding
of why everything worked out so handily in the vacuum
case.

2m8' = 1—
r —ia cos8

(2.1)

On the axis, where 8 = 0, we have cos8 = 1. On the other
hand, the Weyl canonical coordinates z, p are given by

p = (r + a —2mr)sin e, z = (r —m)cos8 . (2.2)

Therefore, the axis data for the Kerr metric assumes the
form

t(z, O) = (2.3)

i.e., U(z, 0) = z —ia and W(z, 0) = m.
Now, the axis relation says [5]

Let us first review the application of the axis relation
within the context of vacuum spacetimes, where we know
that the quadruple-Neugebauer (double-Harrison) trans-
formation does the job. It will suffice to consider the
generation of the Kerr metric, for which
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iE—(T, O) = -'do~(T, 0)v~'(T) + vU" (T)
—if& l(T, O)v (T) + v~ (T)

(2.4) iJ:= ( —m —a')
a m) (2.13)

where E'& & is the complex potential of the seed metric.
For Minkowski space, 8& & = 1. Plugging in E(T, O) for
the Kerr metric, we are tempted to try

v(T) =
I

However, v(T) should be a matrix of the group SU(1,1)=
SL(2, R). Since the determinant has the value

detv(T) = T —m + a

we should divide by the square root of this determinant,
and select

V(T) = 1 &T —m —a
QT2 —m2+a2 ( a T+ffl) (2 5)

T =
2 [(T + Qm2 —a ) + (T —Qm —a )]

1 = -[(T+ Qm2 —a2) —(T —Qm2 —a2)]

we can cast our expression for v(T) into the form

(2.6)

Suppose, for the moment, that a2 ( m2. Then, using
the identities

B. The electrovac case

Now let us turn our attention to the charged Kerr met-
ric, where

E =1 — . , 4=
r —za cos8 r —ia cos8

(2.14)

Thus,

In either case, v(T) is an SU(1,1)= SL(2, R) matrix. In
the case a ) m we probably would have used the sym-
bol J for the real matrix iJ and then would have had
J2 = —1 for that case.

Alternatively, we can unify these two cases by consid-
ering members of the larger group SL(2, C), temporar-
ily setting aside the reality condition on v(T) and allow-
ing general complex values for the parameters. It turns
out [5] that the Hauser-Ernst homogeneous Hilbert prob-
lem works for members of SL(2, C) as well as SU(l, l)=
SL(2, R), so there is no need to solve the HHP twice.
The solutions for both a ~ I, and a2 ) m2 can be in-
ferred Rom the complexi6ed spacetime that results kom
an application of the SL(2, C) transformation.

U(r) = —(1+J)/
1 T —gm2 —a'

+ (I —J)—
2 T+ gm2 —a2 '

where the matrix

(2.7)

E(T, O) = 7 —m —za e
4(T, O) =

a+m —ia' '
v +m —ia

(2.i5)

X(T)v(T)Y(T) = 0, X(T)V(T)Z(T) = 0, (2.16)

In the electrovac case the axis relation can be expressed
in the form [6]

satis6es

( —m —a&
gm2 —a2 g

a mJ (2.8)
where

X(T):=
~

— i S(T, O) e(T, O) ~

1 . 1

2 2 )
(2.i7)

trJ = O, J = I . (2.9)

This result can also be expressed in the exponential form

v(T) = exp[Jfl(T)], (2.10)

where

n (~) T+ gm2 —a'
T —gm2 —a2

(2.11)
In the present case

(2.18)

If, on the other hand, a & m, this procedure would
have yielded f 1 . 1

X(T) =
I

— i(T + m —ia) (T —m —ia) e I,
2 2 )

T+1 a —m
u(v) = (I+J)/—

1 w —i a —m+ (I —J)-
2 T + iga2 —m2

where

(2.i2)

(2.19)

(2.20)
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The resulting conditions upon the SU(2, 1) matrix v(7)
are not as simple as in the vacuum case, but there is
a certain resemblance nevertheless. Guided by how the
HHP was solved in the vacuum case, we look for a v(r)
of the form

htnY = i(hi + ih2), htnZ = hs,

it is immediately apparent that

Q:= ~2ihs/(hi + ih2) = e/m .

(2.33)

(2.34)

v(r) = exp[Jg(r)], (2.21) We also find that

where two of the three eigenvalues of J are degenerate.
Because TrJ = 0, these two eigenvalues are A and —2A,
respectively, where A is a constant. If P is a projection
operator onto the subspace corresponding to the nonde-
generate eigenvector, we may express v(r) in the form

+ihse (2.35)

v(r) = (I - P)e"«.&+ Pe-'"v. & (2.22)

where the projection operator 5' can be written in term
of the nondegenerate eigenvector h of J as

Of course, we do not expect the eigenvector to be deter-
mined completely. Rather, only the ratios of its compo-
nents will be determined. Therefore, we shall impose an
additional condition; for example,

p = (1/E) hhtn, E:=htnh, (2.23)
hg + ah2

(2.36)

where

fo iO)
n:= —i 0 0

0 0 1
(2.24)

Thus, we end up with the simple result

x(r)h= —i((r —ia)+ (e —m )I .
e

(2.37)

This way of writing T implies that

ptn = np. (2.25)

Moreover,

E = 1+ ((hs(/e) (e —m ), (2.as)

Moreover,

J = A(I —3P), (2.26)

so the axis relation yields

(e "«& —1) r —ia+ (e —m )e

so

AJtn —A'n J = 0 . (2.27) (e —m ), (2.39)
ie ih3

hs e

On the other hand, the SU(2, 1) conditions

det~=i, ~tn~=n (2.28)

or

3/q( ) r —i a + i(hs/e) (e —m )
r —i a —i(e/hs)

(2.40)

require

(7(r)'Jtn+ rl(r)n J = 0, (2.29)

X(r)[I+ 'P(e "« —1)]Y(r) = 0,
X(r)[I+P(e "«) —1)]Z(r) = 0 .

(2.30a)

(2.30b)

which is satisfied if and only if Ai1(r) is imaginary.
We may now express the axis relations in the form

(e/hs) + 2a(e/hs) —(e —m ) = 0 . (2.41)

To complete the discussion we must fully determine
the eigenvector h, and hence the projection operator 'P.
Only hs remains to be determined, for once hs is known,
we shall also know (hi —ih) 2)/v 2, and (hi+ih2)/~2 = 1
by our convention for the selection of the representative
eigenvector h. Suppose now that e/hs is a root of the
equation

However, in our case,

X(r)Y(7) = —+2m and X(7)Z(r) = e (2.31)
If a2+ e )m2, there are two real roots

e/hs ———a + ga2+ e2 —m2, (2.42)
are both constants. Thus, our pair of equations reduces
to and, if a + e & m, there are two complex conjugate

roots
(e "" —1)X(r)hh OY = ~2Em,

(e ""i i —l)X(r)hhtnZ = Ee . —

Because

(2.32a)

(2.32b)
e/hs ———a +

imam'

—a —es . (2.43)

Finally, substituting the lrst of these roots back into Eq.
(2.40), we obtain
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3/g(~) r + i gaz + ez —mz
e

+e —m
(2.44)

and substituting the second of these roots into Eq. (2.40),
we obtain

7+pm' —a —e
2 Q2 e2

(2.45)

In the first case, Art(v) is imaginary, while in the second
case, Art(7) is real. Thus, only in the first case is the
SU(2, 1) condition satisfied by v(7).

One may infer &om this disappointing result that an
SU(2, 1) matrix v(v) for the case a + e ( m must not
have two degenerate eigenvectors. That complicates the
identi6cation of a suitable transformation. As far as we
know, no one has yet worked out an SU(2, 1) transforma-
tion matrix v(r) that accomplishes our purposes when
g + e & m2, let alone solved the associated HHP. On
the other hand, the SU(2, 1) transformation matrix v(7)
that we found for the case a +e & m corresponds to a
transformation that was discovered by Alekseev [7] and
by Cosgrove [8].

Like the double-Harrison transformation, the Cosgrove
transformation can be coxnplexified; i.e., the SU(2, 1)
transformation matrix v(v) can be replaced by an
SL(3,C) matrix. The solution corresponding to az +ez )
m2 will then correspond to an obvious real cross section
of the complexi6ed spacetime that results from the ap-
plication of the complexified Cosgrove transformation to
Minkowski space. The big question is, however, can one
identify another real cross section that corresponds to the
case a2+ e2 & m2?

In the case of the charged Kerr metric it is fairly trivial
to infer the E and 4 potentials and the metric 6elds for

I

III. COMPLEXIFIED COSGROVE
TRANSFORMATION

The form of U, V, and TV that we shall present for
the spacetime that results &om applying a succession of
n Cosgrove transformations of Minkowski space is new,
and was derived in the following way &om expressions
the reader can find in earlier work of Cosgrove [8], Guo,
and Ernst [9], Chen, Guo, and Ernst [10], and Wang,
Guo, and Wu [11].

For the 6rst Cosgrove transformation, Guo and Ernst
expressed the complex potentials in the form [12]

x'8=1—2i —,4= ——,D' D
(3.1)

where D was written as the determinant of a 3 x 3 matrix,
the columns of which were denoted by Qi, gz, and gs,
and which were respectively proportional, to

P( )(K*)h, P( )(K)h', and P( )(K)h", (3.2)

where

the case a + e & m kom the corresponding potentials
and 6elds for the case a + e ) m2. The author has
always believed that this type of construction would be
possible for all electrovac spacetimes that belong to the
Cosgrove family, but only recently, after recognizing the
formal similarity of a 6ve-parameter electrovac solution
obtained by Manko et al. [2] to a particular specializa-
tion of a twelve-parameter solution that was generated
by Guo, and Ernst [9] using the Cosgrove transforma-
tion, has he actually tried to prove that this is indeed
possible.

P(o)(~) .—
~2r(~)

~

-[r(r) —(r —z)] i[r(r) + (r —z)]
—Z

0 0
0 (3 3)

is the P potential [6] of Minkowski space,

r(r):= V'(z —&)'+ ~' (3.4)

I

shall select h" difkrently than they did. If one chooses
the vectors

and E is a complex parameter. The elements of the vec-
tors h are arbitrary complex parameters, but only ratios
of these components are significant. The vectors h' and
h" are linearly independent vectors that are "orthogonal"
to h in the sense then one can select

ihs , (3.7)

( hi + ihz )

h~Oh' = = h~Oh", (3.5)

where

O.=
(o 0)

—i 0 0
0 01) where Kq .——K', K2 .——K,

Explicit expressions for the components of the vectors
were given by Chen, Guo, and Ernst in Eqs. (8)

of Ref. [10]. However, to obtain simpler expressions, we

qa = i[Xi,r~ + (K~ —z)], Si:=X~rs, (3.9)



50 FULLY BLEW'.IVIED NEUGEBAUER SPACETIMES 6183

hi —ih2

hi + ih2'

h3

hi + ih2

We note, in particular, that

X2 .— i+i 2

(3.10)

mations. Wang, Guo, and Wu then showed that D, N,
and N' could be reexpressed as 6 x 6 determinants, while,
for higher values of n, they could be expressed as 3n x 3n
determinants. In our present gauge, the Wang-Guo-Wu
expression for D assumes the simple form

Din
K2 ——Ki and XiX2 ——1 . (3.ii) D= (3.i2)

Guo and Ernst also constructed the complex potentials
E' and 4 for the spacetime that results when Minkowski
space is subjected to two successive Cosgrove transfor-

I

Dni . . Dnn

where the 3 x 3 submatrices D~g are given by

D~I '= ( (K» 1)'-'e» i
(K21-1)' '

( (K2s-1)' 'Ql, S2a-i

(K21)' 'Q2a ~(K2s)' 'Qs )
(K21,)l ' 0

(K2s)' ' )
(3.13)

The determinants N and N' can be constructed &om D
by replacing, respectively, the (3n) th and (3n —2)th rows
by

Ki K2 0 ~ K2n i K2n 0.

The fields U, V, and W are defined (up to a common
factor) by

U —W V
U+W' U+W ' (3.i5)

where (suppressing a factor i")U is the 3n x 3n determi-
nant

each qs can be replaced by iS1,. In conclusion, the com-
plex potentials E' and 4 of the electrovac solution that
results &om applying a succession of n Cosgrove trans-
formations to Minkowski space are given by

U:= D —iN, V:= —N', and W:=iN, (3.i4)
Uin

each of which can obviously be written as a single deter-
minant. By using elementary row operations it can be
shown that the term i,(Kl, —z) in qs(k = 1, . . . , 2n) con-
tributes nothing to any of the determinants. Therefore,

I

Uni Unn

in which occur the 3 x 3 submatrices

(3.16)

(K2lc—1) X2le —lr2A' —1

(K2a-1)' '
2le 1) Q—k X2k 1r2k 1— —

(Kra)' 'X~rrr~ (Krr)' Qa )
(K2~)' ' 0

0 (Krr, )r
(3.17)

where

r:= Q(z —K )2+ p2 . (3.is)

The 3n x 3n determinants —V and W are constructed
from U by replacing, respectively, the (3n)th and the
(3n —2)th row of the latter determinant by

(Ki)" (K2)" 0 . (K2„1)" (K2„)" 0 .

We have seen that the Cosgrove transformation, which
is characterized by a v(r) with one nondegenerate eigen-
vector h, and a pair of degenerate eigenvectors h' and
h", cannot cover aH cases. A Kinnersley-Chitre trans-
formation v(r) with three nondegenerate eigenvectors is
needed as well, but such a transformation has not yet
been identi6ed, as the associated HHP has not yet been
solved.

By the complezified Cosgrove trunsformution we shall
mean the SL(3,C) matrix v(r) with eigenvectors such
that Eqs. (3.S) through (3.11) are valid, but Xi, X2, and

U(z, 0) = z'+ U, z+ U, , (3.19a)

V(z, 0) = Viz+ V2, (3.19b)

W(z, 0) = Wiz+ W2, (3.19c)

U'(z, 0) = z'+ U;z + U;, (3.19d)

I

Q' are complex parameters that are no longer identified
as the complex conjugates of Xi, X2, and Q, respectively.
Similarly, Ki = K2 is no longer the complex conjugate
of Ki, and K& ——Ki is no longer the complex conju-
gate of K2. The n-fold complexi6ed Cosgrove transfor-
mation is characterized by 6n complex parameters, while
the ordinary Cosgrove transformation is characterized by
only 3n complex parameters. The complexi6ed Cosgrove
transformation for n = 2 has sufBciently many complex
parameters to cover all axis data of the form
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V'(z, O) = Vi'z+ V2',

W'(z, O) = Wiz+ W2,

(3.19e)

(3.19f)

where the complex fields U', V, and W' are regarded
I

as independent of the complex fields U, V, and R', and
where Uy, U2, Vj, V2, R'y, Wg, Uy, U2, Vy', V2', R'y, and
S'2 are twelve independent complex constants. These
fields, U, V, W and U', V', W' satisfy the Beld equa-
tions

(U)
(U'U+ V'V —W'W)V2 V = 2(U'VU+ V VV —W'V'W) . V' V

(W) kW)
(3.20a)

(U ) (U )
(U'U+ V'V —W'W)V V' = 2(UVU'+ VVV' —WVW') V V'

(W ) I W')
(3.20b)

One should be aware of the fact that the metric field f,
which is defined by

U'U+ V'V —S"6'
(U'+ W')(U+ W)

(3.21)

is, in general, complex, since U' is no longer the com-
plex conjugate of U, etc. For this reason, we refer to
these as comptezified spccetimes, even though the z and

p coordinates remain real.
In the case of the complexified Cosgrove transforma-

I

tion, there are expressions for the independent complex
potentials E' and 4' that precisely parallel the expres-
sions we have already given for E' and 4. We shall not
state these relations explicitly, since they can be con-
structed quite easily by the reader. When 8' is the com-
plex conjugate of 8 and 4' is the complex conjugate of
4, we shall say that we have a real croas Section of the
complexified spacetime.

When the complex constants Qs and Q& all vanish,
we obtain a vacuum solution, the real cross sections of
which are the vacuum metrics of the Neugebauer family,
the n = 2 exemplars of which were studied in Ref. [1].

IV. THE N = 2 SOLUTION

In this paper, as in Ref. [1], we shall restrict our attention to the case n = 2, where U, V, and W are given by

U = (Ki —K4)(K2 K3)[(1—(Qi) )Xiri —X2T2][(1 —
~Q2~ )X3T3 X4T4]

+(Ki —K2)(K3 —K4) [(1—Qi Q2)Xlrl —X4T4][(1 —Q1Q2)X3T3 —X2T2] (4.1a)

V = —6(K2, K3, K4)Yir i + b, (Ks, K4, Ki)Y2r2 —b, (K4, Ki, K2)Ysr 3 + b, (Ki, K2, K3)Y4r4, (4.1b)

W = —6(K2) Ks, K4)Ziri + 6(K3)K4) Ki)Z2r2 —6(K4) Ki, K2)Z3r3+ b, (Ki) K2, K3)Z4r4, {4.1c)

where

Yi ..= Q2(1 —~Qi~')+ (Qi —Q2) Xi,
K4 —K2

(4.2a)

Y2 ..——Q2X2, (4.2b)

K4 —Ks
Y3 = Qi(1 —)Q2)')— (Qi —Q2) X3,

K4 —Kg
(4.2c)

Y4 .——QiX4, (4.2d)

and
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Z1:= (1 —IQ1I') + K K'Q1(Q1 Q2)
4 2

(4.3a)

Z2 ..——X2, (4.3b)

Z3 (1 IQ2I ) K Q2(Q1 Q2) X3
4 2

(4.3c)

Z4 o—X4 (4.3d)

and 6 is the Vandermonde determinant introduced in Ref. [1). (We have divided out a common actor K4 —K2 from

U, V, and W.)
From the above expression for U, one easily identifies the complex constants

Uo = (K1 —K4) (K2 —K3)[(1—
I Q1 I')X1 —X2)[(1—

I
Q21') X3 —X41

+(K1 —K2) (K3 —K4) [(1 —Q1 Q2) X1 —X4][(1 —Q2) X3 X2], (4.4a)

U1 ———(K1 —K4) (K2 —K3)([(l —
I Q1I )X1 —X2][(1—

I Q2I )K3X3 —K4X4)

+[(1—IQ1I )K1X1—K2X2][(l —IQ2I )X3 X4])
—(K1 —K2) (K3 —K4) ([(1—Q1Q2) X1 —X4][(1 —Q1Q2) K3X3 —K2X2]

+[(1—Q; Q2) K1X1 —K4X4][(1—Q1 Q2) X3 —X2]), (4.4b)

U2 ——(K1 —K4)(K2 —K3)[(1 —IQ1I )K1X1 —K2X2][(1—
I Q2I )K3X3 —K4X4]

+(K1 —K2) (Ks —K4) [(1—Q1 Q2)K1X1 —K4X4] [(1—Q1 Q2) K3X3 —K2X2], (4.4c)

while &om the expressions for V and W one obtains the complex constants

v, = -v('), v, = v('), w, = -w('), w, = w('i, (4.5)

where

V:=—b, (K2, K3, K4)K1 Y1+ b, (K3) K4) K1)K2 Y2 —A(K4, K1,K2)K3 Ys+ 6, (K1)K2, K3)K4 Y4, (4.6a)

W:= —b (K2, K3, K4)K1 Z1 + 6(K3) K4, K1)K2 Z2 —b, (K4, K1,K2)K3 Z3 + b, (K1,K2, Ks)K4 Z4 . (4.6b)

Our immediate objective is to determine the parame-
ters X, Y, and Z (a = 1,2, 3, 4) in terms of the axis
data U1, U2, V1, V2, W1, and W2 (where U0 ——1), and
the K's.

I

structure, to which the simplicity of the solution can be
attributed, and a knowledge of which we found to be
indispensable for solving the electrovac problem. On the
one hand, one had the hierarchy of linear equations (for
the X's)

A. Determination of X (a = 1,2, $, 4) w('i = -w, , (4.7a)

The simplest case is when V2Wi —Vj W2 ——0. This
corresponds to Q1 ——Q2 ——.'Q, where V1 ——QW1 and
V2 ——QW2. In this case one gets the same expressions
for (1 —IQI )X1,X2, (1 —IQI )X'3, and X4 as one got
for Xi, X2, X3, and X4, respectively, in the vacu»m
case. This solution is merely the electrovac solution that
is generated by the old electrification transformation of
Harrison, as reformulated by Ernst. In this paper, we are
concerned primarily with the case when V2W1 —V1W2 g
o, i e, Q1 W Q2.

In the vacu»~ problem it was surprisingly easy to solve
for the X's in terms of the axis data and the K's. One
had to solve nothing but linear and quadratic algebraic
equations. The solution itself revealed a most intriguing

w('i = w, ,

(2) U1 W2 U2 W1

Up

i3) U1 [(U1W2 —U2 W1 )lU0) —U2 W2

Up
)

and, on the other hand,

(
i Wl [(U1W2 U2W1)/U0]

1) 2) 3& 4J
CJp

(4.7b)

(4.7c)

(4.7d)

(4.8)
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V(P)

V(~)

(4.9a)

(4.9b)

In particular, the last equation allowed one to determine
Up in terms of the axis data and the K's, a critical step
in the complete determination of the X's.

After spending a considerable amount of time trying
to identify the X's and the Q's in the electrovac case,
we abandoned that eKort, and approached the problem
of determining U, V, and W in a new way that avoids
the deterjnination of the X's and Q's (although these
objects can be calculated at the very end, if they are
really desired). In the electrovac case we have two sets
of four linear equations:

~(23 U2 Wl U1 W2

U.
(4.10c)

U, w. + U, [(U,w, —U, w, )L Up]

Uo

V2W1 —Vj W2 t' V1 &
"

+
Up (Upp

(4.10d)

As in the vacuum case, the right side of each of the four
equations is equal to Up times a quantity that can be
easily expressed in terms of the axis data alone, while the
left side of each of the four equations is equal to a linear
combination of Y (a = 1,2, 3, 4) or Z (a = 1, 2, 3, 4).

V(2) = U2Vj —UgV2

Up
(4.9c)

B. Determination of U, R', and V
up to a common factor

V(3) U2V2 + U1[(U2V1 —U1V2)/Up]

Up

+ V2W1 —V1W2 (W11
Up ( Up J

w(') =-w, ,

(4.9d)

(4.10a)

The four linear equations (4.9a)—(4.9d) for Y (a
1, 2, 3, 4) and the four linear equations (4.10a)—(4.10d)
for Z (a = 1,2, 3, 4) are easily solved. One obtains

'DY1 ——{U2V2 + U1(U2V1 —U1V2) —(V2W1 —V1W2) W, )
+(K2 + K3 + K4)(U2V1 U1V2)

—(K2Ks + K2K4 + K3K4) V2 —(K2K3K4) Vj,
(4.11)

w('3 = w, , (4.10b) and

1 Zl —{U2W2 + U1(U2wl Ulw2) (V2wl V1W2)Vj )
+(K2 + K3 + K4)(U2wl Ulw2) (K2K3 + K2K4 + K3K4)W2 (K2K3K4)wl (4.12)

where U, V, and W have been adjusted so that Up ——

1. The expressions for Y2, Yq, and Yq can be inferred
from the expression for Yj and the expressions for Z2,
Z3, and Z4 can be inferred from the expression for Zq by
permuting indices on the K's. B is given by

1 CK4 —K2&
l ) "JL.L(Ki +~)ZL.YLT3TL

2) ',. 3L

{4.15)

b, (K1,K2, K3, K4)
U.

(4.13)

where e;~g~ is the I evi-Civita permutation symbol. On
the other hand,

where Up is the original value of Up, not l.
Using Eqs. (4.1b) and (4.lc), these expressions for

'DY, 'DZ (a = 1, 2, 3, 4) permit us to evaluate DV and
'VW without further ado, for we have

K4 —K2

Q1 —Q2

6(K1,K2, K3, K4) Up

V2 Wl V1 W2
U'2

(V2W1 —V1W2 )
(4.16)

'DV = —6(K2, K3, K4)'DYj r1 + b, (K3, K4, Kj)'DY2T2
—b, (K4, K1) K2) DY3T3

+A(K1, K2, K3)DY4T4 (4.14a)

+(K2p K3 & K4)1 Zlrl + +(K3~ K4) Kj)DZ2T2
—b, (K4, K1, K2)DZ3T3
+.b, (K1,K2, K3)'DZ4T4 . (4.14b)

But what about U, which is given by Eq. (4.1a)? Inter-
estingly, U can be expressed directly in terms of the Y's
and Z's as

Hence, with Up ——1, 'VU can be expressed in the 6nal
form

1
'VU =—

2(V2W1 —Vj W2)

x ) e,,sj{K,. —K~)(DZL, ){DYL)rsrj . (4.17)

This is most remarkable, since it means that 'VU involves

only the axis data, the known BY's and BS's and the
K's. Since one is only interested in ratios of U, V, and
W, it sufFices to know BU, BV, and 17W. One does not
have to evaluate 'V itself.
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C. Determination of K (a = 1,2, $, 4)

Using Eqs. (3.11) and defining IZI2:= Z'Z even when
Z' is not just the complex conjugate of S, we find that,
on the symmetry axis,

IU(z o)I'+ IV(z o)I' —IW(z o)I'

= IUpl (Ky —z)(K2 z)(Ks —z)(K4 —z), (4.18)

from which it follows that each K (a = 1,2, 3, 4) satisfies
the quartic equation

I

0 = K +2(ReUq)K + (IUql + IVII —IWql +2ReU2)K +2Re(U2U~ + V2VP —W2W~')K~

+(IU, I'+ Iv, l' —Iw, I'), (4.19)

where ReZ:= (Z + Z')/2 even when Z' is not just the
complex conjugate of Z.

Assuming that z has been chosen so that ReUq ——0
(or, equivalently, Kq + K2 + Ks + K4 ——0), we have

I

turn now to an application that already demonstrates
the practical value of this approach.

K4 —AK2 —BK + C = 0, (4.20)
V. A SIMPLE BUT CONVINCING

APPLICATION

where

A = Iwgl —Ivj I

—IUgl —2ReU2,

B = —2 Re(U2Uq + V2vj' —W2wq') )

c = IU, I'+ Iv, l' —Iw,

(4.21a)

(4.21b)

(4.21c)

Suppose we select the axis data

Uq ———ia, U2 ——b, Vj ——e, V2
——ic, Wq ——m, W2 ——0,

U~ = ia, U2 = b, V~' = e, V2' = ic, W~ =—m, (5.1)

W, =o,
where the parameters a, b, e, c, m are real. In this case,
one has

The general solution K (a = 1, 3, 3, 4) of this quartic
equation is given by Eqs. (2.9a)—(2.9d) or Eqs. (2.14a)—
(2.14d) of Ref. [1].

In conclusion, the determination of the K's is no
more diKcult in the electrovac case than it was in the
vacuum case. Of course, when U(z, 0)', V(z, 0)', and
W(z, 0)' are the complex conjugates of U(z, 0), V(z, 0),
and W(z, 0), respectively, the quartic equation, like its
vacuum analog, has solutions in which the K's are real,
rather than occurring in complex conjugate pairs. Such
K's cannot be used with the ordinary Cosgrove transfor-
mation. It is instead necessary to employ the complexi-
fied Cosgrove transformation.

We would be the first to admit that the approach
we have described requires further refinement, which we
hope to supply in a future paper. However, we shall

U2U& + V2V&' —W2wz ——b(ia) + (ic) (e) —0(m)
= i(ah+ ce), (5.2)

so Re(U2U& + VzVP —W2W&) = 0. Therefore, as in
Ref. [1] we may write

Kg ———K2 ——
2 (~+ + Ic ) ) Ks ———K4 ——

2 (rc+ —~ ),
(5.3)

where e+ and e are given by

Ky .= i/m —a —e + 2(+d —b), d:= gb + c

(5.4)

Note, in particular, that ~+ and e are real.
With the selected axis data, Eqs. (4.11), (4.12) and

their analogs reduce to

'DYq ——(e/m)'DZq —2ic[(m —a —e ) + m+e + ia(z+ + e )), (5.5a)

'DY2 ——(e/m)DZ2 —2ic[(m —a —e ) + r+Ic —ia(z+ + r. )], (5.5b)

DYs ——(e/m)DZs —2ic[(m —a —e ) —Ic+K + ia(rc+ —Ic )], (5.5c)

'DY4 ——(e/m)DZ4 —2ic[(m —a —e ) —Ic+ic —ia(r+ —tc )], (5.5d)

and

DZq ———m(i(ab+ ce) + 2[le+(d+ b) —lc (d —b)]), (5.6a)

'DZ2 = —m(i(ab+ ce) —
2 [re+(d + b) —Ic (d —b)]j, (5.6b)
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'DZ3 ———m(i(ab + ce) + 3 [e+(d + b) + ~ (d —b)]j, (5.6c)

'DS4 ———m(i(ab + ce) —
2 [Ic+(d + b) + Ic (d —b)]),

respectively. Equations (4.17), (4.1b), and (4.1c) then yield the following expressions for D'U, Dv, and DW:

(5.6d)

'DU = e ([d(m —a —e ) + c —a(ab+ ce)](rzr3 + r»r4) + i~+(ab+ ce+ ad)(rzr3 rpr4))

+lc+([d(m —a —e ) —c + a(ab+ ce)](rqr4+ r»r3) + ir (ab+ ce —ad)(r2r3 —rqr4))
4d—[b(m —e ) + c(ae + c)](rzrq + r4r3),

'DV = Ic+e (d[e(m —a —e ) —2ac](r4+ r3 —rz —rq) + derc+Ic (rz+ rq + r4+ r3)
+icd[(e+ + e )(rz —rq) + (e+ —e )(r3 r4)]
+i[e(ab+ ce) + bc][(e++ e )(r3 r4) + (Ic+ —r )(rz —rq)]j, (5.7b)

'DW = me+e (d[(m —a —e )(r4+r3 r2 r$) + Ic+K (rz+ rq + r4+ r3)]
+i(ah+ ce)[(ic+ + K )(r3 r4) + (rc+ —K )(r 3—rq)]j . (5.7c)

Of course, there are similar expressions for ('DU)':=
'O'U', etc. , and, for arbitrary real a, b, e, c, m, the latter
expressions turn out to be equal to the complex conju-
gates of (17U), etc.

The solution given in Eqs. (5.7a)—(5.7c) is, therefore,
valid not only when 0 & +2+ ) e~, but for other values of
e+ and ~ as well. When both ~+ and K are real, the
solution is identical to the five-parameter electrovac solu-
tion published recently by Manko et al [2] in wh. ich the
parameters m, a, b, e, c were associated, respectively, with
the mass, the rotation, the mass quadrupole moment, the
electric charge and the magnetic dipole moment.

It should be observed that (DU)', (Dv)', and ('DW)'
have the same functional form if e~ and r (a = 1,2, 3, 4)
are treated as real as they have if ~~ are treated as imag-
inary, with r~ = r2 and r3 = r4. This means that the
expression obtained by Manko et al. for the metric fields

f, p, and u in

ds = f (e «(dz + dp ) + p d(p ) —f(dt —udrp)

(5 8)

will hold for the other cases as well. In a later paper con-
cerned with the complexified Cosgrove transformation,
we shall develop a completely general formula for the
field u. At this time, we merely remark that the Geld p
is given by [13]

VI. TOWARD A PURELY ALGEBRAIC
DERIVATION

It was Kinnersley [14] who first pointed out that U, V,
and W could always be selected so that the field equa-
tions

are satisfied. The reader will find it instructive to work
out the n = 1 solution of these equations, where

U=) ur;, (6.2a)

(6.2b)

(6.2c)

and uq, u2, e, and m are complex constants. This is not
dificult to do, if one observes that

(U)
(IUI'+ IVI' —lwl')&'

EW)

(U)
= 2(W'VU + V'VV —W'VW) V' V (6.1)

IUI'+ IVI' —lwl'
IUpl'r~rzrsr4

and the field f is given by

(5.9)

and

V'r, =—
ri

(6.3)

IUI'+ Ivl' —Iwl'
IU+ wl'

Thus, the infinite red shift surface corresponds to

IUI'+ IVI' —lwl' = o

(5.1o) (6.4)

and one uses the relation [15]

IU(z, o)l'+ Iv(», o) I' —Iw(z, o) I'

r,' +r,' —(K; —K, )'. .
V'r, . Vr. =

2r'r2

and the curvature singularities occur at U + W = 0. = IUpl II ",(z —K ) . (6.5)
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U = u~r;r~,
i(j

(6.6a)

V=) vr;, (6.6b)

In the present paper we have been interested in n = 2
solutions, in which

as that illustrated by the n = 1 case, but the algebra
becomes increasingly more difI]].cult as n increases.

It would be nice if one could formulate a simple strictly
algebraic derivation of the general solution of Eqs. (6.1)
corresponding to rational axis data by using Eqs. (6.3)—
(6.5). We shall postpone further consideration of this
approach until a later paper, where we shall be concerned
primarily with n ) 2.
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