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On the relation between causality and topelegy in the semiclassical universe
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We show that the in-in path-integral formalism is very effective for systematic, straightforward
investigations of semiclassical gravity, in contrast with the traditional formalism, which takes the
Wheeler-DeWitt equation as a starting point. In particular, we show that we can derive directly
&om the in-in formalism a series of validity conditions for the semiclassical treatxnent of quantum
gravity, by investigating the second variation of the path integral. We begin with the investigation
of the fundamental setting of quantum gravity. We show that, in order to obtain the causal semi-
classical Einstein equation at the late stage of the Universe, we have to regard the in-in path-integral
formalism as fundamental in quantum gravity. We then perform the stationary phase approximation
for the gravity mode. Froxn the first variation of the phase, we obtain the semiclassical Einstein
equation. From the second variation, we obtain a series of validity conditions of semiclassical gravity
in a completely general manner. We show that one of the conditions is that the dispersion in the
energy-momentum tensor should be negligible. This condition has been inferred by several authors
so far but only on the basis of special models. We show that it is a completely general condition
required for the consistency of the semiclassical approximation of quantum gravity. Other condi-
tions have been overlooked so far, since they are not easy to infer in the traditional formalism. As
an application of the formalism, we propose a natural formulation of quantum cosmology in terms
of the in-in path integral, and examine its consequences. By investigating the stationary phase
configurations, we find out that the semiclassical universe should be the one which adxnits at least
one totally geodesic spatial surface. Assuming a natural energy condition, this means that the Uni-
verse should be a Wheeler universe, i.e., the spacetime which begins from and ends in a singularity.
Furthermore, this also means that the possible topology of the Universe is very strongly restricted.
In this way, we realize the connection between causality and topology in the semiclassical universe.

PACS number(s): 04.20.Gz, 02.40.Ma, 04.60.Gw, 98.80.Bp

1. INTRODUCTION

In this paper, we show that the in-in path-integral for-
malism is a powerful tool for the investigation of semi-
classical gravity. Based on this form~»~m, the discussion
becomes transparent and systematic, in contrast with
the traditional treatment based on the Wheeler-DeWitt
equation. In particular, we will see the importance of the
second variation of the path integral, from which we will
automatically obtain a series of validity conditions for
the semiclassical description of quant»m gravity. One
of these conditions [(Cl) in Sec. III] has been some-
times inferred based on special restricted models [1—3].
Here we can derive it in a completely general manner
along with other conditions, which have been overlooked
so far, because of the complicated traditional analysis.
We will realize that this simplification of the discussion
is not solely a tec&~ical advantage, but has deeper phys-
ical me~~ing: This simplification comes &om the fact
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that the approximation based on the in-in path-integral
formalism suits the situation in semiclassical gravity per-
fectly, which is also an approximation to quant»m grav-
ity. In other words, it suggests that the usual analy-
sis based on the smallness of the gravitational constant
does not reflect the whole situation well. Since the in-
in path-integral formalism turns out to be fundamental
for semiclassical gravity, it is quite natural to present a
formulation of quanti~m cosmology in terms of the in-in
formalism. We wiQ propose the same and investigate its
logical consequences. Then, surprisingly enough, we will
find out that the possible topologies of the semiclassical
universe are extremely restricted. Since the in-in formal-
ism respects the causal nature of semiclassical equations
of motion, which can be obtained &om the Srst variation
of the path integral, this result suggests a deep connec-
tion between causality and topology in the semiclassical
spacetime.

Now, let us look back brie8y at the subject of semi-
classical gravity [4]. (We will analyze thoroughly what
is meant by the term "semiclassical" in Sec. III.) It is
believed that the efFective gravitational law which holds
at the late stage of the Universe is

SxG
G a(z) = (m~T s(z)~m) . (1)

Here (m~T s(x)~m) is the expectation value, in some
quant»m state ~m), of the energy-moment»T» tensor of
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matter, obeying the quanta~ mechanical law. Note that
this equation is causal in the sense that there appears
(m(T s(x))m) in Eq. (1), and not, e.g. , (out)T s) in).
More precisely, this expectation value is the one deter-
mined at most only by the information in the region sur-
rounded by the past light-cone of x and the spatial sec-
tion Z on which the state ~m) is prepared. In Eq. (1)
the metric g s occurs on both sides in a nonlinear (and
in general, nonlocal) form. Thus, we interpret that Eq.
(1) determines g s self-consistently.

Concerning (1), there are at least three main issues,
two of which can be said to be almost well-understood
so far: (a) how to derive Eq. (1) from a more funda-
mental quant»m law, e.g. , the Wheeler-DeWitt equation,
(b) how to naturally derive the right-hand side of (1) in
the procedure of (a), especially how to replace T g by
(m~T s~m) in a satisfactory way, and (c) the validity con-
ditions for the semiclassical description (1).

There have been many works related to (a) [5]. The
typical discussion is as follows: We choose the ansatz
@ = e' ~", expanding S in powers of a = lp2& ——16z.ah/cs,
S = a S q + So+ aSq + . . .. We then put Q into
the Wheeler-DeWitt (WD) equation. The O(o. ) part
yields the vacuum Einstein equation in the Hamilton-
Jacobi form. The O(as) part determines the fiow of time
along the dynamics of vacuum gravity, with respect to
which time the Schrodin, ger equation for matter holds.

It turns out that [2—6], however, the introduction of
(m~T ~~m) into the right-hand side of the Einstein equa-
tion [such as Eq. (1)] by this expansion scheme demands
artificial, ad A,oc procedures, which are far Rom satisfac-
tory [7] [issue (b)]. Such a complication was expected
&om the outset: The left-hand side and the right-hand
side of Eq. (1) have di8'erent orders of magnitude in o, .

Moreover, one needs to introduce the expectation value

(m~T~s[m) somehow, which is difficult because the WD
equation does not include this form of inner product.
Usually, one replaces T s by (m~2'~s~m), and discusses the
condition for such replacement to be justified [2] [issue
(c)l.

As to issue (b), there has been some progress: The
path integral in the in-in formalism (or the closed-time
path formalism) [8] turns out to be a powerful tool for
obtaining expectation values [9,10]. Inspired by this fact,
here we also utilize the in-in path-integral scheme in or-
der to express the fundamental object (h P) in quantum
gravity (see Sec. II C). This is almost the unique setting
which naturally leads to Eq. (1), the causal equation of
motion of the semiclassical world, at the late stage of the
Universe. We then investigate its consequences in de-
tail. We show that all issues (a)—(c) can be answered by
the in-in forxnalism in a transparent and unified manner,
froxn the viewpoint of the stationary-phase approxima-
tion of the in-in path integral. In particular, we will see
the significance of the second variation of in-in path inte-
gral to answer issue (c). In short, the central point of this
paper is the unified discussion of the in-in path-integral
formalism with the stationary phase approximation (es-
pecially, the consideration of the second variation) in the
context of semiclassical gravity. Although both of them
have been discussed separately so far, they have not been

discussed together. However, we will see that this com-
bination is essential to investigate issues (a)—(c).

Furthermore, by the investigation of the stationary
phase configurations which dominantly contribute to
(h P), we realize that the semiclassical universe should be
one which admits at least one totally geodesic spatial sur-
face, i.e., a spatial surface, on which every component of
the extrinsic curvature (second fundamental form) van-
ishes. This means that the Universe should be a Wheeler
universe, i.e., a spacetime which starts &om and ends in a
singularity if the Einstein equation is applied throughout
the spacetime with the assuxnption of a reasonable energy
condition [11].Now, it is known that the totally geodesic
surface allows only very restricted class of topologies if
a suitable energy condition for matter is satisfied [12].
Thus, we realize that quant»m gravity keenly connects
two independent semiclassical concepts with each other:
causality and global topology [13].

In Sec. II, after a brief explanation of the in-in path-
integral formalism, we represent the fundamental quan-
tity in quant»m cosmology, which plays the essential role
in our investigations, using the in-in formalism. We then
observe that the Srst variation of the phase yields Eq.
(1). Furthermore, as a consequence of the in-in formal-
ism, we see that the solution of Eq. (1) should be a
spacetime which admits a totally geodesic spatial surface
and that it implies a strong restriction on the possible
topology of the semiclassical universe.

In Sec. III, we investigate the second variation of the
phase and observe that it yields two validity conditions
for semiclassical gravity corresponding to the real and the
imaginary part of the second variation. We also add the
condition for a good separation of several semiclassical
paths. One of the conditions we obtain, i.e., the disper-
sion in the energy-momentum tensor of matter should be
negligible, turns out to be the same one as was pointed
out by Ford in 1982 on the basis of the model calculation
of the emission of gravitational waves [1].

In Sec. IV, we show that the systematic derivation of
the series of conditions in Sec. III can be well understood
&om the general viewpoint of the c»mulant expansion,
which often appears in statistical mechanics.

In Sec. V, we apply the completely general arg»ments
of the earlier few sections to a minisuperspace model.
We investigate the validity conditions based on this spe-
cific model, in detail. We realize that the satisfaction
of the dispersion condition becomes rapidly worse when
the Universe approaches the cosmological singularity, and
also that, contrary to the usual belief, the condition
soxnetimes breaks down even at a late stage of the Uni-
verse, which can also be regarded as Ford's result viewed
in a diHerent forxn.

The final section is devoted to several discussions.

II. QUANTUM GRAVITY IN THE
IN-IN PATH-INTEGRAL REPRESENTATION

A. The situation of our concern

When we consider the quantum Quctuation of the grav-
itational field as well as matter in some manner, it is con-
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ISMI - a ~

This is the very case which we consider here.

(2)

venient to regard the quantity, usually written as S/5, as

S/a = [Ss + S~((t),g)]/a, where a:= 16mGh/c = lp),

S()
——JRQ[Q:= 4(—g)] and S~ = (16zG/c ) x(usual

action). The action in this form has the dimension of
(length) 2. The natural constant a will appear frequently
below.

If the typical Buctuations of some modes have the ac-
tion comparable to a = lp&, we need to treat them quan-
t»m mechanically, while if their action is much larger
than a, we are allowed to treat them (semi)classically.

At the late stage of the Universe, when the Universe
has grown sufficiently bigger than Ip), the following situ-
ation can occur:

B. The in-in formalism

We here s»mmarize only the essence of the in-in for-
rnalism to the extent to which we need it later [9,10]. We
describe the case of quant»~ mechanics, the extension of
which to the case of quantum field theory is straightfor-
ward. (Only in this subsection, we use the term action
as the usual action for convenience of explanation. Else-
where, we use this term in the sense as explained in the
previous subsection A.)

One is guided to the in-in formalism (or closed-
time path formalism) when one tries to express in the
path-integral framework the density matrix p(T)
E.I»)(»l:

(T) = (z'I p(T) I*& = ):(z'I»&&»I*)
8

~

~

~

(i(«) -()=-' exp
I +S[z()] I

(d*) .(.)=. exp
I
-S[z(.)] IE" ) R(T)=~ E )

(i
ds dx+ . (,) . dx . (,). exp —Sx+. —Sx

~+(T)=~ a (T)=~

dx exp —S x
fi

c(z:x')

(3a)

(3b)

More precisely, the above expression corresponds to the case k~T = oo, which is enough for explanation. The
symbol c(z: z') denotes the class of routes along the time axis which start at r=O, go forward till r = T, turn
direction at r = T, and go backward &om r = T to r=O with the boundary condition z(0) = z, z(2T) = z . (Here
we have reparametrized the come-back route 7: [T,O] as [T, 2T].)

We can regard this in two ways, both of which are useful: (1) We double the degrees of &eedom &om z( ) to
z+( ), z ( ), assign the opposite-sign action to z ( ), perform path integration (PI) along r: 0 —T as usual with the
condition z+(T) = z (T) = s, and finally integrate over s (3a); (2) we perform PI along the time route r: 0 —2T
(which one can imagine as bent at r = T if one wishes) (3b).

It is sometimes more convenient to introduce the source J, and define S' ~ as

exp
I

—W [J] I

= (dz) exp —
I

S[z( )]+ Jzdr
I) c(z:x') ~) (4a)

Ze»l gW-*[+ J-]
I

= ds («+) .,()=-(dz-) . ()=-
a+(T)=a a (T)=s

l(x exp
~ I

S[*+]+ J+z+dr
I

—
I
S[*-l+

) & ).
J x 8 sxg (4b)

The suffix Jg in the last line means "under the in8uence of Jg." Note that

hW [J+,J ] J (z ls&&slz+(r)lz&z+ J+——J =0 (z lz(r)lz&
h J+(r) -, (z'Iz),, = (z Iz)

hW**[J+ J ]-~ (z'Iz-(r-)ls&&slz&~+-~+=~-=o (*'l*(r)l*&
»-(r) . ~ (*'I*)~. - (z'I*)

As a special case, if we put the boundary condition z+(0) = z (0) = z, we obtain the expectation value

hW [J+,J ] &zlz(r)l*)
h Jy(r) ~g —g —0 (zlz&
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It is the advantage of the in-in formalism that it automatically produces expectation values in this way, and not the
8-matrix elements. This is the essence of the in-in formalism.

It serves to improve our understan¹~ng of the in-in formalism to investigate the case of quadratic action in more
detail.

Consider the following type of in-in action:

T 1
S[x] = S[xp] —S[x ] = —xg 'x+ gx .

0

Here, z = (z+(r), z (7')), g = (J+(7.),J (r)).

Gy G

( G(+) Gp )
is a propagator with the boundary condition z+(0) = x (0) = z, x+(T) = x (T):

, .= (zI7 x(~)x(~')Iz), t'SGI" , .= (zIz(~)z(~')7 Iz),

ihG t .——(xIz(7)z(T')Iz), i':= (xIz(& )z(&)Iz),

where 7 is a time-ordering symbol implying rearrangement of operators in order of time r, the latest one coming next
to 7.

The following identities i~mediately follow from the above definition:

Gy ~+Gp, ——G+, +G

Now,

so that

exp
I

—W[J+, J ] I
= (dz) exp

(i (i
) c(*:~)

= const x (Detg) exp (
——Zgg

2h

1
W[J+, J ] = ——J'g J'+ const

2

= ——{J+Gs, J+, —J G+, J+, —J+ G,J, + J Gp, J }+const,

where the integral symbol has been omitted. Thus,

. (*I*.( )I*)., h~[J. , J-]
~ (zlx)~, ~J+(&) 0

(xIx (+)Iz)&+ —~~[J+ J—l d I{G J G(+)J }
g (zI z) g bJ (7 )

These are comp/ex numbers and not causal in the sense
that they are not expressed in terms of the retarded
Green function. Thus, all J~(r) (0 & r ( T) are needed
to determine the value at v. However, after we put
J+ = J = J, these two quantities yield the same, real
and causal expectation value:

T
(x[z(&)Iz) = d& Gretoot JT t

0

where G, q ..——G~ —G& ~ is a retarded Green function.

I

Clearly, (xIx(7')Ix) is real: Using the identities for Gy,
G&, G&+~, and G~-~

G',.~
——G'p —G'~-~ = —Gp+G&+& = G~ —G&-~ = G,.,

We should emp'he~ize again that, only when we put J+ ——

J = J, we obtain the mal, causal expectation value.

C. Quaint»p» gravity in the path-integral form

We con6ne ourselves to the case of closed a~~verses in
the sense that any spatial section Z is compact without
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boundary.
When we discuss semiclassical gravity [2—6] we usually

start from the Wheeler-DeWitt equation and put in it
the ansatz @ = e'~~ and expand it in powers of a, as
mentioned' brie6y in Sec. I. However, it is neater and more
systematic to start &om the PI representation of the wave
function of the universe (or of its inner product), and to
perform an approximation for it.

The PI representation presents us the formal solution
of the WD equation, once we specify the boundary con-
dition (BC), for PI [14]. Related to the BC choice, we
here adopt the in-in formalism.

If we persist in the usual in-out formalism, we have to
specify the "in-state" for PI. Then, the most persuasive
choice may be the so-called "no boundary" BC [14], be-
cause we then are free &om specifying initial information.
But it inevitably utilizes the Euclidean PI which induces
the divergence problem &om the gravity mode [15]. Fur-
thermore, it does not produce the causal equation of mo-
tion Eq. (1) in a natural manner, in the semiclassical
regime.

We prefer here the in-in formalism with the Lorentzian
PI. In this case, we need only to specify the "present"
configuration, which is another solution for the BC choice
problem.

One more advantage of the in-in formalism is that it
naturally leads to the expectation value of the energy-
momentnm tensor (m)T s~m) (rather than (out~T a~in)
which destroys the causality in the semiclassical equa-
tion [9]). As the causal description is our way of looking
at Nature, the fundamental setting should be the one
&om which the (semi)classical causal equation of motion
emerges at the later stage of the Universe.

Note that the WD equation does not contain the form
of inner product, which is the reason why it is diKcult
to introduce the right hand side of Eq. (1) [2,6]. As the
wave function itself has no direct connection to obser-
vations, we should rather realize that Eq. (1) suggests
the fundamental significance of the density matrix of the
Universe, especially its diagonal element.

Thus, we first introduce the fundamental quantity

(I'4', &4) = (dg)(d4) p i

—[S + SM(& g)] l

c(a~y~:h4)

(5)

which is similar to Eq. (3b). It is obvious that this
quantity satisfies the WD equation. By putting h' = h,
P' = P, we obtain the quantity which plays the role of
the alternative of the wave function of the Universe:

(hP) = (hg;hP)

dg d exp —Sg+ SM .
,g, 6

(i
~(a,y) )

where c(h, P) is the space of all closed-time paths deter-
mined by boundary value (h, P). As in subsection B, let
us parametrize this closed time path as 7. : 0 —T for the
forward section and 7. :T —2T for the backward section.
Note that the physical time corresponding to T is fixed
only after one metric go is specified.

Now, considering the condition Eq. (2), let us do the
matter part integration first:

(i
exp

~

—W[h P; g+, g ] ~

Eu )

(i
(dP) exp

~

SM—(P;g)
~

c(a,4) E~

+ [44' d —)44'

(i
x exp

l
[SM—(&+,g+) —SM(y;g )] lE~

Note that the metric gg plays the role of the source Jp.
Then (hg) becomes

(hP) = (dg)exp
~

—(Ss+ W[h, g;g]) ~

.
~(a) E~ ) (8)

Here, we should note that gauge fixing is needed in the
above PI. It is convenient for our case to fix the gauge
such that

6' 6W
+

6gg 6g~

implying the equations

(9)

Gs —~g-( s+)+/-()+ = o (10a)

Gs —~q-(Ts )+/-()+ = o. (10b)

Here ()+ ——s (P~ ~P)s+ in the same sense as (4b)
(especially, ()+ —— (1)+ ——s (P~P)s ), and ~P) is some
normalized matter state.

As Gs and Gs are real, Eqs. (10a) and (10b) mean
that (Ts )+/ ()+ and (T~ )~/ ()+ should be real
for the stationary phase configurations. Remembering
the discussion in the previous subsection B, this means
that g+ ——g = go, say, except for very special cases.
There is a possibility that the very special choices of
g+, g and ~P), with g+(0) = g (0) = h, g+(T) = g (T),
g+ g g and with the above mentioned gauge, yield real

(Ts (r))+/ ()+ and (T~ (r))+/+() for 0& Vv & T
and satisfy (10a) and (10b) at the same time. Let us put
aside this possibility here.

Then (10a) and (10b) reduce to one Einstein equation
with a solution go.

Here, we should note that, at the turning point ~ = T
also, the Einstein equation should hold. Considering that
g+ ——g (= go, the same "history"), this means that the

T T
N+d~+ —— N d7. , N;+ ——

¹
= 0.

0 0

The fixing for the remaining gauge freedom is arbitrary.
In accordance with the condition (2), let us perform

the stationary phase approximation for the g integral.
The condition that the first variation of the phase should
vanish is
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spatial slice 7 = T should inevitably be a totally geodesic
surface (i.e., K;~=Q where K;z is the extrinsic curvature
of the surface r = T), because g+ ——go and g = go
should be connected smoothly at v = T. Thus we obtain
[13]the general consequence derived from (h P): The his-
tory of the (semi)classical universe should be the space
time which allows at least one spatial totally geodesic sur-
ace.

Now, the possible topologies of the three-dimensional,
closed totally geodesic surface Z are very strongly re-
stricted [12]. (Note that we are discussing the semiclas-
sical universe, so that it is enough to consider the case
Z: three-dimensional. )

We assume (a little stronger version of) the dominant
energy condition: T s( $s & 0, g 0 and T span is non-
spacelike for any timelike vector f Her. e we regard that
the cosmological constant A is included in T g if neces-
sary. Then, on account of the Hamiltonian constraint

R —h x vr g+-h x = —Tenn
2h

(where n is the normal unit vector to Z) the fact that
Z is a totally geodesic surface implies that R & 0 and
R g 0 on Z. Hence, Z admits a three metric such that
R & 0 [16]. However, it turns out that such a Z admits
an extremely restricted number of topologies.

Thurston [17] showed that every closed three-manifold
is obtained by the Dehn surgery of S3 along a hyper-
bolic link, and that tbis procedure yields hyperbolic man-
ifolds, except for finite number manifolds, i.e., elliptic
manifolds and fiat manifolds. Then, Gromov and Law-
son [18] showed that if a closed three-manifold admits a
metric with R & 0 everywhere, it should have a noncon-
tractible universal covering space. As every hyperbolic
or Bat closed three-manifold is covered by R, which is
contractible, this means that almost all three-manifolds
(i.e., hyperbolic or fiat three-manifolds) can never be
R & 0 everywhere, except for only finite number three-
manifolds (i.e. , elliptic three-manifolds).

The possible topology of (the connected component of)

Z is, then, at most

Zi¹Z2¹:. . ¹:Z„,where Z; S /G or S x S

(i=1,2, . . . , n) . (11)

[G: discrete subgroup of SO(4).]

For example, the closed Robertson-Walker universe (Z
S ) is allowed. The 3-torus (Z Ts) is excluded [13].

By Geroch's theorem [19],this means that the possible
topology of the semiclassical universe is restricted to Z x
R, with (11).

Finally, we should note that if T s also satisfies (a
little stronger version of) the strong energy condition,
(T s 2g sT—)( (s & 0, g Q for any timelike vector P, the
existence of a totally geodesic surface (thus the existence
of the maximal surface) means that any resultant semi-
classical universe is inevitably a Wheeler universe [11].
(Many physically reasonable matter fields satisfy both
the weak and the strong energy conditions. ) A Wheeler
universe is defined as a spacetime which has a compact
smooth Cauchy surface and in which any timelike curve
has a finite length. This means that the resultant uni-
verse is closed in time as well as in space: there are singu-
larities both to the future and to the past of the maximal
surface [ll], if the semiclassical region is extended as far
as possible by the use of the Einstein equation.

III. THE VAI IDITY CONDITIONS FOR
SEMICLASSICAL GRAVITY

Having found the stationary point go fmm the Brst
variation of Sg + W, w'e next consider the second varia-
tion, or the quantum Buctuation of g around go, i.e., g =
go+ rl, or more specifically, g~ ——go+ rl~ with rl~(0) = 0,
r)+(T) = r) (T). (Tensor indices are omitted for nota-
tional convenience. ) Then, noting that Ss[go, go] = 0,
W[go, go] = 0, we get

S [g+, g ] + W [h, P; g+, g ]

= (n+no)

where ~0 implies that we should put g+ ——g = gs after functional differentiation. We have omitted the integral

symbol f dxdz'.

We should note that )s'(, )
includes b(z —x'). This is the reason why this quantity does not appear in the

bg(a)8g(a')
oK-diagonal elements.

Let us calculate s s,
~

. Noting that W = —, ln j (& &) (dP) exp (—'SM (P; g)),

(, hg+)+
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Then,

b2W = -(~'SM/4+4+)+/-()+

+ (—(7hSM/hg+ bSM/~g+)+/ —()+ —(~SM/'4+)+ —(~SM/'4+)+/ —()+)

(~(-TV')/4+)+/ 0+-

+,( (7T-T')+/ ()+-——(T)+ (T')-+/ ()+-)&&' .

Here, as in Sec. II B, 7 is a time-ordering symbol implying rearrangement of operators in order of time r, the latest
one coming next to 7 . We omitted tensor indices and attached a prime like g+, T', g', to imply the argument x'.
We perform similar operations for

& &, , & &, , and
& &, . Finally we set g+ ——g = go and getBg+bg' ~ Bg Bg+r ~ ~g-~g' '

b2W

b2W Tl I

b2W

bg+Sg' ~p 45
i {(TT)(p (T )~p(T))p)gg

b2W

bg hg+~p 4h
l' —((TT ) ip

——(T) ip(T ) ip)gg

The appearance of i in the right-hand side of Eq. (13)
can be well understood if one imagines, e.g., the function
f(z, y) = ia(z —y)

z + ib(x —y) + c(x —y) 2, where a,
b, c, z, and y are real. By putting y = z, we merely
get f(x, z)=0. However, differentiation before putting
y = x induces the imaginary part: Bf/Bz~„— = ib,
B f/Bx ~„=2c+ 2ai. As we will realize in Sec. IV,
the function g(x, y) = g„z —,[i(x —y)]"a„(z,y), rather
than the above f(x, y), bears a much closer resemblance
to our W[g+, g ].

In order to derive the validity conditions &om these
expressions, let us first analyze what is meant by "semi-
classical gravity. " The term "semiclassical" implies two
conditions although it is usually used not so consciously.

[[A]] The infiuence of quantu~ fiuctuations of matter
on gravity is so small that one is allowed to consider the
eKect of matter on gravity only through the averuge of
the energy-momentum tensor of matter, (m~T s~m), like
Eq. (1).

[[B]] Typical quantum fiuctuations of gravity yield
so large an action compared to a, [roughly speaking,
Ss » a, like Eq. (2)] that one is allowed to consider
only stationary phase configurations, i.e., the Einstein
equation.

To obtain Eq. (13), we calculated the second variation
of W[g+, g ], which is the first variation of ~s&+'s j,
i.e., —( (TQ / () ).

Now, symbolically, we can look at this quantity as fol-
lows. One is probing two kinds of response of the opera-
tion h/hg: [c] the response of Tg, the classical part in a
sense; [q] the response of (.)+/ ()+, the quantnvn part.

Responses [c] and [q] correspond to the real and the

imaginary part in the right-hand side of Eq. (13), re-
spectively.

Then, condition [[A]] means that one can neglect [q].
(The response [c] enters into the discussion of [[8]],which
we will also consider soon. )

Let us rephrase this statement &om a little AfFerent
point of view (but of course it is connected to the above
one).

When one treats the transition amplitude semiclas-
i - —1/2

sically, one obtains (qyT~q;0) N det
~ & &, I

x exp (sS,~) ~
detz's& s~ ~

exp (sS,~), and to the

factor
~
detz's& &'

~
one can give a probabilistic

meaning [20].
Thus, the mixture of the real and the imaginary part

in this factor, which occurs if the condition [[A]] is not
satisfied, is a signal for the collapse of the usual umtary
description by the semiclassical approximation. In the
usual system, this means the transition &om one con-
figuration to the other configuration along a classically
forbidden path (i.e., decay or quantum tunneling).

In our case, the origin of such a collapse is due to our
division of the total system (g, P) into two parts, g and
P, trying to treat the gravity part as if it were the whole
system. The collapse means that the matter Buctuation
is too large to handle it separately and that the coupled
treatment for gravity Suctuation and matter Buctuation
is needed.

Now, having clarified the meaning of semiclassical
gravity, we investigate the structure of A ~ in Eq. (12).

The right hand side of Eq. (12) is constructed from the
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s»mmations of bilinear forms in (x1+ s, g ~) with vari-
ous tensor indices. In particular, consider terms contain-
ing (rI+~s(z), g ~s(z)) and (g~,g(z'), xI,~(z')) (note the
special combination of indices). Then, as b SM/hgbg' in-
cludes h(z —z'), for the generic case z g z', A has a
form of

( ia
A ia'—

—za
za'

za

q
—ia

—za
za*

l
for r &r'

)
for r &r',

)
where a:= xx/4h. ((7T sT,'z) ~p (T—s) ~p(T,'z) ~p}. Thus,
the eigenvalues of A ~ are A=O, 2iRe(a). The eigen-
vectors corresponding to A=O, 2iRe(a) are, for r & r'
(r & r'), (g+, q ) ((g+, rI ) ) oc (1, 1) and (g+, xI )
((g~, g ) ) oc (1,—1), respectively. Thus, as far as
a g 0, there always exist fiuctuations corresponding to
A = 2i Re(a), which harm the sexniclassical treatment of
gravity, although A=O Quctuations do not harm. Hence,
we need to impose the condition a=0,

(Cl): (miT s(z)T,g(z') im)

—(miT s(z)im)(miT, &(z')im) = 0, (14)

—b2(Ss + W) = — dzg bG/bgip ——bT/hgip
2h,

This yields the condition corresponding to the above
mentioned [[B]].Before deriving further validity condi-
tions &om this expression, it is illuminating to consider
the integral I = f dz exp[ig(z)], where g(z) is some

where we expressed the matter state as im). The mat-
ter state im) is automatically selected depending on the
setting of the argxxment P in (h P) (we so far expressed it
abstractly only as P).

Note that (Cl) should hold also when z' lays in the
light cone of z defined by gp. Thus, (Cl) should also
hold for z = z' because if it were not so at some point z,
this effect would propagate to the points in the light cone
of z, so that (Cl) would break down even for two different
points. In practice, the regularization for (miT s(z)im)
is needed. As our formulation is covariant, we can utilize
the standard regularization schemes developed in quan-
t»m field theory in curved spacetime [21].

For the state im) for which this condition fails to hold,
the back-reaction on the gravitational mode from the
qnant~~m Suctuation in matter mode becomes large, so
that we can no longer rely on the semiclassical approx-
imation for the gravity mode and have to deal with the
full quant»m theory for it. (Note that T oc hSM/hg is
the measure of the energy-moment~am Bow firom matter
to gravity through interaction, and this T appears in the
second variation of S~+R' with respect to g, the measure
of the quant»m fiuctuation of gravity. )

When the condition (Cl) is satisfied, the second vari-
ation of (i/n)(Sp + W) is

Then, the validity condition for this replacement is

'
iA, i » 1 (validity for truncation) and
izp~'l —zp~

l
i

&& 1 (condition for good separation)
(i,j = 1,2, . . . ;i g j) .

Now, we turn to our case. Let there be stationary
points gp' (i = 1, 2, . . .). We introduce the norm ((,)) in
the metric space appropriately. Then, the remaining part
of the validity condition for the semiclassical treatment
is

(C2): ((xI, (bG/bgip —(a/25)(bT/bg)ip}g)) » a((xj, rI))

for Vg (15a)

(C3): ((g" —g
' g" —g

' )) » ((b.' b"))

(i, q = 1, 2, . . . ; i P q) . (15b)

We can also state this condition (C2) in another, more
clear form. Note that

L:= hG/hgip — (bT/bg) ip-
2h

becomes a second order H~Herential operator. If I. is the
suitable type of operator, we can obtain the set of eigen-
values of I:
Lxj„=A„rj„, q„(0) = xl„(2T) = 0, ((g„,g )) = b„

Then (C2) is reexpressed as

i%&'li » a (n= 1,2, . . . , i =1,2, . . .) . (15a')

As the most extreme case, if there appeared the zero
eigenvalue, i.e., if a solution of

Lrr = 0, with rI(0) = xI(2T) = 0 (16)

exists, the semiclassical treatment bre~k~ down. Equa-
tion (16) is known as the Jacobi equation, and the ex-
istence of the solution [breakdown of (C2)] also implies
infinitesimally nearby stationary paths [20] [breakdown
of (C3)].

We can 6nd out the explicit expression for L on the
same lines as for perturbative gravity [22] (we adopt here
the transverse-traceless gauge, V~&plg~q = 0, g~&pslxl~s = 0):

appropriate function which has extrema. We search the
stationary phase point zp s.t. g'(zp) = 0 and expand g(z)
around zo, g(zo + g) = g(zo) + 2g" (zo)rI + O(gs). For
the validity of a truncation up to O(x12), the condition
ig" (zp) i

»1 should be satisfied: The doxninant contribu-
tion to I comes from the range of g s.t. ig" (zp)~rP & 1
or g & ig" (zp)i '. Thus, if ig"(zp)i » 1 is satisfied, the
truncation up to O(F12) is justified. When there are many

extrema x0,x0, . . . , we make a replacement in I as(i) (2)

g(z) ~ —(*-* ) + (—* *-) +—(z-zo ) +".~1 (1) 2 ~2 (2) 2 ~3 (&) 2

2 0 2 0
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C~ =~
I
G.~ ——7'.~) /&g ~~ n.~

2h

2( (o) (o)) 2 (O)) ( b) + 2g(o)~b (O) + (o)( b) + (o) b (i7)

where the subscript (0) attached to V, R, etc., means
"by use of g~o~.

"
In the case of a Klein-Gordon field,

2h
~~ah/bgcd(0 Qcd

((V—(e)QV(e), $+ m gP)b( b'bd)

—V(0)PV(0) 4'g(0)ab)'Bed .

We will return to this case in Sec. V.
One of the validity conditions (Cl) has been inferred by

several authors so far, depending more or less on special
models [1—3]. It should be said, however, that the pre-
vious works are not very satisfactory because they lack
a sulicient generality. Among the works, here we should
recall the investigation by Ford [1]. He studied the emis-
sion of gravitational radiation based on linearized gravity.
He realized that (Cl) is indispensable for the agreement
of the emission calculated by quant»m theory with the
one by classical theory.

As stated earlier, in the usual treatment where we put
the ansatz g = e's~ into the WD equation and expand
it in powers of a, the discussion becomes inevitably com-
plicated [2-6]. One begins with the expansion of S as
S = a S i+So+o!Si+.. . , but there is no clear a priori
reason why we start the expansion from O(a i). Any-
way, after expanding S in this form, we put g = e* ~

into WD equation. From O(o, i) part, one obtains the
vacuum Einstein equation in the Hamilton-Jacobi form.
Then one utilizes an artificial procedure to introduce
z&T g on the right-hand side of the Einstein equation.
Furthermore, one replaces T b by (m~T~b~m) and infers
the condition for ~m), similar to (Ci), in order to justify
such an ad hoc replacement.

Why such a labor is needed to introduce (m~T b~m)
is now obvious &om our viewpoint. First, the term
2s(m~T b~m) is O(a), while G b is O(as). Thus, these
two can never be treated on the same footing in the o.-
expansion scheme. As is obvious &om our treatment,
however, the relevant expansion parameter is g g rather
than a. (Note that i) is dimension-free, and hence a more
natural expansion parameter than a.) The only role of a
is to provide the»~it of action, and the largeness of S~
(the largeness of the n~tverse) in the unit of a allowed us
to treat gravity semiclassically. Secondly, one can never
introduce the expectation value (m~T b~m) naturally as
far as one takes the WD equation as a starting point,
as already mentioned in Sec. IIC. This observation in
turn suggests that (hP) is more directly connected to
the emergence of the semiclassical world than the wave
function of the universe.

IV. THE CUMULANT EXPANSION

In order to get a perspective of what is happening in
our treatment, it is illuminating to look at it &om a more
general point of view.

As our (hP) is related to the expectation value, it
is useful to put it in the context of the general expan-
sion scheme for expectation values. Let a probability
distribution f(z) be given. Let G(z) be any smooth
function of z, which has a Fourier expansion G(z)
2i f dkabe'"*. Thus, the expectation value of G(z) is

given by (G) =
2 f dkab(e'" ) =:

2 f dkabfb Then. ,

fb .= (e'" ) is of elementary significance. This fb can be
expanded in two ways; one is the moment expansion and
the other is the cumulant expansion [23]. The expansion
(e'" ) = P 0 —,(ik)"(z") is the most direct one, (z")
being the nth moment.

There is the more useful cumulant expansion:

(e" ) =exp ).—t(ik)"(z"). ~ .
&

=i"' (is)

One can also regard this as the definition of the nth cu-
mulant (z"),. For example,

C + 7 C )

(*').= (z') —4(*)(z') + »(z)'(z') —3(*')' —6(*)' .

If we define exp(Pb):= (e'" ), then

Eb = ln(e'" ) = ) —,(ik)"(z"), ,
m=1

g(k, z) = kg'(0, z) + —k g"(0, z) +.. . ,
2

where a prime me~~~ Bg. Then, one can define the fol-

lowing cn~ulant (g"(kz)) as

(e*" ( *)) = exp ) —,{iA)"(g"(kz)) =:exp(iAX) .
&»=i "'

so that Bb ~b 0Kb = i"(z"),.
Now, let us generalize this definition of the ciimulant

expansion. Let g(k, z) be a function which has the Taylor
expansion in k as
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Then,

(g). = (g) (g')- = (g') —(g)' "
the manner discussed in [3].

We consider the closed Robertson-Walker model

Noting that

(g(k )), = k(g') + —k (g") + —k (g"') +

ds' = B'(r) Idr'— —r (dii'+ sin'8d4')[
1 —r2

with a free, massless scalar field (t). The action becomes
(g'(»)). = k'((g") —(g')') + k'((g'g") —(g')(g")) + ".

where g' = (kg(0, x), g" = 8&~g(0, z), . . . , P becomes
S = d~N — +0 +600', , gP

iA= (g). + —(g ).+
2!

(g')k+
I 2(g") + 2, ((g") —(g')')

I

k'+ O(k')

where n = Cn/h (C is some insignificant positive numer-
ical factor) and an overdot means d/d7. .

The classical equation of motion becomes, after setting
the gauge %=1,

(20) 0+ 0 = —can(t) (22a)

Note that the A expansion is performed in the second
line, while, in the third line, the k expansion is performed.
The O(k2) term is a mixture of a real element and pure
imaginary element, the former coming &om the nonlin-
earity of g(kx) in k.

Now, let g(k) be another function of k, and consider
the summation g(k) +P(k). We expand this in terins of

~(k) + ~(k) = ~(0)+ (~'(0)+ (.'))k
+ -((l"(o)+(!i ))+ ((ii"") ——(ii')'))&'

+O(k') . (»)

(O'P)'= 0 .

The Hamiltonian constraint is

(22b)

C=A +0 —nOQ (22c)

so that the solution is

Equation (22a) together with (22c), or (22b) with (22c)
produces the other equation. By adding 0 times (22a)
to (22c), we obtain

(0 )"= —40

If we make the identification 0 = 0() sin 2(r —~o) (23)

f 1
dxf(x) -+ f(dg)1A-+ —, k -+ bg, s = q ~, z ~ pf,

()(~) ~ ~It f+1! ii(~+) ~ M(iiiu) ~ ( iMlr )ii0

the similarity between the above expression and the re-
sult in Sec. III is obvious. [Note that, according to
Sec. IIA, SM(P;g) =

&
x(usual action)]. The O(k) term

corresponds to the semiclassical Einstein equation. The
imaginary part of O(k2) term yields the validity condi-
tion (Cl), while the real part produces (C2). We should
note that this is the k expansion (g expansion in our
case), and not the A expansion (a expansion, or to be
more precise, n i expansion).

The procedure of path integral can be regarded as
the calculation of (e&*) &~~&~'~&) with ( ) provided by
f(d(t))1. Thus, the cnmulants (SM) (n = 1,2, . . .) are
objects of fundamental significance, so that (T ) —(T),
a part of (SM2)„appears naturally in (Cl) and (bT/bg) (x

(b SM/bg ), another part of (SM ), enters into (C2).

together with

(&( ) I ~l&( ))
(&(~)I&( ))

(24a)

i~le(~) )/» = II~IJ'(~)) (24b)

where Op and 7p are constants. We consider the range
0& 2(~ —~0) & ~.

From (22a),

~

(
tan(v —ro)

)tan vp

Now, assuming that condition Eq. (2) is satisfied, let us
treat the +part quantum mechanically. The Hamilto-
nian for P is

IIy = x~/(4nA ) with ~4, = 2o(A P .

At the stationary point, Eq. (1) becomes

V. EXAMPLE FROM QUANTUM COSMOLOGY'

To illustrate the validity conditions (Cl)—(C3) more
specifically, let us investigate a minisuperspace model in

There are various possible states If(r)) according to
what configuration "P" in (h (t)) is chosen. [Note that (ti

in (hg) is an abstract symbol. ] As one possibility, we

consider here the Gaussian state [3]
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A/A = (h/2nO2)BI, (B ')'= ih/(nO2),
C = (52/2nO2)BR + p2/(4nO2),

p = 0, p = 2nO2(t) =:po .

Thus,

(25)

B(r) ' = ~(r) +—4oo,

where fc(r) = J'o O 2(r)dr, o 2:= o 2(r = 0) = [4B(0)]
(we imposed B(0): real, positive). Note that [B(r)]
(BR —iBI)/IB(r)l, so that IB(r)l /BR(r) is constant
ln 'T:

IB(r) I /BR(r) = (Re(B(r) )) = (4(ro)

Let us calculate the quantity
~f)f) (f(f),

&~~~~t» (~I,I~I~)'

For the Gaussian function f(z) = exp( —Bx +2Az+cj
(BR & 0),

[ff): = J def f= f d ex'p(x2BRx +—4dxx+ 2Cx)

) 1/2

exp(2AR/BR + 2CR) .
(2BR)

Using this formula, we obtain, after putting AR=O (be-
cause this is sufficient for our case),

(f*f) = (f&'f) = o (f&'f) =
4B (f f)

(f*'f) =
16B, (f f) .

R

Using this, it is straightforward to obtain

f(P, r) = (4)lf(7)) = A(r) exp( —B(r)[4)—(t)(r)]

+iP(r) ftf/5 i—C(r)/h),

where dtf(r), A(r), p(r), and C(r) are real, and B(r) is
complex. When

I f ((tf, r) I2 is regarded as a Gaussian prob-
ability distribution, the average of (t) and the dispersion
o (r) are given by ftf(r) and o (r) = [4BR(r)], respec-
tively (BR .=Re B, BI .'=ImB), p(r) being the average
of zy = ih8y—. The evolution of f(ftf, r) is determined
by (24b) then

O(r)dr. In this gauge, Eq. (24b) holds with

Hy = p4, /(4nO ) where py = 2nO d(II)/dt .

Thus, the dispersion becomes

(fIHg If)
(fIf)

(flII~lf)'
(flf)2 [4nOs(r)]2

x (Poz y 5 /8oo)/(ro . (27)

Note that, in the 5 ~0 limit, where quantum Buctuations
in matter vanish, this dispersion tends to zero. Also, the
breakdown of the condition (Cl) becomes more and more
prominent as the 22niverse approaches the initial (or final)
singularity.

Here, it is also relevant to point out the inevitable lim-
itation of the semiclassical gravity, Eq. (1). In the most
strict sense, the semiclassical gravity contains a contra-
diction in itself, because (mlT Im) —(mlTlm) is always
nonzero, while (Cl) is a rigorous condition. Equation
(1) holds exactly only when the fluctuations in the mat-
ter part are also negligible for the dynamics of gravity, so
that the matter can be treated somehow (semi)classically.
[Recall the discussions which led to (Cl) in Sec. III.] This
means either that (1') IS( I

» n, ISMI » n rather than
Eq. (2) holds, or (2') supp((mlT Im) —(mlTlm) ) fl Z
(E is the spatial section) is confined to a small region in
Z, and the classical orbit of the matter can be defined on
the scales larger than the scale of this region.

Thus, we should note that there are situations when
semiclassical gravity breaks down at much later epoch
than the Planck time, contrary to the usual belief. [This
is also evident in Eq. (27). If we take the state in which

po and 00 are suitably chosen, the dispersion can be ar-
bitrary big even though Oz » n = lp(.] This can be
also regarded as a paraphrase of Ford's result [1]. He
compared two calculations about radiation of linearized
gravitational waves, one by using classical theory and
the other by quant»m theory. He concluded that grav-
itational mode should be treated quantum mechanically
for the system in which a condition like (Cl) does not
hold, even though it is a macroscopic system.

Now, let us consider (C2). The equation (22a), in the
semiclassical regime, is

(fÃf) = (IBI'/BR+—4AIHf f)

(fCf) = 3(IBI'/BR)'+ 24AIIBI'/BR+ MAI .

In our case, B = B(7 ), 2AI ——ph so that

2

O+ O = —nO(fl
I 2-O, I If)/(flf)

, (po + h, '/4o. o),

together with

(28a)

(fI~4, lf)
(flf)

(fI~~If)'
(fIf)'

4nO2 g 4(ro2)
(28b)

, I

p'+ IBI'/BR
I
IBI'/B—R

52 (2

2 f2 8 2 2=
[4-O2( )]2(Po+ ~ /8~o)/oo . (26)

Here, let us perform the gauge transformation, changing
&om the conformal time 7. to the physical time t, dt =

The solution is

ii (e) = 2/e/4deie2(e —ee), 2:= )/pe +li*/4ee . (29)

In the pure classical case, there is no principle for de-
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termining Op (the maxim»~ scale of the»»averse). When
the quant~~~ efFect of matter is taken into account, how-
ever, the equation of motion (28a) becomes nonlinear in
0 and the maximum value of 0 is definitely determined
by the matter state

~ f) [Eq. (29)]. This is the prominent
quant»~ efFect in this model.

We have to investigate the second variation. From
(28a) and (29), the differential operator L [see Eq. (17)]
1s

L = d /dr +1 —3p /(2aQ )
= d /dr' —[6cot 2(r —rp) + 5] .

The eigenvalue problem is

Lrl„= A„ri„with g (r],) = 'g (rg) = 0

(rp ( ry ( r2 ( rp + +/2) .

Thus,

A„= (g„Lg„)/(g„ri„)
T2 T2

dr(it» + [6cot 2(r —rp) + 5]ri»)/ dr'g»
T1 &1

Moreover,

T2 T2

l~»l ) dr[6cot 2(7' —rp) + 5]g / drri ) 5 .
T1 Tl

Thus, the condition (C2) holds quite nicely.
Finally (C3) holds because there is only one stationary

point in this mode.

VI. DISCUSSION

We regarded Eq. (1) as a basic equation for semi-
classical gravity and investigated its validity conditions,
which describe when quant»~ Buctuations in gravity can
be treated semiclassically. In this way, quant»m fiuctu-
ations in gravity entered into the discussion, so that we
were forced to go back and start &om quant»~ gravity.

We searched for the setting which yields Eq. (1) in
the semiclassical regime. We especially paid attention to
the fact that the right-hand side of Eq. (1) is the expec-
tation value and that, in this sense, Eq. (1) is causal.
Regardless of the more fundamental gravity theory than
quantum gravity, as it were, (h P) seems to be the most
natural choice for the description of the transitional pe-
riod between quant»~ and semiclassical gravity.

From the viewpoint of the stationary phase approxi-
mation for the gravity mode, we systematically derived
and connected with each other Eq. (1) and (Cl)—(C3).
From the first variation of Ss + W, Eq. (1) was derived.
Then, the second variation yielded (Cl) and (C2). From
the consideration of a good separation between station-
ary phase configurations, (C3) was added. (Cl) and (C2)
are different from (C3) in character: The former are the

conditions about a single stationary point while the latter
is about the relation between various stationary points.
The necessity of condition (Cl) for semiclassical gravity
has been speculated so far based on special models [1—3].
We found out that (Cl) is a general condition indepen-
dent of the special features of individual models.

Let us reBect on the reason why these conditions could
be treated so systematically. We should note that the
concept of semiclassical gravity is not directly related to
the G -+ 0 limit, except for the justification of Eq. (2).
Rather, it describes the situation when virtual Buctua-
tions in the gravity mode, induced both by gravity itself
and by matter Buctuations, are quasinegligible. Now,
the path integral is the integral of quant»m Buctuations.
Thus we succeeded in expressing the semiclassical behav-
ior in terms of the approximation schexoe of this integral.

By the investigation of the stationary phase configu-
rations in (h P), we also found out that the semiclassical
universe should be the one which admits at least one to-
tally geodesic spatial surface. Then, by the application
of the theorem about totally geodesic surfaces [12,16—18],
we found out that the possible topologies of the semi-
classical universe are strictly restricted. In this way, we

realized that causality and topology in the semiclassical
universe are deeply connected with each other through
the medium of quantum gravity. This tight connection
between causality and topology can even be referred to
as the quant»m refrain of Geroch's theorem [19].

Now let us reBect on a few key points in our arg»~ent
from which we have derived the condition that restricts
the topology.

First, it is suggestive that the existence of matter plays
an essential role in this arg»~ent. In fact, if T g——0,
g+ ——g = go does not in general hold, so that the
»niverse with a totaQy geodesic surface does not result.
Also, the dominant energy condition is needed to apply
the theorem [16—18] which restricts the topology of the
universe.

Second, it is also important to note that, the reality of
the Einstein equation, Eq. (1), is essential in our argu-
ment. Needless to say, we know that classical spacetime
can be described by a real geometry. Usually, when a
classical field is a real field, we quantize it as a real field
and never extend it to a complex-valued field. The latter
procedure would cause troubles, for e.g. , doubling of the
member of degrees of freedom and the destruction of the
n~itarity of the theory, the electromagnetic field being a
good example. When the original classical field is real,
there is no complex conjugate operation in the action for
the field, so that the analytic extension to the complex
field induces the analytic extension of the action. This
causes a violation of the»~itarity. Thus, our treatment
in which we have taken g g as real throughout our dis-
cussion is completely reasonable.

In this connection, we should review the discussion

by HaHiwell and Hartle [24], in which they have investi-

gated the complex valued metric as a saddle point in the
path integral. Since they have based their discussions
on a difFerent formulation of quant»~ cosmology, i.e.,
the "no-boundary" proposal [14], it stands diferent from
ours. Since the Euclidean path integral is essential in the
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no-boundary formalism, a complex geometry inevitably
appears in order to derive a semiclassical (Lorentzian)
spacetime &om the formalism: The saddle point history
is naturally the one which is asymptotically Lorentzian
at one end ("present" boundary) and asymptotically Eu-
clidean at the other ("initial" no-boundary), which corre-
sponds to a complex geometry on a real manifold. Thus,
in their formalism, the result K;z ——0 does not necessarily
follow in general, in contrast to our case. Since we do not
have an exact theory of quantum gravity at present, there
is no agreed-upon setting for quant»m cosmology. Their
discussion based on the no-boundary formalism is one in-
triguing possibility. However, several points concerning
this perspective need to be clarified. First, the meaning
and consistency of the extension to a complex geometry
has to be investigated further. Second, the no-boundary
formalism can be regarded as a natural application of
the standard in-out path-integral formalism to quantum
cosmology. As is clear &om the discussion in this pa-
per, it is quite dificult to get an expectation value such
as (m]T s]m) from the in-out formalism. Usually, in the
context of the no-boundary formalism, one does not de-
rive the semiclassical Einstein equation Eq. (1) directly
&om the path-integral expression. Rather, going back
to the Wheeler-DeWitt equation, one follows the tradi-
tional treatment [5] of a-expansion scheme [6,2]. Hence,
the expectation value on the right-hand side of Eq. (1) is
introduced more or less by hand, following the traditional
analysis. It is not satisfactory. If the no-boundary for-
malism is fundamental, everything should be done within
the &amework, as we have done in this paper.

It is interesting that Gibbons and Hartle also consid-
ered the restriction on the possible topologies of the spa-
tial section Z [25). Based on the no-boundary formalism,
they investigated the special class of stationary phase
configurations, i.e., a junction of the Euclidean and the
Lorentzian solutions of the Einstein equation. Because
of the condition at the junction surface Z~„„ they ar-
gued that Z~„„, should be a totally geodesic surface.
Furthermore, from the Euclideanized energy condition
in the Euclidean region, they asserted that Z;„, should
be connected. At least two points are uncertain in their
argument. First, as is clear from the viewpoint of the

discussion by Halliwell and Hartle [24], the class of con-
figurations they discussed are too specialized. In fact,
if one adopts the no boundary boundary condition [14],
stationary configurations should be searched in the set of
all complex metrics which induce the assigned real spa-
tial metric on the present boundary. Hence, it should be
shown that the junction of the pure Lorentzian geometry
and the pure Euclidean geometry is the most dominant
history in the path integral. Second, it is not safe to
impose the energy condition in the Euclidean region on
the grounds that it holds in the Lorentzian region. (Just
consider, E = zmq2+ V(q).) Although the basic formal-
ism is different, we can still trace some implicit connec-
tions between their logic and ours: As for the first point,
they choose a purely real configuration in the Lorentzian
region, while we used the reality of g to derive the exis-
tence of a totally geodesic surface (note that we use the
Lorentzian PI). Related to the second point, we also as-
sumed the (Lorentzian, in our case), energy condition to
apply the theorem on topology [16—1S].

Finally, we should note that our statements are about
the semiclassical universe, in the sense that Eq. (1) and
the energy condition hold. There is room for deviation
from a Wheeler universe and Rom the restricted topolo-
gies at very small scales, at the expense of violation of
causality and positivity of energy.

We have observed that the imposition of causality
places strong restrictions on the topology of the semi-
classical world. Such a deep relation between causality
and topology in the semiclassical universe is one of the
notable consequences of the combination of general rela-
tivity with quantum theory.
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