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Measure on a subspace of FRW solutions and "the Hatness problem" of standard
cosmology

H. T. Cho '
Tamkang University, Department of Physics, Tamsui, Taipei, Taiwan, Republic of China

R. Kantowski t
University of Oklahoma, Department of Physics and Astronomy, Norman, Oklahoma 73019

(Received 10 June 1994)

We use the metric on the space of gravity fields given by DeWitt to construct a unique kinematic
measure on the space of FRW simple Suids and show that when the mass parameter 0 is used as a
coordinate this measure is singular at 0 = 1. This singularity, combined with the time evolution of
0, distorts distributions of 0 values to be concentrated in the neighborhood of 1 at early times. It
is a distorted distribution of 0 values that sometimes misleads the casual observer to conclude that
0 must be exactly equal to 1.

PACS number(s): 98.80.Hw

I. INTRODUCTION

For decades now we have believed that general relativ-
ity determines the dynamics of our Universe and in fact
one of the Friedmann-Robertson-Walker (FRW) models
closely approximates what we can observe. At the cur-
rent epoch the dynamics of such a model is dominated
by inertia and the matter density (pressure now being
insignificant and the cosmological constant A = 0). Our
task has been to find two observed numbers, e.g. , Hp the
Hubble parameter and 0p the mass density parameter
[see (3) and (6) for definitions], and hence to tie down
coxnpletely the global structure of the Universe, as well
as where we are in its time development. The accepted
value of the Hubble parameter is somewhere between 40
and 90 km/s Mpc, depending on how it is estimated [1].
Advocates for one extreme value or the other are not
supported by some fundamental principle which makes
their value more appealing. The same is not true for the
other parameter 0p. Its accepted value &om observa-
tion is between 0.01 and 0.2 (luminous-dynamical mass)
[4,5] with the frequently advocated value being 1. When
0 = 1, the Universe is on the verge of being closed even
though the spatial sections are Bat. If currently 0 1,
then at earlier times (as argued below) A ~ 1 and as
can be seen in (3), the spatial curvature of the Universe
(k/Bz) had negligible effect on its early dynamics. This
is referred to as the "Satness problem" of standard cos-
mology. The advent of in8ation has added fervor to the

Electronic address:
bsp15FotwntkulO. bitnetpuce. princeton. edu

t Electronic address: kantowskiophyast. nhn. uoknor. edu
The dynamical values obtained by [2,3] are much larger.

We chose to quote and use values obtained from more estab-
lished methods simply to make our point about the problems
encountered when 0 is used as a coordinate.

debate because, in addition to solving some long-standing
problems of cosmology (in particular the horizon prob-
lem), it would guarantee the almost sanctified value of
A = 1. Sometimes when listening to advocates for in-
Bation the audience is misled to think that the "Batness
problem" implies that 0 is exactly equal to 1 in the early
Universe and hence indation must be correct. The failure
to now observe the value 0p ——1, becomes the devotee's
"0 problem" or equivalently an additional missing-mass
problem.

The argument goes something like the following [6—8]:
If at present, the value A = Ap = 1 —bp, then at ear-
lier times A = Ao(1+ z)/(1+ AIIz) = 1 —bo/z. This
value gets closer and closer to 1 as you choose earlier and
earlier times, e.g. , when the effects of pressure on the ex-
pansion of the Universe are no longer negligible zR = 10
and bII —bo x 10 4. Before this period, when radiation
is dominating the expansion, 0 is approaching 1 even
faster, A = AII(l + z) /(1+ 2A~z + AIIz )

—1 —bII/z .
At the time of nucleosynthesis, where z 10 = 10
relative to z~, we are sure of our 1 MeV physics and
we have A = 1 —bo x 10 Is. If the Universe would have
undershot 1 by some reasonable value such as 10 5 at
this early epoch then there would not be much around
now, including us; and if the Universe had overshot 1 by
such a reasonable value then it would have collapsed long
ago. The misleading conclusion drawn &om such or simi-
lar arguments is that 0 must exactly equal one, after all,
"how could it be so close and not be 1T" This conclusion
is based on an unstated assumption that at some early
epoch our value of 0 should have been chosen &om some
possible set of values (by either a classical or quant»m
mechanical process) of which A = 1 was no more likely
than any other value (see [9] for a discussion of initial
data). By introducing a measure on a subspace of FRW
solutions we expose 0 as the problem, i.e., that probabil-
ity distributions will be skewed towards 0 = 1, and that if
a "better" coordinate is used the aatness problem clearly
does not imply 0 = 1. In Sec. II we introduce a "better"

0556-2821/94/50(10)/6144(6)/$06. 00 50 6144 1994 The American Physical Society



50 MEASURE ON A SUBSPACE OF PRW SOLUTIONS AND "THE. . . 6145

coordinate called C and in Sec. III we introduce the es-
sentially unique measure (the kinematic measure) on the
space of solutions and express it in both the "good" co-
ordinate C and the not so good coordinate O. In Sec. IV
we make the point about O being a "bad" coordinate by
following a hypothetical distribution to larger and larger
redshifts. We also conjecture the relationship of the kine-
matic measure proposed here to the dynamical measure
proposed by Henneaux [10] and Gibbons et aL [11].

II. A COORDINATE FOR SIMPLE PERFECT
FLUID FRW SOLUTIONS

The Robertson-Walker metrics can be found in every
book on cosmology, e.g. , see [12]:

dr2
drr = c dt —R(t) + r (sin ed/ + d8 )1 —kr2

It is defined in terms of the current mass density po and
its critical value:

po
Op = —.

pc
(6)

In what follows we use C and Oo as two diferent
parametrizations of the above set of gravity fields.

III. THE INVARIANT MEASURE ON THE
SPACE OF FR%V SOLUTIONS

To statistically weigh a set of possible fields (P'), two
structures must be given: (i) a measure (e.g., a volume
element) on the space of fields and (ii) a scalar func-
tion normalized with the given measure. For many fields
[including the metric fields g p(2:) of gravity] the only
known measure is proportional to the vob~me element of
some field metric G;~(P) on the space of fields:

8+G
pR = const—:C ~

3C
(2)

and

where k = —1,0, 1 and R(t) is arbitrary. For simple per-
fect fiuid solutions [p = (p —1)pc2] of the standard theory,
R(t) is determined by the Einstein equations which re-
duce to

drr = G;~dP~dP~~ = G, dP'dP ".

(
G;,Pjjr I&~r

P.

llr (8)

The parallel projection dye~~
——P~~.dp selects the gauge-

dependent part of the diH'erence of two neighboring fields
and the perpendicular projection dye&

——(h' —
P~~~)dP.

selects the part orthogonal to all possible gauge transfor-
mations,

c2
8zG k 1 (Ci
3cz R2 R2 (R] (3)

glvlng

G;.:—G;~ —Gg, )P((,P((
lc l

where H—:R/R. The constant in (2) has been written
in terms of another constant C whose units are the same
as those of R. The one parameter family of solutions
R(t, C) is given by integrating (3):

(C) 3+ 2

dR
R

- -Z/2

—k = c dt.

For the spatially Hat k = 0 case, C can be scaled to
any desired value by scaling the r coordinate and hence
only one such solution exists. The same is not true for
the spatially curved k = +1 solutions; C remains as the
single parameter (0 ( C ( oo) distinguishing between
possible models. For the closed FRW models C is clearly
the maximum value of R. The current value of C (p = 1
for pressure = 0) corresponding to the above observed
range of small Qp values is Cp ——(0.01 —0.3)c/Hp. Once
C is flxed another parameter (e.g. , tp or Hp) must be
given to fix our epoch. Giving the Hubble parameter
Hp = H(tp = t ) is equivalent to giving the current
critical mass density p of the Universe:

3Hp2

SAG

The mass-density parameter Oo is normally used as a
label for solutions rather than the C introduced above.

The distance between two gauge equivalent fields, com-
puted using (9), clearly vanishes. Other measures can be
defined if the set of fields is restricted by some dynam-
ical theory; e.g. , a phase space vol»me can be defined
when the dynamics is canonically described. For the non-
dynamically restricted metric fields a unique field metric
exists and is commonly used when performing a path in-
tergal quantization of gravity [13]. It was first given by
DeWitt [14] but its absolutely essential role was made
clear when Vilkovisky developed the current efFective ac-
tion theory [15,16]. We fix the difFerential manifold and
write the field in a given coordinate patch as

4" =g ~(*) (t = (~ » *)) . (10)

The Beld-space metric of DeWitt [14] to be used in (7)
to give the distance between two neighboring metrics is

G;i ——v Idet gI4 g "g "+g "g "—a g g""

xh (x —y),
where a is an arbitrary unitless constant (g 1/2). This
metric is commonly used in path integral versions of
quant»m gravity; however, it is a purely classical struc-
ture and it is only in that context that we use it here.

For metric fields the gauge group is the set of active co-
ordinate transformations (i.e. , the diffeomorphism group)
and the dHFerence between two neighboring fields is de-
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composed into a part attributable to an active coordinate
change and a part which is not, i.e., a part perpendicular
to all possible coordinate changes (see Appendix):

~4' = &g-~(x) = ~g(~.p(x) + ~g~-O(x) . (12)

Here bg~~ p(x) = V hfdf + Vpb( is generated by some
small coordinate shift x ~ x + h( (x). The metric
as given by (11) is unique (up to the parameter a) pro-
vided that G;~ is assumed to be local [i.e., oc b (x —y)],
assumed not to depend on the metric's curvature (i.e.,
not to depend on derivatives of g p), and assumed to be
invariant under gauge transformations. In Eqs. (22) and
(24) we will see that the value of the arbitrary param-
eter a does not affect a normalized probability distribu-
tion on the FRW subspace studied here. Equation (7),
evaluated using (11), should be thought of as giving the
intrinsic (i.e., coordinate-independent) geometrical dis-
tance between two metrics g p(x) and g p(x) + bg p(x)

I

da = G, dP'dP = G(C)dCdC .

The k = 0 solution is only a point in the Geld space. The
induced natural measure on the open (closed) simple fiuid

solutions is oc gG(C) dC. To compute it we rewrite (1)
replacing t by a new variable g = R/C:

dR Cdy
HR (14)

The form of the metric is now

defined on the same ma~i fold. . The induced natural (kine-
matic) measure associated with a set of metric fields is
simply proportional to the vol»me of a neighboring set of
fields, i.e., oc det~G~ [. The above metric (11) on all met-
ric fields will induce a metric on any subspace of fields; in
particular it will induce a metric G(C) on the p = fixed
subspaees of k = kl perfect Quid FRW solutions:

2 r2
dac. ——C —y +r (sin Hdg +dg) =C dac

1 —kr~

The range of the new coordinate g is 0 & y & y
where y = oo for k = —1 and g „=1 for k = 1.
The difference in two neighboring metric fields of fixed p
becomes

bg p (C; y, r, 8, Q) = 2CbC g p (C = 1;y, r, 8, Q), (16)

written symbolically as

bye~ = 2CbCQ

and giving from (13) an induced metric

G(C)dCdC = 4C G; (C)gc,g~, dCdC . (1S)

QG(C) = const x C .

From (11) and (15) it is clear that in four dimensions
G;.(C) = G;~(C = 1), i.e., that the field metric when
evaluated at any of the p = fixed simple fluids does not
depend on C. In the Appendix we show that the same is
true for G;.(C) [see (AS)], consequently giving the mea-
sure as a simple function of C:

Qy —4

k ) 2(3 —2)
dC= —k

Hp (1 —Qp)
3 —37

+
q3p —2 2)

The measure as a function of 00 becomes

QG(C) dC = QG(Op) dip
= const x CdC

2 2(3p —1)(c) ( —Ic ) s
= const x (—k)

i Hp) (1 —~p)

&3q —2

and clearly diverges on any neighborhood of 00 ——1
when p ) 2/3. This expression is the distance between
two neighboring universes whose coordinates are C and
C+ dC. In the second form the distance is evaluated by
comparing the values of 0 for these to universes when
their Hubble parameters are the same (both = Hp).

which implies

Bp

Hp (1 —Qp)
(20)

The potentially devastating divergence that occurs (con-
stant ~ oo) for the infinite open models is harmless here
because we are keeping the equation of state fixed and a
normalization of probability removes the constant. The
parameters, Ho and Oo rather than C are ordinarily used
to label the FRW solutions. Of these two parameters, Ho
is fixed at its current value and 00 is used as the free pa-
rameter. Eliminating R between Eqs. (2) and (3) gives

IV. CONCLUSIONS AND DISCUSSION

We have not proposed any dynamical mech~nism to de-
termine the distribution of possible FRW Universes. We
only argue that 0 is not the best coordinate to use for
a label if you wish to consider earlier and earlier times.
The only natural measure on the space of FRW poly-
tropic solutions is singular at 0 = 1 and (as seen below)
every neighborhood of' 1 shrinks to 1 at early times. If the
parameter C is used, its value is well behaved in the cur-
rently observed negligible pressure domain Cp ( oo [see
Eq. (20) with p = 1], and that this value remains con-
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stant all the way back to a period when radiation rather
than p = 0 models describe the dynamics (zR = 10 ).
Matching-boundary conditions (R, R, and p) at this red-
shift where the equation of state changes to p = 4/3
requires a decrease in the value of the constant C:

C~ = V'RoCp/(I + zz) = (0.001 + 0.006). (23)
Hp

2500

2000—

1500—

p(0, zR)

1000—

Distorted 0 Distribution at High Redshifts
I I I~ x(1+ z) '

= io'

This constant value persists as far back as the equation
of state (p = 4/3) remains valid, e.g. , to the infiation
period.

If we assume this observed value exists by choice among
some normalized set of possible values, a length scale L
must exist for the distribution function P(C2/L2),

f P(C'/L')d(C'/L*) =1,
p

(24)

P(C /L ) = exp( C /L ) . — (25)

Using (20) and (21) with z = 0 replaced by zR and p =
4/3 along with the redshift dependence of 0 computed
from (3), (5), and (6), i.e.,

and we can immediately see the true Batness problexn:
why is L = C~ 10 x Lp~~n, g? If this distribution
was determined at the time of transition &om quant»m
gravity to classical gravity when the only length around
was the Planck length (Lpi d, = 1.6 x 10 ss cm), what
inBated it by a factor of 10 ? One of the current forms of
inBation is commonly assumed to have done so; however,
[17,18] argue that 0 could be —1 without infiation. The
actual form of P(Cz/L2) is of course not known but its
origin must be determined by the probability of having
sources of gravity which produce a given gravity field,
i.e., a given C. For illustrative purposes we pick a simple
normalized example:

500—

0
0 0.0005 0.001

b=—1 —0
0.0015 0.002

FIG. 1. Plot of P(O, z) from (27) at redshift = zR as a
function of b = 1 —O. This probability distribution comes
from (25) assuming L = Ca and is intended for illustrative
purposes only. The effects of additional redshifting are indi-
cated by the factors x (1 + z)+ .

distribution of C2 (i.e., L -+ oo), you force 0 -+ 1 as the
only value allowed for 0. Without a scale for C the only
choices are L = 0 or L = oo which correspond to 0 ~ 0
and 0 ~ 1, respectively.

Other measures on the space of FRW solutions have
been proposed in conjunction with classical [10,11,17] or
quantum [19,20] dynamical theories. The p = 2 case
given here can be directly compared with the massless
scalar field case of Gibbons et al. [11], see Eq. (3.15).
Here the gravity-field space is clearly one dimensional
(C is one parameter), but there the Henneaux, Gibbons,
Hawking, and Stewart measure is for a two-dimensional
initial data space. The extra dimension appearing in the
dynamical measure comes from the initial data for the
scalar field P. The value of the scalar field does not afFect
the gravity field (only its rate of change does) and, not
surprisingly, their measure is of the form

1

1+ (1/0 —1)(1+z) ~- ' (26) dp = const x dC A dp, (28)

we can look at the distribution of possible 0 values at
early tixnes by writing

P(0, z)d0 = P(C /L )d(C /L ). (27)

In (26) z = 0 is at the end of the radiation phase where
the mass parameter is 0R. What is found (e.g. , see Fig.
1) is a distribution rapidly being squeezed (as z increases)
to a peak just less than 0 = 1. The narrowing peak
follows the implicit solution 0(z) of Eq. (26). It is cut ofF
on the left by the fact that the distribution is normalized
[e.g. , by the exponential in (25)] and on the right by
the singularity in the measure (22). The maximum in
the probability curve is going up as (1 + z)2, the width
is shrinking as (1 + z), and the difference 1 —0 is
decreasing as (1+z) 2. It is this narrow, extremely high
peak being squeezed to 0 = 1 that &equently misleads a
casual observer to think that 0 must be "fine-tuned" to
l. In our simple example the probability density actually
vanishes at 0 = 1.

Alternatively you could argue that by forcing a uniform

when our C coordinate is used. In the form given by
Gibbons et al. [11], the measure is of the form of our
Eq. (22) Ad/ (their coordinate y = Hp/0p). Integrat-
ing over the P initial data gives a uniform distribution in
C, i.e., L ~ oo and 0 ~ 1. The origin of their result is
clear. The gravity-field part, QG(C) dC (the kinematic
measure as we call it) is as we say it inevitably must be
and the xnassless scalar field, having no intrinsic scale
and having had its initial (dynamical) value iiniformly
distributed, cannot select any one C over another, i.e.,
P(C2/L2) is constant. Normalization forces this con-
stant to zero and selects the divergent point 0 ~ 1 as the
only possible configuration. For other more complicated
cases w'e expect sixnilar agreement between the unique
kinematic measure we propose and dynamical probabil-
ity distribution coming &om the canonical phase-space
measure proposed by Henneaux, Gibbons, Hawking, and
Stewart. For more complicated cases this agreement is
likely to occur only when the parameter a = 1 in (11).
This is because the a = 1 metric appears in the kinetic
energy term for background field expansions and is hence
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built into any dynamical theory containing conventional
general relativity (GR).

Our objective here has been limited to evaluating the
unique kinematic measure induced on the con6guration
space of a limited set of gravity fields. We have found
that it is not well behaved as 0 m 1. In addition we
hope we have convinced the reader of two things.

(1) That in the absence of knowing the true distribu-
tion function of expected values of 0O or the dynamical
mechanism that produces the distribution, one should
use the measure given here simply because of its unique-
ness. If the probability of producing a given gravity field
by the set of all sources were to be known, it would appear
as the function P(Cz/L2), normalized with this measure
as in (24).

(2) That the assumption Oo —1 implies 0 = 1 is
based on an unstated assumption that the distribution
of possible values of 0 is relatively Bat at 0 = 1. If it
were well behaved at 1, finding a value difFering froxn 1

by 10 or less would be deemed signi6cant. It would
imply that some additional mechanism beyond conven-
tional dynamics and probabilities produced the observed
early values of 0 1, e.g. , in8ation might have driven
00 to this value. However, we know that 0 is not a good
coordinate to use because a divergence in the measure
will amplify the probability distribution as 0 -+ 1. Con-
sequently finding an early value near 0 = 1 might be
quite likely even if the probability of 6nding a value of
0 = 1 was zero.

Finally, we know the production of a distribution of
0's is one thing, but observing various values is another.
Only those universes or parts of "the Universe" having a
limited range of Ho and Ao values would likely produce
civilizations such as ours asking such questions. This
selection efFect cannot be denied. However, it may or
may not have distorted the original distribution. In any
event, this selected distribution is likely to include only
universes where p & 1 for a significant recent history and
for all of these, 0 approaches 1 at earlier times.

APPENDIX

What is referred to as the gauge group for metric fields
on a 6xed difFerentiable manifold is actually the group of
diGeomorphisms of that manifold. All metrics are iden-
ti6ed as equivalent that can be actively transformed into
one another. For "infinitesimal" transformations these
look like x -+ x + b( (x) which change the metric by

p(x) m g p(x) + V b(p+ Vpb( (A1)

and which are generically written as

4* ~ 4'+ Q'.b(,
where

(A2)

Q 6( = f d y(g vp+gg vp) b (z y)6p(y)

i.e. , where (i = (n, P, x)) and (o = (p, y)), repeated dis-
crete indices are summed over, and repeated continuous
indices are integrated over. The metric components in
the gauge directions are defined by

N "Npp ——b b (y —z) . (A5)

The relevant quantity needed for computing G;. is the
parallel projection operator

and is nonlocal because of the N f' term. The perpen-
dicular part of the 6eld metric needed is, consequently,

N p ——G,,Q'Q
= —vr —g(g p +VIV —aV Vp} b (y —z),

(A4)

and are seen to form a local differential operator whose
inverse N ~ is consequently a nonlocal Green's function,
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G; = G,, —G;sQ"N ~Q'Gh .

G; (C) = G; (C = 1) . (AS)

What we wish to show is that G+ like G;~ [as we have
already pointed out in the paragraph after Eq. (18)]
when evaluated at (15) is independent of C. From
(A3) we see Q' (C) = CBQ' (C = 1), and from (A4),
N p(C) = C N ~(C = 1). From (A5) we see N r (C) =
C N ~(C = 1), and consequently from (A7) we have
the desired result
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