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The dynamics of long-wave isocurvature perturbations during an in8ationary stage in multiple
(multicomponeut) in8ationary models is calculated analytically for the case where scalar fields pro-
ducing this stage interact among themselves through gravity only. This enables us to determine the
correct amplitudes of such perturbations produced by vacuum quantum 8uctuations of the scalar
fields during the multiple in8ationary stage. An exact matching to a post-in8ationary evolution
that gives the amplitude of isocurvature perturbations in the cold dark matter model with radiation
is performed in the case where a massive in8aton field remains uncoupled &om usual matter up to
the present time. For this model, isocurvature perturbations are smaller than adiabatic ones in the
region of the break in the perturbation spectrum which arises due to a transition between the two
phases of in8ation, but they may be much bigger and have a maximum at much shorter scales. The
case of an in8aton with a quartic coupling that remains uncoupled after in8ation is considered, too.

PACS number(s): 98.80.Cq, 04.62.+v

I. INTRODUCTION

In6ationary cosmological models in which a de Sitter
(in8ationary) stage is produced by a number of effective
scalar Belds (in8atons) are called multiple (or multicom-
ponent) [1] (see [2] for a general review). A double in8a-
tionary model with two scalar Belds [3—9] is a specific case
of them. Note that extended in8ationary [10] models or
in8ationary models in the Brans-Dicke theory of grav-
ity may also be considered as belonging to this class of
models after transformation to the Einstein frame. Dou-
ble in8ationary models producing a steplike spectrum of
initial adiabatic perturbations give a possibility to recon-
cile the cold dark matter (CDM) model with observations
without introducing neutrinos [11,12]. If N is the num-
ber of light scalar Gelds at the in8ationary stage in such a
theory [~m; ~

&& K, K = a/a, where a(t) is the scale fac-
tor of the Friedmann-Robertson-Walker (FRW) isotropic
cosmologiocal model], then N independent branches of
nondecaying quantum Buctuations of the scalar 6elds are
generated during the in8ationary stage similar, and in
addition, to quanti»» Buctuations of gravitons (the re-
sulting energy spectrum of the latter was 6rst correctly
calculated in [13]).However, only one linear combination
of these Buctuations produces the growing scalar (adia-
batic) mode which is usually assumed to be responsible
for the formation of galaxies, stars, (and other compact
objects) and the large-scale structure of the Universe.
The other N —1 modes are isocurvature Buctuations dur-
ing the in8ationary stage (they were Brst considered in
[14])

Isocurvature Quctuations are less universal than adia-
batic ones. First, they only appear in multiple, not single
in6ationary models. Second, they might not survive up
to the present time (and typically do not). Really, they
can exist now only if at least one of the inflaton scalar
Gelds remains nonthermalized and uncoupled from the
usual matter (radiation, baryons, and leptons) during the
whole evolution of the Universe &om the in6ationary era
until the present period (so that the corresponding par-
ticles or products of their decay constitute a part of cold
dark matter) —a rather strong assumption. Finally, even
so, their amplitude (in sharp contrast to adiabatic pertur-
bations) does depend on the form of the transition from
inaation to the radiation-dominated FR& stage. Nev-
ertheless, isocurvature perturbations represent an inter-
esting and important object of investigation, especially
because some candidates for such in8atons that might
survive &om the in8ationary era up to the present time
are already known —dilatons in the Brans-Dicke theory
and superstring-induced theories (see [15] for the latter),
axions in "natural" in8ation [16],etc.

So, in the present paper we consider isocurvature per-
turbations in the simplest case when N scalar 6elds have
arbitrary self-interaction potentials but interact mutu-
ally through gravity only, i.e., the interaction poten-
tial V(gi, . . . , Piv) = Pi V (P ). The general quan-
titatively correct expression for adiabatic perturbations
generated in this model was obtained in [1]. First, we
Bnd the general solution for the behavior of long-wave
isocurvature perturbations during the multiple in8ation-
ary stage and then determine the correct coeKcients in
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it by exact matchiag to vacuum quanti~m Buctuations
of the scalar fields in the approximately de Sitter back-
ground during the infiationary stage (Sec. II). After that,
in Sec. III, we investigate some cases where it is possible
to match this solution to the radiation-dominated FRW
model with a small ad~ixture of noathermalized massive
particles ("cold dark matter"). The most interesting case
with respect to cosxnological applications turns out to be
the double iaBationary model with two massive inQatons,
the heavier one remainiag uacoupled &om usual matter
after infiation. The isocurvature perturbation spectrum
in this model has a maximum on small scales whose value
can be rather large.

II. BEHAVIOR OF PERTURBATIONS DURING
A MULTIPLE INFLATIONARY STAGE

We consider the following Lagrangian density describ-
ing gravity plus N scalar 6elds

N

4+ HO = 4~G) P,bP,

A;2

bP, +3H+, + (
—+ V,")bqi, = 4pt, @ —2V,'4,

j =1, . . . , N. (9)

We see that when we have more than one scalar field,
the dynamics of the perturbed system cannot be de-
scribed by just one equation for the master quantity 4. It
is well known that all comoving scales which were larger
than the Hubble radius H ~ at the end of infiation (that
corresponds to their present size exceeding (1 —10s) cm
depending on details of reheating after infiation) were
outside the Hubble radius during a long period of time
between the first Hubble radius crossing at the infiation-
ary stage aad the second crossing in a post-iaBationary
era. Behavior of perturbations in this regime is described
by the long-wave limit k (( aH of Eqs. (8)—(9). It is re-
markable that without solving the system (8)—(9) we can
immediately write its two exact solutions desribing the
adiabatic modes in the formal limit k ~ 0:

where p = 0, . . . , 3, c = A = 1, and the Landau-Lifshitz
sign conventions are used. Note that the N scalar fields
interact only gravitationally. The space-time metric has
the form

ds = dt —a (t)b „dz dx", m, n = 1, 2, 3. (2)

N

1

P,. +3HQ, +V'(P, ) =0,. j =1, . . . , N,

(3)

(4)

where ~ overdot denotes a derivative with respect to t
while a prime stands for a derivative with respect to Pi.
From (4), we get the useful equation

In these models, therefore, H always decreases with time.
Let us turn now to the inhomogeneous perturbations.

%le consider a perturbed FR& background whose metric,
in the longitudinal gauge, is given by

ds = (1+24)dt —a (t)(l —24')b „dx dz" (6).

Spatial curvature may always be aeglected because it be-
comes v~mishingly small after the Grst few e-folds of inQa-
tion. The homogeneous background is treated classically,
it is determined by the scale factor a(t) and the N scalar
fields Pi (t). Their equation of motion is given by

( H ',) Hadt' ~+C2 —,
a 0 ) a

adt' —C, I, j =1, . . . , &,
)

(10)

where a(t), Pi(t) satisfy the exact background equations
(3) and (4) and Cq and C2 may still depend on k. The
term with C1 is the growing adiabatic mode, the term
with |2 is the decaying adiabatic one. The existence of
these exact solutioas directly follows &om the observa-
tion made in [18] (see also the detailed explanation in

[9]) that there always exists a solution for scalar pertur-
bations in the fiat (K = 0) FRW universe which has the
following asymptotic behavior in the synchronous gauge
in the limit J]c ~ 0 ia terms of the Lifshitz variables:
p, (k) = 3h(k), A(k) = 0, be(k) = 0 (with no depen-
dence on t) irrespective of the structure and the properties
of the eneryy momen-tum tensor of matter. Knowledge
of the solutions (10) and (11) is not, however, sufficient
to Gnd the araplitude of generated perturbations if the
number of scalar Gelds N & 1, in that case we have to in-

tegrate the system (7)—(9) completely in the limit k ~ 0
at the innatioaary stage.

Let us now consider a multiple inQationary stage with
N background scalar fields being in. the slow-rolling
regime (N ( N), N may depend on time. The en-

ergy density of all other scalar fields aot beiag in the
slow-rolling regime decreases exponentially with time and
soon becoraes negligible, thus, these fields should be sim-

ply omitted from the background equation (3). Then (3)
and (4) simplify to

We get, from the perturbed Einstein equations [exp(ik. r)
spatial depeadence is assumed aad the Fourier transform
convention is 4'(k)—:(2') ~2 f 4(r)e '"'dsk],

N
H'=~~ V(P)

, J=1

3HQ, + V'(P, ) = 0, 1, e ~ o, te

(12)

(i3)
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Now, for k « aH, the system (7) and (9) can be solved in
a way completely analogous to [1,9]. First, its solutions
corresponding to growing adiabatic and nondecreasing
isocurvature modes weakly depends on time, so for them
Eqs. (8) and (9) take the form

where Q(' coincides with Bardeen's gauge-invariant
quantity e times the background energy density in the
case of one scalar field (see [17])and relation (7) is used.
Note also the following consequence of Eqs. (7)—(9) which
is actually the Newton-Poisson equation in the cosmolog-
ical case:

N

j=1

3Kb', +V,.."b4, = —2V,.'C, 1y ~ ~ ~
y
No

(14)

(15)

N

k 4 = 4~G—a ) be~('l .

The general solution is

btt;

E, 4& ~

~.d.V—2H( ' —d),K EQ V~.

(16)

i,j = 1, . . . , N. (17)

Here Ci and d~ are integration constants, only N —1 out

of the N coefficients d~ are linearly independent, and we

will further use this &eedom to add a constant term to
them. The background quantities H(t), P~(t) are exact
solutions of Eqs. (12) and (13). The mode with the
coefficient Ci is the growing adiabatic mode as can be
seen &om the comparison with (10) and (ll), the other
lV —1 modes are the non-decreasing isocurvature modes.

The expression for the decaying adiabatic mode imme-
diately follows &om the general expressions (10) and (ll)
which take the following form at the inaationary stage:

b; = 2d;H+8zG) d~P, j = 1, . . . , N. (22)

The next step is to determine the coefficients Cq, d~

&om amplitudes of quantum Quctuations of scalar fields
generated during the in6ationary stage. First, we invert
(16) and (17) to obtain

In the long-wave limit k ~ 0, the substitution of ex-
pressions (10) and (11) into (20) gives 0. This means
that the small-k expansion of A~ contains an additional
k multiplier in the case of both adiabatic modes, i.e.,
~b,~( && (4( for them in this limit. On the other hand,

~6~ ~
can be of the order of, and even much bigger than,

~4'~ for isocurvature modes though the total comoving

density perturbation P. i be'
' still contains the addi-

tional k2 multiplier compared to 4 as follows &om (21).
Substituting the expressions (16) and (17) valid during
the multiple infiationary stage into (20) we get

H4 = C2 —,a'
b4,.

4g
(18)

2 2 2

(23)

4=% =0,
4 H2as ) d~=0, j =1,. . . , N

2

which may be easily verified by direct substitution using
(12) and (13). Finally, all other 2(N —N) scalar modes
connected with nonslowly rolling scalar fields are decreas-
ing isocurvature ones, too. We shall consider them below
in connection with matching to a post-in8ationary era.

I et us return to the most interesting nondecreasing
modes. Another quantity which is useful for their de-
scription is the kactional comoving energy perturbation
in each scalar Geld component

for all scalar fields (including those which are not in the
slow rolling regime). The expression for decaying isocur-
vature modes of slowly rolling scalar fields may be found,
similarly to [9], by assuming that all quantities in Eqs.
(7)—(9) are proportional to a s(t) multiplied by slowly
varying functions of t (note that the approximate form
(14) and (15) of these equations cannot be used now).
The answer is

d;= . — »+ ', i j=l, . . . , N. (24)
Ci P. d~V~

2H4,

Further, using the above-mentioned possibility to add the
same constant to all dz, we omit the last two terms in
Eq. (24). Then all biz in the right-hand side (RHS) of
(23) and (24) have to be matched with quantum fiuc-
tuations of the scalar fields generated during the in6a-
tionary stage (we recall that this is a genuine quantum-
gravitational efFect). For all scalar fields being in the
slow-rolling regime, (m2,&(:—)V") « H2, therefore, all
mass- and 4-dependent terms in Eqs. (8) and (9) may
be neglected for k & aH, and even in the region k ( aH
but (t —ti, )H(tg) « H2(tl, )/~H(ti, ) ~

where ti, is the time
when a mode k crosses the Hubble radius during the in-
flationary stage, i.e., k = a(ti, )H(ti, ) (it is in the latter
region where the exact matching is performed). Then the
biz's behave like massless uncoupled scalar fields in the
de Sitter background. The standard quantization gives
the well-known result (see e.g. , [18]): for k « aH, the
Fourier components of the fields are time-independent
("&ozen") and may be represented in the form

g~(&)

(~+p).
bg, +V,-'bP, + 3HP.,bP., —P,'.4. .

(~+p).
b4~(k) = e, (k), (25)

a &b4;&
Bt

I j (20) where e~(k) are classical stochastic Gaussian quantities
with vanishing average values (e~ (k)) = 0 and the corre-
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32~'a'H'
(26)

d, (k) = — e;, d;(k) =, , i, j=1,. . . , N,
3H 9H

lation matrix (e~(k)e'. , (k')) = bi~ h~s~(k —k'). Note how-
ever that in the case of multiple inBation there may exist
small effects [19] for which the approximation (25) is not
suHicient, and one has to take into account a small quan-
tum correction to it reBecting the fact that the generated
Huctuations are in a squeezed pure quantum state with a
large but finite squeezing parameter r [the limit r -+ oo
is completely equivalent to (25)]. As for scalar fields
with large effective masses which are not in a slow-rolling
regime, their ffuctuations are negligible (apart from the
case when they experience a nonequilibrium first-order
phase transition during inQation which we do not con-
sider here).

By substituting (25) into (23) and (24), we get finally
(we denote by Ci2(k) the power spectrum of the stochastic
quantity Ci (k) and use a similar notation for all stochas-
tic variables, (f(k)f'(k')) = f (k)8~ l(k —k'):

dustlike matter on one hand, and radiation coupled to
baryons on the other hand, can be characterized by a
fractional comoving energy density perturbation in the
dust-like component

be (c)

that remains constant during the radiation-dominated
era (see, e.g. , [20,21] for reviews). Here 0; is the present-
day density (in terxns of the critical one) of that part
of cold dark matter which is the relic &om the inBa-
tionary era while 0 refers to all the cold dark matter
(0, & 0 ). Note that we have, for the number density
perturbation, "' = b; where n, is the number density
of relics. Qt t ——0 + Ob, ——1 with great accuracy for
cosmological xnodels having an inffationary stage (the en-

ergy density of the cosmological term, if nonzero, should
be added to Qq q, too). After the transition to the matter-
dominated stage at redshifts z 104, this mode produces
a growing adiabatic mode of Quctuations which evolves,
as usually, oc a(t) afterwards.

Therefore, we have to relate b, at the radiation-
dominated stage with 6, at the irdIationary stage, as
given in Eq. (22). We further specialize to the case of
two inffaton scalar fields and replace the subscripts 1 [2]
by h (heavy), [t (light)]. Then Eqs. (16), (17), and (22)
take the following form which generalizes the results of
Ref. [9]:

(27)

where all the time-dependent quantities in the RHS are
taken at t = tx, . The result for Cx2(k) coincides with that
previously obtained in [1]. In the case of two scalar fields

(j = 1,2), we reproduce the results of Ref. [9] where the
notation Cs = di —d2 was used. The expressions (16),
(17), (26), and (27) are the main results of this section.

III. MATCHING TO A POST-INFLATIONARY
ERA

4a() i( ) C (k)
4a

H

Cs(k) V 2

3 Vi, +Vi

Cs(k) Vx,

3 Vj, + Vj'

HVi

V +Vi'
HVh,

Vq+ Vi

H Cs (k) V(Vh —Vj, Vx'2

H2 3 (Vx, + Vx)2
(29)

(30)

(31)

(32)

(33)

As was mentioned in the introduction, in the case of
isocurvature modes we do not have general expressions
such as (10) and (ll) for adiabatic modes; hence, the
post-in6ationary behavior of isocurvature perturbations
is not universal and depends on additional assumptions.
In particular, there could be no such perturbations at all

soon after the end of an in8ationary stage. Therefore
we will consider further a number of specific models in
which they may be present even nowadays. The most
natural way to achieve it is to assume that one of the
in6aton scalar fields remains uncoupled &om usual mat-
ter (baryons, photons, etc.) all the time since the end
of the multiple in6ationary stage up to the present mo-

ment, and that its particles or products of their decay
(still uncoupled from usual matter) constitute today:i
part of the cold dark matter with a dustlike equation of
state (p « s).

The nondecreasing mode of isocurvature Buctuations
in a system of two uncoupled components consisting of

where Ci and Cs ——dq —dx are given in Eqs. (26) and

(27). Two essentially different cases may take place which

we call the cases of heavy relics and light relics.

A. Heavy relics

This case arises when the inflaton field that remains
uncoupled &om usual matter after infiation has an effec-

tive mass larger than H at the end of iuBation. Then
this "heavy" scalar field Px, is in the slow-rolling regime
in the first part of in8ation, but it goes out of this regime
when H becomes less than the efkctive mass during in-

Qation. Somewhat earlier, its energy density becomes
much smaller than the total one. Let us take the sim-

plest case where the effective mass is constant, so that
the potential is Vj, ——mx, g/2, and GP& )) 1 at the early

stages of inffation (for the field to be in the slow-rolling
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regime initially). Note for completeness that it is not
possible to realize such a scenario for a steeper power-
law potential Vj„ in particular for Vj, = APi, /4, because
then the efFective mass remains smaller than H till the
end of inBation.

If cg (( cq q, then irrespective of the fact whether the
Beld Ph, is in the slow-rolling regime or not, the right-hand
side of Eq. (9) may be neglected for isocurvature modes.
Now we need to solve this equation in the limit k = 0.
Note that then the left-hand sides of Eqs. (9) and (4)
coincide in the case of a massive scalar field without self-
interaction. So, one of the solutions is bgi, oc 4~(t) where
Pi, (t) is the exact solution of Eq. (4) in a background
driven by the other scalar field through Eq. (3). The
other linearly independent solution can be found &om
the Wronskian condition but we don't need it here be-
cause, if P~ is still in the slow-rolling regime, Eq. (30) may
be applied which reads bPi, = 2CsHPi, = 2Csmi—,gi, /3
for Vj, &( V~. Now we use the constancy of the quan-
tity bgi, (t)/Pi, (t) during a transition from inHation to
the radiation-dominated stage. For mgt » 1 at the lat-
ter stage, the heavy field is in the WKB regime of os-
cillations with the frequency mi, (see, e.g. , [9] for exact
expressions). Averaging over the oscillations, we obtain

bi, = 2 = --m„Cs(k) .hfdf, 4

4a
(34)

Note that though Eq. (34) looks like Eq. (19.18) in [20],
it is not exactly the same because it refers to a difFerent
quantity [a comoving energy perturbation vs. an energy
perturbation in the longitudinal gauge (6)], and we ap-
ply it in a difFerent regime (at the radiation-dominated
vs. the inHationary stage). From (27), the amplitude of
the &actional energy and number density perturbation in
the relic dust component during the radiation-dominated
stage follows:

m4
k h„(k) = 2H (ti, ) ~

—
2 +

& a Vi')„ (35)

where the first term inside the parentheses in the RHS of
the last equation should be omittted if H(ti, ) & mp, . The
power spectrum has a slope n = —3 sixnilar to that of
42(k) for adiabatic perturbations. To obtain the present
spectruxn of perturbations in the linear regime, one has to
multiply (35) by a standard transfer function depending
on the present matter composition in the Universe (e.g. ,
by the transfer function for isocurvature perturbations in
the CDM niodel}.

To make a quantitative comparison between contribu-
tions of isocurvature and adiabatic xnodes to efFects ob-
servable today, one should take into account that, due
to the properties of the transfer function for isocurvature
fIuctuations in the CDM+radiation model, an isocurva-
ture density Buctuation b at the radiation-dominated
stage produces the same adiabatic mode after transition
to the matter-dominated stage [a(t) oc t2i ] as the ini-
tial adiabatic mode with O = b /5 for scales exceeding
by far the present comoving scale corresponding to the
cosmological horizon at the moment of matter-radiation

equality R ~ —30k Mpc, Hp = Ii x 100 kms Mpc
(Ob is assn~ed to be small, too). For kR,~ & 1, the
equivalent amplitude of 4 is even less. On the other
hand, isocurvature Buctuations produce six times larger
angular temperature Huctuations AT/T in the CMB at
angles 8 & 30' for the same amplitude of long-wave den-
sity perturbations at the matter-dominated stage, i.e.,
AT/T = 2b /5 vs. b,T/T = 4/3 for adiabatic pertur-
bations [22—24] (see also [20,21] for reviews). Due to the
latter reason, it has been long known that isocurvature
Huctuations with a Hat (n = —3) initial spectrum cannot
be responsible for the observed large-scale structure and
b,T/T Huctuations in the Universe.

For a power-law Vj with the last part of inBation driven
by the light scalar field, V& ) V&' in the region Vp V~

where the transition from heavy to light scalar field dom-
ination of the total energy takes place. Then the sec-
ond term inside the brackets in (35) is the dominant
one, while still much smaller than 42(k) = 9Ci2(k)/25.
Therefore isocurvature Quctuations, if present, are less
than adiabadic ones in double inBationary models in the
region around the break in the perturbation spectrum
due to a transition between the two phases of inBation,
and their possible presence changes nothing regarding the
con&ontation. of these models with observational data
(see, e.g. , [12)). But on much smaller scales, when the
first term inside the parantheses in (35) is dominant,
isocurvature perturbations become much larger. In that
case

2H
k bh2(k) =

2 (ti, ) .
&a

(36)

Alternatively, this result may be obtained very simply by
considering the heavy field as a test field in the de Sitter
background and using the expressions (25) and (34). The
spectrum (36) grows with k (because Pi„quickly decreases
with t) until the point H(ti, ) mi, is reached, after that
it falls abruptly.

If, e g, Vi = zmi Pi and mi « mi„ then, using Eqs.
(2.10)—(2.15) of Ref. [9] and Eq. (35), we get

(mi, )
(mi)

k » ks (37)

where kg is the location of the break and Sp » 1 is
the number of e-folds during the second phase of inBa-
tion driven by the light scalar field (sp = 60 to account
for observational data, see [12]). The expression (37)
is derived under the approximation mi, /mi & sp which
corresponds to the absence of a power-law intermediate
stage between the two phases of inHation (double inHa-
tion without break, according to the terminology of [9]),
a more suitable condition perhaps is the absence of os-
cillations or a smooth transition in the spectrum, which
will be the case for mp, /mi & 15 [25] or mi, /mi & 4sp. In
the opposite case of double inBation with a break, there
is no growth of isocurvature Buctuations at small scales.
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Note that the effect of growth in the isocurvature pertur-
bation spectr»~ was previously noticed &om numerical
calculations for a similar model in [6].

For not too small scales when ln(k/ks) « s„ the first
term in the spectrum (37) is power-lawlike with a sinall
exponent: k bi, (k) oc (k/ks), a = m~&/mi2sp T. he per-
turbations reach their maximum on short scales given by
sp —ln(k/ks) mi, /mI, due to the disappearance of the
first term in (37) for H(ti, ) & mp„ its value being

2 ~hl~t2 2

k b (k) G (38)

It is interesting that for ~Gmi 10 s, sp 60 the max-
imal value of the quantity (38) as a function of mI, /mi,
though still smaller than unity, is not far from it (it is
reached for mi, /mi 5). Hence, such a model can be
used to produce a significant number of primordial black
holes (PBH's) with rather small masses (for a review
of observational upper limits on the number density of
PBH's see, e.g. , [26,27]). Then, however, it cannot ex-
plain the observed large-scale structure and 6T/T fiuc-
tuations in the Universe because mi, /mI is required to
be 12 —14 (and certainly more than 8) for this aim,
see [12].

Qatioa, domiaates during the first phase of inQation
(so we call it "heavy") and has the quartic potential
Vi, = Aqui, /4. During the last part of infiation, s & sp,
where 8 is the aumber of e-folds measured from the ead
of inQation and 80 )& 1 is the moment when Vg ——Vj,
sq « e'i i, however mI, ,II = 3AI, QI, « H (and less than
the effective mass of the other scalar field, too). So, this
initially heavy inQaton becomes light in the last part of
inQatioa. That is why we call this case the intermediate
one.

Then, for s « sp, bpi, = 2C3HIjkg — 2C3AI, qP&(t)/3 as
in the case of massive relics. Here the quantity bop, jpI,
is not constant during the last period of inQation aad
the transition to the radiation-dominated stage. There-
fore, an exact matching (as it was done in the subsec-
tion A) is not possible, but we may make a match-
ing by order of magnitude using the fact that bh, at
the radiation-dominated stage is of the order of bah, /pi,
at the end of infiation. Using (30) and (34), we get:
b&(k) = const x Cs(k)mq, ~(tg) where ty is the moment
when infiation ends and const 1.

(a) VI
—mI24I2/2, Ai, » Gm2 .

Then P2& ——mi /AI, ln(sp/s) during the last period of in-
fiation. Therefore, m2I, ,s (ty) = 3mi2/ ln sp, and we arrive
at the result

B. Light relics

In this ease, m, & « H for oae of the iaQaton scalar
fields during the whole iaQation. To avoid this "light"
field to be domiaating during the last part of inQatioa and
after its end, we have to assume that its energy density
e) « eg~g during inQation, too. Then we have, from Eq.
(31),

bpi = 2CsHQI =— C3Vi' .
3

(39)

If Cs from Eq. (27) is substituted into this expression
and it is assumed that V&' « Vh, the standard expres-
sion (25) for fiuctuations of a test scalar field on a de
Sitter background arises once more. Let Vi = zmI PI,
then we may repeat the derivation made in the previous
subsection to get the expression (36) (with the index "h"
changed to "I") for the fractional density perturbation in
the light relic component. Now QI is practically constant
during infiation (and less than G ~2 to avoid a second
inflationary phase), so the spectrum is falling with k.
Isocurvature perturbations may be larger than adiabatic
ones if PI is small enough, but this does not lead to in-

teresting cosmological models for a smooth potential Vh,

satisfying the slow-rolling conditions due to the reason
mentioned in the previous subsection in connection with
the n = —3 initial isocurvature perturbation spectre~.

k bi, (k) = const x H (ts) 2 s +
(AI I mi I ) ln sp

(40)

where const 1. This expression is valid under the con-
dition AI, & Gmi sp (double infiation without a break),
ia the opposite case there is no generation of isocur-
vature Quctuatioas during the second stage of inQation
(s & sp). As in the case of heavy relics, isocurvature per-
turbations are much less thaa adiabatic perturbations ia
the region around a break in the spectrum of the latter
ones (s(k) sp), but they become larger than adiabatic
perturbations at smaller scales s(k) & Ai, /Gm2i & sp. II1
particular, for 8 « 80,

Ap, s(k) ln [sp/s(k)]
k bi„k = COIls't x 21n Bo

(41)

where s(k)—:s(ti, ) = ln(ky/k) » 1 and kf = a(ty)H(ty).
The spectrum is approximately Qat. Though it has a
smooth ro.aximum at 8 = 8oe 3, this maximuro. is not
as strongly pronounced as in the case of massive heavy
relics. The amplitude grows oc (k/ki, ) for sp —s « sp

where kg is the inverse comoving scale correspoading to
the first horizon crossing at the moment so.

(b) VI = AI$4I/4, Ai, » Ai .
Now P2& ——AIPI2/2AI, ln(sp/s) during the second phase of
infiation. Thus, m„,II(tg) - AI/O ln sp and

C. Intermediate relics

Let us brieQy coasider the case of an inQaton Geld
which remains uncoupled from usual matter after in-

(
k bi, (k) = const x H2 (ti, ) ~

(42)
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where const 1. In particular, for s && so, ACKNOWLEDGMENTS

Agin [sp/s(k)]k 8& k =const x
s(k)ln sp

(43)

The spectr»m is approximately Bat and grows slightly
towards large A."s. Once more, its amplitude grows
oc (k/ka) for sp —s « sp. Isocurvature fluctuations
become larger than adiabatic ones at very small scales

s(k) & (Aa/A~)~/4 & sp only, because the condition of
the absence of a break between two phases of inBation
takes the form Aa/A~ & sp in this case.
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