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As coalescing binary systems are one of the most promising sources of gravitational waves, it
becomes necessary to devise efBcient detection strategies. The detection strategy should be efBcient
enough so as not to miss any detectable signal and at the same time minimize the false alarm
probability. The technique of matched filtering used in the detection of gravitational waves from
coalescing binaries relies on the construction of accurate templates. Until recently filters modeled on
the quadrupole or the Newtonian approximation were deemed sufhcient. Such filters or templates
have, in addition to the amplitude, three parameters which are the chirp mass, the time of arrival,
and the initial phase. Recently it was shown that post-Newtonian effects contribute to a secular
growth in the phase difference between the actual signal and its corresponding Newtonian template.
This affects the very foundation of the technique of matched 61tering, which relies on the correlation
of the signal with the 6lter and hence is extremely sensitive to errors in phase. In this paper we
investigate the possibility of compensating for the phase difference caused by the post-Newtonian
terms by allowing for a shift in the Newtonian 6lter parameters. The analysis is carried out for
cases where one of the components is a black hole and the other a neutron star or a small black
hole. The alternative strategy would be to increase the number of parameters of the lattice of filters
which might prove to be prohibitive in terms of computing power. We find that Newtonian filters
perform reasonably for the purpose of detecting the presence of the signal for both the initial and
the advanced LIGO detectors. As such a strategy may be used for a preliminary analysis a lower
threshold can be used.

PACS number(s): 04.80.Nn, 04.30.Db, 06.50.Dc

I. INTRODUCTION

Coalescing binaries are the most promising sources of
gravitational waves [1] for laser interferometric gravita-
tional wave detectors. The basic reason for the ixnpor-
tance of these types of sources is their broadband nature
which makes them ideally suited for their detection by
the interferometers. The binary systems which are of rel-
evance here are those consisting of compact objects, i.e.,
black holes and neutron stars. It has been estimated that
three such coalescences occur per year out to a distance
of 200 Mpc [2,3]. A lot of attention has recently been fo-

cused on the issues of detecting the presence of the signal
and the extraction of astrophysical information &om the
estimated parameters of the signal.

There are plans to construct such laser interferome-
ters around the globe and by the end of this century the
American Laser Interferometric Gravitational Wave Ob-
servatory (LIGO) [4] and French-Italian VIRGO [5] will

be in operation. The emphasis in their construction is
on the reduction of noise which may be thermal, seismic,
quantum, or photon shot noise. In laser interferometric
detectors the lower cutoff is decided by the seismic noise
which is very dominant at lom fequencies. It is expected
that the LIGO mill be able to go down to 40 Hz in its
initial stage and to 10 Hz in its final stage. This means
that that we can start observing the binary when its or-
bital &equency is 20 Hz in the case of the initial detectors
and 5 Hz in the case of the advanced ones. This leads

to sufFiciently large integration times which enhances the
signal to noise ratio. It was suggested by Thorne [1] that
matched filtering would be an ideal filtering technique for
this purpose. Matched filtering is a standard technique
used in signal analysis when the waveform is known. It
determines for us an optimal linear filter which can decide
on the presence or absence of the signal waveform in a
given data train [6—10]. This requires accurate, modeling
of the waveforms, which is possible for the coalescing bi-
nary systems. They are clean systems and their inspiral
waveform depends on a few parameters such as the indi-
vidual masses and spins. Tidal interactions do not matter
until the very end of the inspiral [11,12]. A lot of research
activity has gone in the direction of obtaining accurate
templates under the various approximation schemes such
as the quadrupole and post-Newtonian [13—16]. Recently
it has been shown that post-Newtonian (PN) corrections
and spin-orbit (SO) and spin-spin (SS) couplings pro-
duce in the waveform an accumulating phase error as
compared to the Newtonian expression [14]. Therefore,
a template constructed from the Newtonian waveform
would go out of phase with the signal and the so-called
"matched filtering" technique for detection would woe-

fully fail. In this paper we show that as long as we are
only searching for signals a Newtonian filter would per-
form remarkably well even though the signal contains
PN corrections. The key idea here is that we allow the
parameters of the Newtonian filter to vary and adjust so
as to produce the maximum possible correlation with the
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signal. We have found that this Hexibility allows for fairly

high values of the correlation. In many cases of interest
the correlation obtained is 70%%up of its maxim+I possible
value which would have been obtained had the template
'been perfectly matched to the signal. On the other hand,
a template with the same parameters as those of the sig-
nal produces correlations of about 10—20%. We have

carried out the analysis for the two noise curves assum-

ing a LIGO-type detector. The two noise curves are the
power spectral densities of the noise for the LIGO in its
initial and advanced stages, as given in [17]. In the case
of the initial LIGO detector the analysis is also carried
out for the case of white noise for the sake of compari-
sion. Also a correspondence between the parameters of
the filter and the signal could be set up; it might be pos-
sible to estimate the parameters of the signal kom those
of the filter. In other words the filter parameters may be
"renormalized. "

The paper is divided as follows. In Sec. II we elab-
orate on the chirp waveform and the conventional de-
tection strategy. We discuss the technique of matched
filtering and define a quantity which shall be a measure
of how well a Newtonian waveform can match with a
post-Newtonian signal. We also make some comments
about the signal power spectrum. In Sec. III we discuss
the n~~merical results of the simulations carried out. And
finally in Sec. Dtt we summarize our results and indicate
future directions.

II. SEARCHING FOR THE SIGNAL

M = M ~ p ~ is called the chirp mass where M is the
total mass and p the reduced mass of the binary system.
Mo is the solar mass and it is a convenient »mt for our
purpose.

Given the form of the signal and the statistical de-
scription of the noise one has to design an adequate set
of filters to detect the signal. The noise is assumed to be
stationary and is 6xrther specified by its power spectral
density S~(f) which is defined by the relation

(2.4)

where n,,(f) is the Fourier transform of a particular re-
alization of noise and the overbar indicates an ensemble
average. The Sg(f) defined above is the two-sided power
spectral density. We are primarily in search of a filter
with an impulse response q(t) which correlates best with
the signal, i.e., when the correlation as defined below
takes its maximum value for a particular value of the
time shift At:

C(Et) = f h(t)q(t+ At)dt

This implies that the Fourier transform of the matched
filter q(t) to detect the signal h(t) is given by the relation

(2.6)

For the numerical computations that follow we use the
fast Fourier transform algorithm as given in Numerical
Recipes [20]. The definition of the Fourier transform is
the same as given there: i.e.,

A. Newtonian waveform and conventional stategy (2 7)

xcos f /[1 —a(t) / ]+Pp, (2.1)

where

and

(~) / ( f ) /
/=3.003(

/ (
/

sec
(,Mo &100 Hs)

(2.2)

(2.3)

Here the lower cutoff frequency is denoted by f, and

The waveform of the signal &om the coalescing binary
system, henceforth called the "chirp, " has been modeled
under various approximations. In the quadrupole ap-
proximation the chirp has three parameters other than
the amplitude. These are the initial phase (QI)p, the time
of arrival t (i.e., the time at which the instantaneous fre-
quency of the gravitational wave equals the lower cutofF
of the detector), and the coalescence time $ which form
a convenient set of parameters for our purpose [18,19].
The Newtonian waveform h(t;(, Pp, t ) is given by

C(Et) = )/C~(St) + C~ (Et), (2.8)

where Co and C y2 are the correlations corresponding to
filters with phases (t)p = 0 and Pp ——s/2, respectively.

We ass»me t = 0 in the design of the filter and there-
fore the value of Lt for which the maxim»m of the corre-
lation occurs is equal to the time of arrival of the signal.

The impulse response of the filter q(t) depends on the
parameters (, t, (t)p. It also depends the time shift ht.
It now becomes important to judiciously space out the
filters in the parameter space keeping in mind the con-
straints of computing power. Such an analysis has been
carried out in great detail for both white and colored
noise by Sathyaprakash and Dhurandhar (see [18,19)).
We discuss briefiy their major results.

(1) It was found that f the coalescence time is a conve-
nient parameter to use since the filters are equally spaced
in this parameter, where the spacing is decided by a fixed
drop in the correlation.

(2) For the phase (t)p we require just two filters for
every value of the ( parameter, one with Pp

——0 and the
other with (It)p ——s /2. Because of their orthogonality, the
correlation is maximmised over the phase by simply te&ing
the square root of the s»m of squares of the individual
correlations: i.e.,
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Such a procedure of maximizing the correlation over the
phase and the time is carried out for each value of (. The
6nal maximization of the correlation is then carried over
the f paraxneter. The parameters for which the correla-
tion is maximum are then pres»med to be the most likely
values of the parameters of the gravitational wave signal.

due to SO and SS coupling are not taken into account.
The addition of such terms will not alter the thrust of
the arg»ment in that some dther Newtonian filter would
perform best.

C. Filtering the post-Newtonian signal

B. Post-Newtonian signal

f 96m p, z
f2 5 MF(z)' (2.9)

The post-Newtonian corrections lead to corrections to
the phase and the amplitude of the Newtonian. signal
and also lead to additive terms which are qualitatively
different from the quadrupole term. In the case of a
general binary system it is tedious and difficult to get
the various corrections to the evolution of the orbits of
the binary. If one of the bodies is large compared to the
other as in the case of a black hole neutron star binary
system, one can apply the Regge-Wheeler perturbation
formalism [21] to get the evolution of the orbit. This
provides us with the evolution. of the orbital frequency as
a function of time. This has been worked out [14] and is
given by

A detailed account of the formalism and notation used
here and the theory of hypothesis testing using maxi-
mum likelihood methods as applied to detection of gravi-
tational waves from coalescing binaries is given in [17,22].
We de6ne a scalar product and its corresponding norm
in the function space between two functions s(t) and q(t)
for future use:

(2.ii)

and

(2.12)

If an exact matched filter were present, then the signal to
noise ratio (SNR) p would be simply equal to Ilsll where
s is the signal. Note that our definition of the SNR is
different by a factor of 2 from the one given in [17] as
they work with the one-sided power spectral density. The
quantity we are interested in computing is

where

3 81 2 675 31 ——z ——x — z
F(z) =

x24r ~ + 4~/1 5 —4 9~2 —38~2 5 + 135~3

(2.iO)

Here f represents the first time derivative of frequency
and z = (mM f)2~s the PN expansion parameter. The
Newtonian waveform is obtained &om the above equa-
tion by setting F(z) = 1. The phase is obtained by
integrating Eq. (2.9). For the amplitude we use the
Newtonian dependence on the frequency, i.e. , A(f(t)
constxfz~s. This waveform shall be called "restricted
post-Newtonian" henceforth. Although this is not exact,
we do not expect the errors in the amplitude to affect the
correlation significantly. We assuxne the initial phase and
the arrival time of the signal to be 0. As the matched
61tering process can also be viewed as a correlation be-
tween the incoming signal and the 61ter it is evident that
any secular growth of the phase difFerence will reduce the
correlation drastically. Thus to have a matched filter one
must add one or more parameters. This would increase
the number of 6lters enormously with corresponding in-
crease in computational time. It is worthwhile to explore
whether we can substantially increase the correlation by
allowing for a shift in the parameters of the Newtonian
filter, i.e., whether the signal is able to achieve better
correlation with a Newtonian 6lter whose parameters are
difFerent from those of the signal. Obtaining large cor-
relations depends on the function space spanned by the
signal and 6lter waveforms and to what extent they over-
lap. We obtain reasonably large correlations. Here efFects

(2.i3)

where h(t) is the chirp corresponding to the filter. We
shall term g as the normalized correlation. Henceforth
when we use the word "correlation" we shall mean the
quantity g unless specified otherwise. As mentioned
above the initial phase and the time of arrival of the
signal are taken to be 0. The aim is to maximize g over
the range of parameters of the filter. The quantity q
takes the value between 0 and 1 and tells us how well
a Newtonian filter can substitute for a post-Newtonian
one. Geometrically one can visualize xi as the cosine of
the angle between the signal vector and the chirp vector.

In Fig. 1 we show the impulse response of a 6lter.
As the noise is very high at lower frequencies the am-
plitude of the impulse response is very small at earlier
times and becomes appreciable only at the end. Because
of the same reason, the increase of amplitude with time
is difFerent &om that of the Newtonian chirp. Figure 2
justifies the high correlations obtained. It shows how well
the 61ter matches the restricted post-Newtonian signal.
It is to be noted that the filter matches the signal very
well during the late stages where the amplitude is largest.

Figure 3 shows the power spectrum of the signal which
is the square of the magnitude of the Fourier transform of
the signal divided by the power spectral density of noise
as a function of &equency:

(2.14)

This quantity peaks near 200 Hz and it is in this fre-
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FIG. 3. The figure shows A(f) in the frequency range
40—400 Hz. The thickness of the line is due to the substructure
present in the Fourier transform of the signal.

detector both in the initial and the advanced stages. We
retain ( as a parameter for the restricted post-Newtonian
waveform also defined by Eq. (2.2) though this quan-
tity does not represent the coalescence time of the signal
anymore. In general the amount of time the signal lasts
is less for the post-Newtonian signal as compared with
the Newtonian one which follows &om the fact that the
quantity I" (z) in Eq. (2.10) is less than 1 in the frequency
range considered.

In Table I we list the normalized correlations obtained
for the LIGO detector in the initial stage. The mass of
the larger component of the binary (Mi) increases from
left to right along each row. The mass of the other com-
ponent (M2) increases from top to bottom in each col-
umn. The values of the masses are listed accordingly in
the table. The correlations show a very regular behavior
in the table. There are two factors controlling the drop of
the correlation: (1) increase of the magnitude of phase
corrections with increase of total mass of the binary sys-
tem and (2) decrease of the integration time due to the
increase of total mass of the system.

These two factors work against each other in produc-
ing the total amount of phase error between the New-
tonian filter and the restricted post-Newtonian signal.
Thus when we increase M~, the increase in the magni-

tude of the phase corrections dominates over the loss in
integration time and we get lower correlations when we go
&om left to right. Exactly the opposite happens when we
increase M2, i.e., the efFect of the decrease of integration
time dominates and the correlations increase. In Table
II we list the correlations for the advanced LIGO. The
same pattern is observed in this table too. We observe
that the correlations for the larger frequency range are
smaller as may be expected since the filter is more likely
to go out of phase in a broader bandwidth. However,
it should be emphasized that these correlations are nor-
malized. The correlation would be unity if the filter were
exactly matched to the signal. In absolute terms, if we
consider a signal with given parameters having the same
amplitude, then the correlation for the advanced LIGO
will be much larger than the initial LIGO since the noise
is less; First, we get a larger integration time, and second,
the power spectral density is an order of magnitude less
in the common bandwidth. We find that for the param-
eters considered, the absolute values of the correlations
are larger by a factor of 20 for the advanced LIGO.

We next take up the issue of the shift in the parame-
ters of the filters which produce maxim»m correlations.
In Table III we list the shift in the parameters ( and t for
the case of the initial LIGO detector. The phase param-
eter Po is an extremely sensitive parameter and its shifts
are not regular. The value of b,( is always negative. This
is because as mentioned earlier a post-Newtonian signal
will last for a smaller length of time as compared to a
Newtonian signal with the same values of Mq and M2.
Also it can be seen f'rom Eq. (2.9) and the definition
of ( that the first derivative of the frequency f is. ap-
proximately proportional to (s~s. Therefore in order to
obtain a higher value of f the value of ( is reduced. Here
again the integration time and magnitude of the phase
corrections compete against each other in determining
how b,( varies with an increase in either of the masses.
The value of b,( decreases with an increase in Mi and
increases with an increase in M2. Also At is always neg-
ative. This parameter tries to compensate for the reduc-
tion in the coalescence time by pushing the filter forward
in time. As the table shows there is apparently a very
strong covariance between these two parameters. The
value of At also decreases with an increase in Mq and in-
creases with an increase in M2. Typically for Mq ——5Mo,
and M2 ——1.4MO we get shifts of b,( = —1.32 sec and
At = —1.218 sec. This should be compared with the
coalescence time of the waveform which is about 9 sec.

For the case of the advanced I IGO detector (see Table
IV) the magnitude of the shifts is much more, but the

TABLE I. This table displays the correlations for the initial LIGO detector for a wide range of
masses in units of solar masses. The black hole mass varies from 5Mo to 10Mo and the other mass
takes the values 0.5Mo, 1.0Mo and 1.4Mo.

0.5Mo
5.0Mo
0.6403

0Mo
0.6204

7.0Mo
0.5979

8.0Mo
0.5830

9.0Mo
0.5762

10.0Mo
0.5608

1.0Mo

4Mo

0.7182

0.7474

0.7045

0.7434

0.6999

0.7309

0.6838

0.7269

0.6711

0.7190

0.6411

0.6988
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TABLE II. This table displays the correlations for the advanced LIGO detector. The value of
masses is the same as in the previous table.

0.5Mo
OMe

0.4420
6.0Mo
0.4230

7.0Me
0.4078

8.0Mo
0.3963

9.0Mo
0.3866

10.0Mo
0.3781

1.0Mo

1.4Mo

0.53.18

0.5420

0.4956

0.5276

0.4812

0.5157

0.4702

0.5055

0.4607

0.4978

0.4526

0.4891

TABLE III. Shown below are the shifts b,( and Bt in sec (4( above and Et below) in the
case of the initial LIGO detector.

0.5Mo

OMe
—3.300
—3.160

6.0Me
—3.800
—3.540

7.0Me
—4.200
—3.835

8.0Mo
—4.650
—4.180

OMo
—5.100
—4.541

10.0Mo
—5.4

—4.753

1.0Me
—1.660
—1.552

—1.875
—1.708

—1.980
—1.760

—2.310
—2.04

—2.460
—2.144

—2.56
—2.191

1.4Mo
—1.320
—1.218

—1.475
—1.331

—1.560
—1.379

—1.600
—1.385

—1.640
—1.396

—1.755
—1.478

TABLE IV. Shown below are the shifts Af and 6 to in sec (4( above and bto below) in the case
of the advanced LIGO detector.

5Me

5.0Mo
—3.000
—12.09

6.0Mo
—7.700
—15.64

70Mo
—11.495
—18.44

8.0Me
—15.90
—21.94

9.0Mo
—19.20
—24.42

10.0Me
—22.80
—27.263

1.0Me
-2.750
—7.421

—4.750
—8.774

—7.750
—11.22

—9.250
—12.24

—11.50
—14.05

—13.00
—15.15

1.4Mo
2.700

—6.091
—4.440
—7.328

—5.500
—7.971

—7.050
—9.156

—8.85
—10.63

—9.450
—10.94

TABLE V. This table displays the correlations for the case of band-limited white noise. The
bandwidth ranges &om 40 to 400 Hz. The masses are given in units of solar masses. The value of
the masses is same as in the previous tables.

0.5Mo
OMo

0.6363
6.0Mo
0.6182

7-OMo
0.6043

8.0Me
0.5933

OMo
0.5838

10.0Me
0.5765

1.0Mo

1.4Mo

0.6977

0.7238

0.6850

0.7135

0.6753

0.7054

0.6659

0.6969

0.6576

0.6912

0.6517

0.6874
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TABLE VI. Shown below are the shifts 4( and At in sec (Eg above and At below) in the case
of band-limited white noise.

0.5Mo

5.0Mo
—0.0385
—0.062

6.0Mo
—0.135
—0.069

7.0Mo
—0.210
—0.068

8.0Mo
—0.288
—0.073

o
—0.370
—0.082

1O.OMo
—0.43
—0.082

1.0Mo

—0.0?35
—0.051

—0.125
—0.055

—0.165
—0.055

—0.205
—0.057

—0.240
—0.058

—0.280
—0.063

1.4Mo

—0.084
—0.047

—0.12
—0.049

—0.15
—0.050

—0.184
—0.055

—0.215
—0.059

—0.235
—0.057

time for which the signal spends in the &equency range
10—400 Hz is about a factor of 50 more than that for the
initial LIGO for similar masses. Here the same pattern is
observed in the variation of b,f and Zt as in the initial
LIGO. The typical values of the shifts observed are 6( =
—2.7 sec and At = —6.0912 sec for Mq ——5Mo and
M, = 1.4Mo.

Simulations were also done for the band-limited white
noise with the power spectral density having a constant
value between 40 and 400 Hz. The results were com-
pared with those of the initial stage of LIGO. The ef-
fect of colored noise of the type considered here is to
narrow band the signal. Thus the Newtonian filter has
to match the signal over a smaller range of &equencies.
However, if the narrow banding occurs at higher &equen-
cies, for the chirp, the magnitude of the phase corrections
is more. Thus in addition to changing the first deriva-
tive of the frequency through the parameter ( the values
of the higher derivatives of the &equencies would also
have to be changed to get a good match. Had the nar-
row banding been at lower &equencies where the time
derivatives of the &equency are relatively less, the cor-
relation would have been much higher as the shifts in
the Newtonian parameters would have been suKcient for
the purpose. In Table V we show the correlations ob-
tained for band-limited white noise and Table VI shows
the corresponding parameter shifts. We observe that in
the case of the initial LIGO the correlations obtained are
less than those for the white noise case for higher values
of the total mass and vice versa. This can also be seen
as an efFect of narrow banding. The values of the shifts
in the parameters are also much smaller in the case of
white noise as most of the contribution to the correlation
comes &om the lower &equencies where a small shift in
( is sufficient for the filter to match well with the signal.

B. EfFect of discreteness of the bank of Slters

Until now we have considered our filter bank to have
an infinite number of filters; i.e., we have allowed for a
continuous variation of (. However, one is limited by the
computing power available and one must confine oneself
to a finite number of filters. Thus in general the signal
will be unable to achieve its maximum correlation. Our
aim is to estimate the drop in the correlation for a given
computing speed. The maximum drop in the correlation
because of the finiteness of the filter bank will have to

be kept small. We consider a discrete set of Newtonian
filters corresponding to distinct values of the f parame-
ter. The filter spacing in the ( parameter is taken to be
constant (b(,) across the entire range of values ( can take
(see [18]).

We first consider the initial LIGO and assume a 1 GfIop
machine on which we intend to do an on-line search.
The maximum time the signal lasts is found to be 25
sec for the mass range considered. However, the data
train needs to be padded with zeros to 4 times the orig-
inal length which is optimal for computational purposes
(see [8]). This will increase the length of the data train
to 100 sec. We allow for an overlap of 25 sec between
consecutive data trains. Thus we have 75 sec in which to
calculate ny correlations where ny is the number of fil-
ters. We sample the waveform at 1000 Hz. Thus we get
approximately 2 data points per data train. We have to
perform one fast Fourier transform (FFT) operation per
filter. The Fourier transforms will have already been cal-
culated once and for all for the filters in the bank and one
inverse Fourier transform will have to be performed to ob-
tain the correlation as a function of the time lag At. The
computation time will be mostly taken up by the FFT's
as each FFT involves 3N log2(N) operations where N is
the number of points in the data train. In this particular
case therefore each Fourier transform will require about
6.4 million fioating point operations (MFO s). This has
to be compared with the number of fIoating point op-
erations which can be carried out over the period of 75
sec which is 75 x 103 MFO's. Thus the number of filters
that can be accommodated is about 11700 filters. We
require two filters for the phase for each value of (. As
the maximum value of the coalescence time ( is 25 sec for
the range of masses considered, we get a filter spacing in
the ( parameter of around 4.3 msec. In the case of the
advanced LIGO this number is about 172 Insec.

Let b,( = 6(—b,f where 4( is the value of b,(' cor-
responding to the maximum correlation. Figure 4 shows
how the correlation for a given signal normalized to its
maximum value varies with 4( along a line of curvature,
i.e. , along the curve parametrized by b,( along which the
drop in the correlation is the slowest. In other words
the figure shows the correlation maximized over At and
b,Po as a function of b,(. The curve has been plotted for
the initial LIGO and for Mq ——5MO and M2 ——1.4MO.
However, the shape of this curve and the magnitudes in
the drop of the correlation are insensitive to the values
of Mq and M2. We observe that even for shifts of 100



PERFORMANCE OF NEVFFONIAN FILTERS IN DETECTING. . . 6087

0.8
0

I 0.6
0

'a

0.4
2
0
R

0.2—

0 I I I I I I I I I I I I I

—1 —0.5 0
(in sec.)

0.5

FIG. 4. Variation of the normalized correlation with b,(
along the line of curvature which is the curve along which the
matching factor falls least.

msec the correlation does not drop by more than 2'%. For
the case of the advanced LIGO this drop in the correla-
tion is even lower. Thus the 61ter spacing which we have
calculated is sufhcient for our purpose.

IV. CONCLUSION

We have demonstrated here the possibility of using
Newtonian filters for detecting the presence of a re-
stricted post-Newtonian signal. Such a strategy would
be very useful in providing a preliminary on-line analysis
of the data train. The analysis which we have carried out
here is valid only for the point mass case where p && M
where p is the reduced mass and M the total mass. For
the initial LIGO the correlation is 0.65 on average and
for the advanced LIGO it is around 0.45. These are only
the normalized correlations as we have already stressed

before. The absolute values of the signal to noise will be
much higher (by a factor of about 20) for the advanced
LIGO. It must be noted that the drop of the correlation
will translate into a loss in the event rate. The distance
up to which we can detect the binary will come down by
a factor equal to the normalized correlation. This means
that for the initial LIGO the distance to which we can
detect the binary will be brought down by 35% and for
the advanced LIGO it will be brought down by 55% from
their respective maxim»m ranges. In absolute terms the
advanced LIGO will still be able to look further than the
initial LIGO. This reduction in the distance translates
into a reduction in the event rate. The event rate is pro-
portional to the cube of the distance to which we can
probe for gravitational wave signals. But it must be em-
phasized here that the Newtonian 6lters will be employed
mainly in the preliminary stage of the data processing.
One may lower the threshold for a coarse search for sig-
nals.

The effect of the discreteness of the 61ter bank in pro-
ducing a further drop in the correlations was investigated.
It was found that for a 1 GBop machine the drop in cor-
relation due to the discreteness was very small. With
better and faster machines we can make the bank of 61-
ters still more eKcient.

If we consider higher derivatives of frequency f, say,
f, etc., as parameters [24j we should get a better match,
but the computation is very likely to increase. It should
be possible to construct 61ters which not only enable us
to save on the computation time but also span the set
of signal waveforms adequately. A deeper analysis of the
signal waveforms is in order so that efEcient techniques
can be developed. This work is now in progress.
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