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Observations of gravitational waves from inspiralling compact binaries using laser-interferometric
detectors can provide accurate measures of parameters of the source. They can also constrain
alternative gravitation theories. We analyze inspiralling compact binaries in the context of the
scalar-tensor theory of Jordan, Fierz, Brans, and Dicke, focusing on the effect on the inspiral of
energy lost to dipole gravitational radiation, whose source is the gravitational self-binding energy of
the inspiralling bodies. Using a matched-filter analysis we obtain a bound on the coupling constant
uBD of Brans-Dicke theory. For a neutron-star —black-hole binary, we find that the bound could
exceed the current bound of ~BD ) 500 from solar-system experiments, for sufBciently low-mass
systems. For a 0.7Mo neutron star and a 3Mo black hole we find that a bound ~BD 2000 is
achievable. The bound decreases with increasing black-hole mass. For binaries consisting of two
neutron stars, the bound is less than 500 unless the stars' masses differ by more than about 0.5Mo.
For two black holes, the behavior of the inspiralling binary is observationally indistinguishable from
its behavior in general relativity. These bounds assume reasonable neutron-star equations of state
and a detector signal-to-noise ratio of 10.

PACS number(s): 04.80.Cc, 04.30.—w

I. INTRODUCTION AND SUMMARY

The regular detection of gravitational radiation from
astrophysical sources by large-scale laser-interferometer
systems as the U.S. Laser Interferometric Gravitational
Wave Observatory (LIGO) or the French-Italian VIRGO
projects will usher in a new era of gravitational-wave as-
tronomy [1]. One of the most promising sources for de-
tection by laser-interferometric systems is the inspiralling
compact binary, a binary system of neutron stars or black
holes whose orbit is decaying toward a final coalescence
under the dissipative in6uence of gravitational radiation
reaction. For much of the late-time evolution of such
systems, the gravitational wave form signal is accurately
calculable [2], given by a "chirp" signal, increasing in am-
plitude, and sweeping in &equency through the detectors'
typical sensitive bandwidth between 10 and 1000 Hz. As-
trophysical estimates of the rate of such inspiral events
are promising: for the advanced version of LIGO, capa-
ble of detecting the inspiral wave form to distances of
hundreds of Mpc, the estimated rate is 3 per year, and
could be as large as 100 per year [3].

In addition to simple detection of the waves, it will be
possible to determine important parameters of the inspi-
ralling systems, such as the masses and spins of the bod-
ies [4]. This is made possible by the technique of matched
6ltering of theoretical wave form templates, which de-
pend on the system parameters, against the broadband
detector output [5]. The method exploits the fact that,
depending on the source, between 500 and 16000 cycles
of the waves may be observable in the sensitive band-

width, and so the matching of a template to the sig-
nal will be extremely sensitive to the evolution of the
gravitational-wave frequency with time. That evolution
depends, of course, on gravitational radiation reaction,
which depends on the parameters of the system. Very
accurate determinations of the masses of the components
should be possible, while less accurate estimates of spins
and other parameters may be feasible [6,7].

It is said that the first detection of gravitational radi-
ation will also constitute a verification of general relativ-
ity, since that is the basic theory used in all calculations
of gravitational radiation &om such systems. It would
be useful, however, to quantify that statement, by as-
sessing how accurately such observations could actually
constrain or bound alternative theories of gravity. This
is not a straightforward question to answer with gener-
ality. Whereas in the slow-motion, weak-field, nonradia-
tive limit appropriate to solar-system dynamics, most al-
ternative metric theories of gravity can be encompassed
by one simple &amework, known as the parametrized
post-Newtonian (PPN) formalism (see [8] for review and
references), no correspondingly simple framework exists
for describing radiative systems, or systems containing
strong-internal-6eld, compact objects, such as neutron
stars or black holes. On the other hand, for one simple,
but popular class of alternatives, the scalar-tensor theory
of Fierz, Jordan, Brans, and Dicke [9,10], and some of its
generalizations, the full details have been worked out. In
this paper, we shall explore the extent to which obser-
vations of gravitational waves from inspiralling compact
binaries could usefully constrain scalar-tensor gravity.
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by corrections of O(1/unD). Here, y, and m are the re-
duced and total mass, respectively; r, v, and r' are the
orbital separation, velocity, and radial velocity, and the
units are such that G = c = 1.

(iii) Dipole gravitational radiation. The center of grav-
itational binding energy need not be coincident with the
fixed center of inertial mass, if the two bodies are differ-
ent, and in BD, the resulting varying dipole moment is a
source of scalar radiation. Because it is a dipole rather
than a quadrupole effect, the dipole contribution to the
energy loss has two fewer time derivatives, and thus is
O(v z) larger than the quadrupole contribution. It also
depends on the difference in sensitivities, 8 = Sq —82,
between the two bodies. Specifically,

(dE'i 2 p'm' t' 8' )
) dip+le 4 BD)

(1.2)

We work here to Brst order in 1/unD.
The most important consequence of dipole gravita-

tional radiation is that it modifies the evolution of the or-
bital radius and thence the gravitational-wave &equency
f, because f/f = (3/2)r/r = —(3/2)E/~E—~. In the
matched-filtering method, any difference between the fre-
quency evolution of the theoretical template and that of
the actual signal will ultimately cause the two to go out

For simplicity, we focus on the version of scalar-tensor
gravity known for short as the Brans-Dicke (BD) the-
ory. That theory augments general relativity (GR) by
the addition of a scalar gravitational field that couples
universally to matter (hence the theory, like GR, is a met-
ric theory, satisfying all fundamental equivalence princi-
ple tests [11])and determines the gravitational coupling
strength G via i oc P . The relative importance of the
scalar field is parametrized by a coupling constant ~BD
(in generalized scalar-tensor theories, unD can itself be
a function of the scalar Beld). Roughly speaking, in the
limit of large ugD, the relative difference between effects
in GR and effects in BD is O(1/wnD). As idnD ~ oo, BD
tends smoothly toward GR. The best current empirical
bound is ufo & 500, from solar-system measurements of
the Shapiro tixne delay and the de6ection of radio waves

by the Sun [12].
For systems involving gravitational radiation and com-

pact objects, BD introduces three effects [13—15]
(i) Modifications to the efFective masses of the bod-

ies. These modifications depend on the internal struc-
ture of the bodies, as parametrized by "sensitivities" 8~,
which roughly measure the gravitational binding energy
per unit mass. These effects violate the strong equiv-
alence principle [16], in that the motion of such bodies
now depends on their internal structure (apart from tidal
interactions). For neutron stars, s 0.1 —0.2, and for
black holes 8 =—0.5.

(ii) Modifications of quadrupole gravitational radia-
tion. BD predicts monopole as well as quadrupole grav-
itational radiation, whose combined efFect is to modify
the effective GR quadrupole formula for two-body energy
loss,

8 m
(12v —llr' ),

of phase, and the signal-to-noise ratio will drop. A rough
measure of the accuracy of the template, then, can be
obtained by determining how much of a change in the
texnplate is sufficient to cause a change of m radians in
the total accumulated gravitational-wave phase over the
cycles in the detector's sensitive bandwidth. The accu-
xnulated phase is

&out fo t
c'Gw = 2~fdt = 2~(f/f)&f

&in flfi

(1.3)

where the subscripts in and out denote the values when
the signal enters and leaves, respectively, the detector's
bandwidth. By demanding that the change in 4G~
caused by the dipole term be smaller than m. , one obtains
the bound

82 53767i
( ~f )7/3 g/5

~BD
(1.4)

where rl = y/m, and M = qs/sm is the "chirp mass, "
the mass that determines the lowest-order quadrupole ef-
fects. For LIGO and/or VIRGO systems, f;„is typically
chosen to be 30 Hz. A xnore accurate estimate obtained
using the formalism of matched filtering (including post-
Newtonian efFects —see below) weakens this bound by
about a factor of 1.3, assuming a signal-to-noise ratio
(S/N) of 10. The resulting bound can be fit by the ana-
lytic formula

(1 5)

Whether this bound provides a useful constraint on the
theory depends on the system in question.

(i) Neutron star and black hole. Since snH = 0.5, and
sNs & 0.2, 8 & 0.3. The resulting bound on ~gD is given,
from Eq. (1.5), by

"' SN 8
1O & ~0.3~

(1.6)

The resulting bounds on ~BD are plotted against the
black-hole mass, for various neutron-star masses, in Fig.
1.

(ii) Two neutron stars. For neutron stars, sNs varies
weakly with mass (see for example Table 3 of [15]), so
that typically 8 is smaller than 0.05, and for neutron
stars each around 1.4Mo, is very small indeed. Thus,
the small value of M in Eq. (1.5) is compensated by
the smallness of 8, and the resulting bound on cuBD is
generally weaker than solar-system results»~~ess the dif-
ference in xnass between the two neutron stars exceeds
about 0.5MO. For the extreme case of 0.7Mo and 1.4Mo
neutron stars, the bound could be as large as 1100. The
inferred bounds are sensitive to the ass»med equation of
state for neutron-star matter. For a particular assump-
tion about the dependence of 8 on mass, Fig. 2 shows
the bounds that could be achieved, assuming a signal-to-
noise ratio of 10.

(iii) Two black holee Because .sBH = 0.5, 8 = 0, and
there is no dipole radiation at all (see [15] for discus-
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FIG. 1. Bounds on upD from inspiralling neutron-star—
black-hole binaries, plotted against black-hole mass, for var-
ious neutron-star masses. Hatched portion indicates black
holes vrith mass less than 3.0MQ, where identification as a
black hole may be ambiguous. Curves assume 8 = 0.3 and a
signal-to-noise ratio of 10.

sion). In fact the evolution of the system and the re-
sulting gravitational radiation are identical to the gen-
eral relativistic results, except that the effective gravi-
tational mass of each black hole is given by Hawking's
"tensor mass" mT [17], related to the inertial mass by
rriT = (3+&~nD)/(4+2~nD)m. Since the effective grav-
itational masses are the only parameters determined from
the gravitational-wave signal, no test of BD is possible
from inspiralling two-black-hole systems.

In order to place a bound on ~BD, we must be able
to decide among cases (i), (ii), and (iii). This requires
that both the chirp mass M and the reduced mass pa-
rameter g have been measured with sufficient accuracy
that the mass of one of the bodies is known to be greater

than the maximum mass for a neutron star, and thus is
a black hole, and that the mass of the other is known
to be less than the maximum mass, and is thus likely
(though not certain) to be a neutron star, or that the
two masses, if both less than the maximum neutron-star
mass, are sufficiently different to provide an interesting
bound. We have extended the matched-Gltering anal-
ysis to include post-Newtonian eKects in the evolution
of the gravitational-wave frequency, effects that depend
explicitly on the reduced mass parameter g, and found
that the accuracy in determining M and g simultane-
ously with the dipole radiation effect is suIFicient for this
purpose. The dipole radiation efFect varies as v = r /m
relative to quadrupole radiation, while post-Newtonian
correction terms vary as m/r; hence the two effects are
relatively uncorrelated in the matched filtering (correla-
tion coefFicients of order 0.90).

The main result is that for a neutron star of mass
typical of those of well-measured pulsars (1.3—1.5M~),
and a relatively light black hole (3MD), a bound on
the Brans-Dicke parameter around two times the current
solar-system bound could be obtained. For a low-mass
system (0.7MQ neutron star, 3MQ black hole), a bound
around 2000 could be obtained. For double neutron-star
systems of sufficiently diH'erent mass, interesting bounds
could also result.

The remainder of this paper provides details. In Sec.
II, we summarize the relevant BD equations for gravita-
tional radiation and orbital motion in systems containing
compact objects. Section III derives bounds on the dipole
radiation efr'ect using both the crude estimate of accumu-
lated phase, and a full matched-filtering analysis. In Sec.
IV we discuss the possibility of observing BD efI'ects in
the gravitational-wave amplitude, including testing for
the existence of a third, scalar polarization mode in the
gravitational wave form. Section V discusses the results.
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FIG. 2. Bounds on ~gD from
inspiralling double neutron-star
binaries, plotted against mass
of neutron stars. For equal
masses, dipole radiation is sup-
pressed, and no bound on ~~D
results. Curves assume a lin-

ear dependence of sensitivity on
mass, with 8 = 0.28m/Mo,
and a signal-to-noise ratio of 10.
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II. COMPACT OBJECTS AND GRAVITATIONAL
RADIATION IN SCALAR- TENSOR GRAVITY

The equations of motion and of gravitational radiation
for systems containing compact objects in Br~a~-Dicke
theory were first derived by Eardley [13] and extended
by Will and Zaglauer [14,15]. Here we present the basic
background and formulas needed for our purpose, taken
f'rom [15].

We work to lowest order in an expansion in powers of
v2 m/r, corresponding to Newtonian order for orbital
motion, and to what in GR would be called quadrupole
order for gravitational radiation. Yet the equations in-
clude contributions due to the self-gravitational binding
energy of the compact objects, contributions that are for-
mally of post-Newtonian order, but that could be sizable
because of the relativistic nature of neutron stars or black
holes. These e8'ects are determined by the "sensitivity"
of the inertial mass of each body A to changes in the local
value of the efFective gravitational constant G (caused by
changes in the scalar field). It is defined by

B. Gravitational radiation energy loss

dE 8 p m2 ( 2 5
~

»~v'+ -~z»' ~,dt 15 r4 ( 8 )
(2.5)

where the first term is the combined quadrupole-mono-
pole contribution, and the second term is the dipole con-
tribution, and where

(2.6a)

/g~=2g (, (2.6b)

8=8' —ay~ (2.6c)

The rate of energy loss for a quasicircular two-body
orbit (that is, circular, apart from an adiabatic inspiral)
is given by

I' = 1 —2(mqaq + m2aq)/m. (2.6d)
a~ = —(9(inm~)/29(ln G) . (2.1)

A. Two-body orbits

In the weak-Beld limit, it is straightforward to show that
8~ is the negative of the usual gravitational self-energy,
given by a~ = (1/2) J& pp'~x —«'~ ~d @date', where p
is the mass density. For neutron stars, s depends on
the equation of state; representative values are given in
Table 3 of [15]. For instance, for a 1.4MO neutron star,
a = 0.143 and 0.125 for equations of state 0 and M,
respectively. On the other hand, 8 can vary slowly with
mass: for equation of state 0, for instance, s = 0.1432 for
m = 1.40MO and s = 0.1440 for m = 1.44Mo. For black
holes, a dimensional arg»ment shows that m oc G
so sgH = 0.5.

The gravitational waves are dominantly at the frequency
f = ur/g(, corresponding to twice the orbital frequency.

C. Gravitational wave forms

In the far zone, the spatial components of the radiative
metric perturbation h"" = g""—g(—g)g"" are given by

h*g = 0'g ——eh'g —((p/Po) b*g,
2

(2 7)

where Greek and Roman indices denote spacetime and
spatial components, respectively, where y is the pertur-
bation of the scalar field P about its asymptotic, cosmo-
logical value 4)0 and where, to leading order in v m/r,

The equation of motion and Kepler's third law for two-
body orbits with orbital frequency ur (orbital period P)
take the form

d x/dt = gmx/r, u =—2m/P = (gm/r ) ~/2,

(2.2)

= (4p,/R)
~

1 ——( ~

(v*v' —gmx'x'/r ),2)

2/gtr = $(p/R)(('((N .v) —gm(N. x) /r f

(2.8a)

where

g = 1 —(g(ay+ a2 —2aga2), (2.3a)

—(g2'+ 2R)m/r —28(N .v) ), (2.8b)

6 = (2+~an) '. (2.3b)

For a circular orbit, the energy and orbital velocity are,
respectively, given by

where R and N are the distance and direction unit vector,
respectively, of the observer, and A = 1 —a) —a2+ O($).

The components of the Riemann tensor R ' ~ mea-
sured by a detector can be shown to be given by R ' ~ =
—2(d2/dt2)h'g, where h*g is the efFective gravitational
wave form, given by

E = (1/2)gym/2, v—= gm/r. (2.4)
h*' = OTT —2(V/&0)(&*' —~*&') (2.9)
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where TT denotes the transverse-traceless projection.
Note that the full gravitational wave form is transverse
but not traceless because of the presence of the scalar
contribution.

For quasicircular orbits, the wave form becomes

From Eq. (1.3), the number of cycles observed in a given
bandwidth can be written 4Giv = (2/M) f„"*(&/&)«,
glvlng

(
—5/2 —5/s) b 2/5

(
—7/2 7/2)C~

~6 I out

h" = '~ q" +S(b*' —X*X'), (2.10a) (3.6)

Q' = 2
i

1 —-(
i

(A'A' — * '),
2

(2.10b)

S = —-( [(N &)2 —(N n, )2] —(gI'+ 2A)—
4 r r

1/2
—2s~i i

w i),r (2.10c)

where n = x/r, and A = v/v.

III. TESTING SCALAR- TENSOR GRAVITY
USING MATCHED FILTERING OF
GRAVITATIONAL WAVE FORMS

A. Phase-shift estimate

Because broadband detectors such as the Bee-mass
laser-interferometric systems detect the gravitational
wave form h'~ (t) superimposed on the noise, and because
hundreds to tens of thousands of cycles may be observed
in the bandwidth, the observations are especially sensi-
tive to the evolution of the frequency and phase of the
wave. By combining Eqs. (2.2), (2.4), and (2.5), one
can show that the &equency of the wave form evolves
according to

Demanding that the phase contribution of the di-
pole term be no more than ~, we obtain 6

(112m/5)rI 2/su, , where we assume that f „q» f;„
(1000 Hz vs 10 Hz). To lowest order in 1/uBD, K = g = 1,
KD ——2/urnD, and thus b (5/48)8 /uBD, resulting in
the bound given in Eq. (1.4).

B. Matched-Biter analysis

To obtain a more accurate estimate of the bound that
can be placed on the dipole parameter 6, we carry out
a full matched-filter analysis, following the method de-
scribed by Chernoff and Finn [6] and Cutler and Flana-
gan [7]. To the accuracy needed, we approximate the ob-
served gravitational wave form, Eq. (2.10), in a given de-
tector by h(t) —R(ho(t)e'@~'lf, where ho(t) is the slowly
varying Newtonian-order contribution to the wave form
amplitude, dependent upon the distance to the source,
its location on the sky, the orientation of the detector,
and on the source parameters M, g, and r; O(t) is the
gravitational-wave phase, dominantly at twice the orbital
phase, and R denotes the real part. The phase includes
the dipole and higher order post-Newtonian corrections,
in principle. Calculating the Fourier transform of h(t) in
the stationary phase approximation, we obtain

5 rm72qrp I 96 g m
(3.1)

h(f) — +f e 0 + f + fmaxy

0, f & fmax
(3.7)

JH:—(K / /g / )rJ / m,
b —= (5/96)(r / g / )K~8 (3.2)

Defining u = vrM f, we put Eq. (3.1) into the form

u = M (96/5)u / (1+bg / u ) .

Integrating, we get

u / [1 —(4/5)brI / u / ] = (256/5)(t, —t)/M, (3.4)

We define the Brans-Dicke chirp mass M and the dipole
parameter 6 according to

where A oc B its/sx [function of angles and detec-
tor orientation], and f = O(m ) corresponds to the
&equency when the inspiral turns into a plunge toward
coalescence, and

4(f) = 27rft, —I, —vr/4

u-'/'
~

1 — b'/' -'/'
~-

128 ( 7

where 4 formally is the gravitational-wave phase at time

With a given noise spectrum S (f), one defines the
inner product of signals hl and h2, by

where t is the time at which u —+ oo. We have expanded
the expression (3.4) to first order in bg /su 2/s, using the
fact that

o S-(f)
(3.9)

5 10
E~») &0.5J

M,. )'" I'30H. &"'
E

(3.5)

The signal-to-noise ratio for a given signal 6 is given by

p[h]—:S/N[h] = (h[h) / (3.1o)

If the signal depends on a set of parameters 0 which are
to be estimated by the matched filter, then the rms error
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in 8 in the large S/N limit is given by

(3.1i)

where Z is the corresponding component of the inverse
of the "covariance matrix" or "Fisher information ma-
trix" I'

p defined by

l Bh Bh)
B8~ B85 (3.12)

The correlation coefficient between two parameters 8
and 8~ is

"'= Z"jv'Z-Z~. (3.13)

Bh(f)
BlnA
Bh(f)
Bfpt,

Bh(f)
84,

Bh(f)
Bln&f

Bh(f)
Bb

h(f)

2zri( f/ fp) h(f ),

ih(f), -
'/ h(f) i

1 — b-
128 g 5

iu /3h(f) .
224

(3.i5a)

(3.15b)

(3.15c)

(3.15d)

(3.15e)

The signal-to-noise ratio is given by

p = 20iAi fp
/ I(7)/Sp, (3.i6)

where we define the integrals

I(q) = x «3(z '+2+22.") 'Ch.
z/'r

(3.17)

For a noise spectr~~, we adopt the analytic fit to the
LIGO "advanced detector" noise spectral density:

oo, f & 10 Hz,
(f) = S'((f,/f) + 2[1 + (f /f, ).])i 5, f ) 10 H. ,

(3.14)

where Sp ——3 x 10 4 Hz and fp ——70Hz. The cutofF
at 10 Hz corresponds to seismic noise, while the f 4 and
fz dependences correspond to thermal and photon-shot
noise, respectively [18].

We shall adopt the following five parameters to be es-
timated: lnA, O„fpt„ln&f, and b, where b = brjz/5

The corresponding partial derivatives of h(f) are

We also define the coefficients Bq = I(q)/I(7) Since our
a priori expectation is the validity of GR, we are looking
for a bound on ~b~. Equivalently, we wish to determine the
error in estimating 6 about the nominal value 6 = 0; thus
we set b = 0 in Eq. (3.15d). Then the elements of the co-

—n/3variance matrix turn out to be proportional to p uo Bq
for various integers n and q, where up ——AM fp In. -
verting the matrix to obtain Z ~, we obtain from the
elements Z™,Z~, and Z~5, b, (lnM) = 57.6up /p,
b, (b) = 53.2up jp, and c~5 = —0.98.

Substituting fp = 70Hz, and working to first order in
1/u&D, so that M = zi / m and b = (10/96)zl / 8 /urnD
[see Eq. (3.2)], we obtain

, /m~'/'( 10 ~
6(lnM) = 6.56 x 10

~ i ~
~, (3.18a)

(MD) gS N) '

) (Mph) ( S/N)

(3.18b)

C. Post-Newtonian efFects

The interpretation of gravitational-wave observations
as testing scalar-tensor gravity relies upon determining
the masses of the two bodies with sufficient accuracy
(i) that one can decide with confidence whether each
body is more or less massive than the accepted neutron-
star maximum mass (modulo the many uncertainties
in that number) in the neutron-star —black-hole case, or
(ii) that one can establish that the mass difFerence ex-
ceeds some critical value, in the double neutron-star case.
The determination of the individual masses makes use of
post-Newtonian corrections to the orbital phase, which
depend explicitly on the reduced mass parameter g. It is
then necessary to check whether such determinations can
be made 8imultaneously with the bound on the parameter
b. To this end, we extend the matched-filter analysis to
include post-Newtonian corrections. Those corrections
have not been fully calculated to date in the context of
BD, but one expects them to be the same as those of GR,
within corrections of O(1/urBD). To incorporate them
into our analysis in a 6rst approximation, then, it suf-
fices to add the appropriate GR post-Newtonian terms
of [7], Eq. (3.13), to the Fourier transform phase, Eq.
(3.8), to obtain

4'(f) = 2zrft, —O, —zr/4 + u / 1 — brI / u / + —-i + —g
~

rj u / —16zrr/ / u
128 7 9 g336 4

(3.i9)

where the final term is the "tail" efFect. Adding the parameter in@ to the set to be estimated, we find the partial
derivatives

Bh(f) 5i - 4- 4 /743 11 l 32
BlnM 128 5 3 g336 4 ) 5

u h(f) 1 — bu + —
i

+——rj
~ g u — err/—

Bh(f) z 5/3 ( 743 33 ) 3/5 3/3 108 3/5h( ) — + —g~zi u + zrzi u
Bln rI 96 ( 168 4 ) 5

(3.20a)

(3.20b)
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m& m~ EP. Bt. b,M/~ &ri/9 ~»
Neutron-star —black-hole systems

1.0 2.0 2.21 0.83 0.028%%uo 2.23'%%uo 2140 -0.950
1.0 5.0 2.21 0.83 0.056% 2.20'%%uo 682 -0.949
1.4 5.0 2.19 0.82 0.079+p 2.73'Pp 470 -0.953
1.4 10.0 2.19 0.82 0.131% 2.46'%%uo 194 -0.952

Double neutron-star systems
0.7 1.4 2.24 0.83 0.015%%uo 1.84'%%uo 1092 -0.945
1.4 1.4 2.19 0.82 0.029% 2.34%%up 0 -0.953

-0.991 -0.909
0.991 0.908
-0.991 -0.911
0.991 0.909

0.992 -0.905
-0.991 -0.911

TABLE I. The rms errors for signal parameters, the corre-
sponding bound on ugD, and the correlation coefBcients c~„,
c~&, and c&„.General relativistic post-Newtonian effects are
included; the noise spectrum is that of the advanced LIGO
system, given by Eq. (3.14), and a signal-to-noise ratio of 10
is assumed. Masses are in units of Mo, Et is in msec. For
neutron-star —black-hole systems, 8 = 0.3 is assumed; while
for double neutron-star systems, 8 = 0.28m/Mo is assumed.

0.25
NS+NS

0.20-

0.15
M I

Ã l
l

0.10-

0.05

NS+BH

0
1 2 3

CHIRP MASS &/NS MAXIMUM MASS

FIG 3. Chirp-mass/reduced-mass parameter plane, show-

ing location of three different types of compact binaries.
Chirp mass is plotted in units of the neutron-star maximum
mass.

The other partial derivatives in Eqs. (3.15) are un-

changed. Setting b = 0, we then calculate and invert the
covariance matrix and evaluate the errors in the five rele-
vant parameters (the parameter ln A decouples &om the
rest, and is not important for our purposes), along with
the correlation coefBcients between JH, g, and b. Notice
that the fact that 6 involves g implicitly does not acct
the outcome, because we are considering the results cen-
tered arouad 6 = 0. For various double neutron-star aad
neutron-star —black-hole systems, the results are shown
in Table I. Note that b is less strongly correlated with g
than is M, a result to be expected because of the very
different dependences of the dipole and post-Newtonian
efFects on m/r or on u. Nevertheless, a result of the
correlation is to weaken the bound on 8 /uBD in Eq.
(3.18b) by a factor of about 2.3. Equation (1.5) provides
an analytic Gt to the result.

Notice &om Table I that the accuracy in determining
ri is a few percent, consistent with the results of [7]. To-
gether with the high accuracy in determiaiag M, this
will lead to accurate values for the two masses, except
for the degenerate region around equal masses, g = 0.25.
However, that region is excluded &om our considerations
because of the weakness of the bound ia the nearly equal
mass, double neutron-star case, and because of the im-
possibility of determiniag uaambiguously that one of two
objects of nearly equal mass is a black hole while the
other is not, in the mixed case. Figure 3 shows the re-
gions in JH —g space corresponding to the three types of
system.

D. Dependence on the nature of the system

The nature of the system being observed is important
to the interpretation of the bouad (1.5) as a test of grav-
itation theory.

For two neutron stars, the chirp mass is relatively small
(1.2Mo for two 1.4MO neutron stars), so the bound on
8 /ruBD can be quite small. The reason is that such sys-
tems enter the detectors' bandwidth (say, at 10 Hz) with

a large separation relative to the total mass (r/m —180
for two 1.4MO neutron stars). As a result, gravitational
radiation damping is weaker, and more cycles occur in the
detectors' bandwidth (up to 16 500 cycles for two 1.4MO
neutron stars), hence the matched filter is more sensi-
tive to eHects on the template phase evolution. However,
the sensitivity difFerence 8 is also small, because of the
weak dependence of the sensitivity on the masses of neu-
tron stars, and because the neutron stars are expected
to have similar masses, as has been seen in known bi-
nary pulsar systems, such as the Hulse-Taylor system
PSR 1913+16[19]. For relatively stifF equations of state,
which are required in order to have neutron stars sufFi-

ciently massive (& 1.4MO) to agree with masses inferred
&om known binary pulsars, Table 3 of [15] shows that
the sensitivity varies roughly linearly with mass, with
s 0.2m/Mo, reaching a maximum near the maximum
mass for the given equation of state (around 1.46MO for
the stifF equations of state discussed in [15]). To get a
rough idea of the bounds on ~BD that might be possible
in double neutron-star systems, we substitute the relation
8 = 0.2Pbm/Mo into Eq. {1.5), where bm = mq —m2,
and where P may vary between 0 and 1, and use the fact
that bm2 = (1 —4')m2, to obtain

(3.21)

The resulting bounds for P = 1 are plotted in Fig. 2. For
P —1, the bounds are weaker than solar-system bounds
for neutron stars whose masses difFer by less than 0.5Mo.
At the other extreme, the bouad could approach 1000 for

0-7 —S-4Mo pa
For black holes in scalar-tenser gravity, 8BH = 0.5.

This is a consequence of the fact that, in the forxna-
tion of a black hole, the scalar field is radiated away
(see [15,17,20,21] for further discussion). As a result,
&om Eqs. {2.3) and {2.6), we see that g = 1 —(/2,
K = (1 —(/2), 8 = I' = A = 0. Substituting these
values into Eqs. (2.2), (2.4), (2.5), and (2.8), we see
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that the dipole eHects vanish, and the equations become
equivalent to those of GR if we replace every mass by the
"tensor mass" [17],given by

m~ = m(l —(/2) = m(3+ 2(unD)/(4+ 2upnD) . (3.22)

If gravitational radiation is the only information about
the system, then only the tensor masses are measured
in a matched filter. Since the behavior of the system is
general relativistic in terms of tensor masses, then no test
of BD in double black-hole systems is possible.

For the case of neutron-star —black-hole systems, 8BH ——

0.5 while sNs 0.1—0.2. Although the black hole cannot
support scalar field in its vicinity, the companion neutron
star can, and consequently dipole gravitational radiation
can occur. For stifF equations of state, sNs ( 0.14, and
thus we can approximate 8 & 0.3. With these assump-
tions, Eq. (1.6) leads to the bounds plotted in Fig. l.

IV. TESTING SCALAR-TENSOR GRAVITY
USING WAVE FORM AMPLITUDE AND

POLARIZATION

From Sec. IIC we see that scalar-tensor gravity af-
fects the amplitude of the gravitational wave form in two
important ways: (i) it introduces a third, nontraceless
polarization state [Eq. (2.10a)], and (ii) it introduces,
through the dipole term, a contribution at the orbital fre-
quency in addition to the quadrupole and/or monopole
contributions at twice the orbital frequency [final term in
Eq. (2.10c)]. However, these are unlikely to be testable,
for the following reason. From Eqs. (3.9) and (3.15), it
is simple to see that the cross components between lnA
and the other four parameters in the covariance matrix
vanish, so that I g has the form

(4.1)

where D is a 4 x 4 matrix corresponding to the parame-
ters @„fat„lnM, and b. Thus b, (lnA) = (Z~)i~2 =
1/p Q.l, for a signal-to-noise ratio of 10. However,
the scalar-tensor corrections to the amplitude are much
smaller than this. The ratio of the monopole part of 8
[Eq. (2.10c)] to the quadrupole term q*~ [Eq. (2.10b)] is
0((/8) 2 x 10 4(500/urnD), while the ratio of the dipole
part of 8 to the quadrupole term is O[4(8(r/m)i~2]
10 (500/tunD)(8/0. 3)(r/100m) ~ . Thus, despite the
presence of qualitatively new contributions to the wave
form, the lower sensitivity of matched filtering to ampli-
tudes, as compared to phases, makes those contributions
diKcult to detect or bound.

V. DISCUSSION OF RESULTS

We have shown that interesting, if not spectacular,
bounds on the coupling constant cuBD of Brans-Dicke the-
ory could be obtained by matched filtering of a gravita-
tional wave signal kom an inspiralling binary of a neutron

star and either a neutron star of very difFerent mass, or
a low-mass black hole. The bound that can be obtained
decreases rapidly with decreasing neutron-star mass dif-
ference and with increasing black-hole mass.

Another class of laser-interferometric detectors that
may be relevant to this discussion is the space-based class
of systems, such as the Laser Gravitational-Wave Obser-
vatory in Space (LAGOS) [22] and SAGITTARIUS [23].
These will be most sensitive to gravitational waves in the
&equency range 10 —10 Hz, and could detect grav-
itational waves &om the inspiral of a 1Mo star into a
black hole in the 10 —10 Mo range. Noting that the

—7/3bound on ~nD scales with the frequency fo as fo
we find from Eq. (1.6) for a 1Mo star and a 10 Mo
black hole, with fo 10 2 Hz, that a bound exceeding
50 000 might be possible. This warrants a more detailed
matched-filter study, including the use of the appropri-
ate noise curve for space-based detectors analogous to
Eq. (3.14), and including the effects of spin of the cen-
tral hole, which are likely to be important. This study is
currently under way.

It is useful to point out that, for generalized scalar-
tensor (ST) theories, i.e., those in which the coupling
constant becomes electively a function of the scalar Beld
[24], the foregoing conclusions still apply, with the fol-
lowing principal change: the dipole parameter e~, Eq.
(2.6b), becomes

(2+ass~) g (3+2~s~) )
(5.1)

where us& = ches~/dg. (There are other changes in-
duced by ~s&, in e, I' and other formulas, but they are
unimportant for our purposes. ) In the large-usy limit,
this means replacing laJBD by ~sr/(1+ursa/2usz) in the
bounds of Eqs. (1.4), (1.6), and (3.18b).

Another difFerence between BD and such generalized
scalar-tensor theories is that, while in the former case,
large uBD implies that all physical predictions are close to
those of GR [roughly within O(l/unD)], in the latter case
the statement holds only for weak scalar-field situations
(GP 1), such as in the solar system. However, in the
strong-field interiors of neutron stars, where the scalar
field may have values very different from its weak-field
values, the difFerences between the scalar-tensor theory
and GR may be significant, despite a large exterior value
of ~s~ [21,25—27]. In evaluating the sensitivities of neu-
tron stars, we used neutron-star models computed using
GR, since BD is a small correction for large cuBD through-
out the stellar interior [28]. But the strong-field effects
in ST theories alter the situation, and quite diferent val-
ues of sensitivities for a given neutron-star mass may
result [21,27]. Since our quoted bounds were strongly
dependent on the sensitivities, it is impossible to draw
strong conclusions about bounds on ST theories &om in-
spiralling binaries without further research.

How do the bounds we have suggested compare with
other empirical bounds and with theoretical expecta-
tions? Solar-system bounds on scalar-tensor gravity may
improve &om the current level of ~B & 500 during the
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coming decade. The Relativity Gyroscope Experiment
(Gravity Probe B) aims to measure the geodetic preces-
sion of a set of orbiting superconducting gyroscopes at
the 10 level, which would correspond to ~BD ) 60000
[29]. Orbiting optical interferometers for astrometry may
measure the de8ection of light at the 5 microarcsecond
level, resulting in bounds on urBD at the level of 10 [30].

In BD, ~BD is an arbitrary constant, so no value has
an a priori theoretical significance (except ~BD = oo).
However, in generalized theories, the value of &us T is cou-
pled to the dyaamics of the scalar field (or fields, in
multiscalar theories [25]), and its present, average cos-
mic value may depend on the evolution of the universe.
Damour and Nordtvedt [31] have pointed out that, in
one class of generalized scalar-tensor theories, in which

u(P) = —
z

—z(ging) ~, with 0 & P ( 1, cosmic evolu-
tion &om strongly non-general-relativistic early universes

tends toward a large-~ "attractor" at the present epoch.
For specific models and values of the parameter y, the
present value of cusT can range &om 2 x 10 to 1 x 10 .
Unless there are unusual strong-field effects in this theory
that would modify our conclusions based on BD, these
values are well above the bounds we anticipate Rom co-
alescing binaries.
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