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Can a legarithmically running coupling mimic a string tension'?
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A Coulomb potential using a running coupling slightly modi6ed kom the perturbative form
produces an interquark potential that appears nearly linear over a large distance range, and Sts well
to lattice gauge theory data. This calls into question the accuracy of string tension measurements
which are based on the assumption of a constant coefficient for the Coulomb term. It also opens up
the possibility of obtaining an electively conSning potential &om gluon exchange alone.
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It is surprising that the interquark potential for pure-
gauge SU(2) and SU(3) lattice gauge theories fits as well
as it does to a simple linear+Coulomb law. Even the ex-
tremely high statistics SU(2) results of the UK/CD Col-
laboration at P = 4/g2 = 2.85, which include distances
to R/a = 24 and with a relatively small physical lattice
spacing a (a 6.56 GeV), probing well both the short
and long distance potential, require no additional terms
to fit the data [1]. What is surprising about this is that
one of the most definite predictions of perturbation the-
ory, backed up by high-energy scattering experiments,
is that the effective coupling is a r»~~ing coupling, so
one would expect the coeEcient of the Coulomb term,
which can be taken to be a renormalized coupling, to de-
pend upon distance. At weak couplings corresponding
to short distances this should match the logarithmic de-
pendence given by renormalization-group improved low-
order perturbation theory. If lattice gauge theory is to
be successfully matched onto perturbation theory, then
at least the short distance part of the potential should be
allowed to run. This has been tried and gives indications
of a reasonable match to perturbation theory [2]. For
longer distances (say R/a & 6 on the above lattice) the
coupling is generally assumed to stop running, to allow
an accurate determination of the string tension. How-
ever, the fits which show a rnnning coupling at shorter
distances show no indication that the running is slowing
down. In addition, the values of running coupling ob-
tained from these analyses are considerably larger than
the fixed value obtained in the linear + Coulomb 6t. The
stopping of the r»~~ing coupling has been justified by
the strong-coupling string model of Luscher which pre-
dicts the coefficient of 1/R in the potential to be the
constant value of s /12 [3]. The problem with this is that
the couplings for which this string picture become valid
are probably much stronger than those of the simulations
being discussed here [4]. There is very little independent
evidence for the stopping of the running of the renormal-
ized coupling.

In the following I investigate the effects of relaxing the
ass»option that the coupling stops r»~~ing at long dis-
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tances. It is shown that even the one-loop perturbative
potential roughly mimics the linear+Coulomb form over
the large distance range included in the aforementioned
simulation. That is, the rising r~mw'ng coupling can tem-
porarily counteract the falling Coulomb law to produce
an approximately linear potential over a certain range.
In the end the one-loop perturbative potential is ruined
by the Landau pole singularity. A phenomenological po-
tential consistent with perturbative functional forms is
introduced which contains an additional piece which can
kill the Landau pole. This form is found to 6t the data
every bit as well as the Coulomb+linear form. The po-
tential eventually falls oK the linear trend, but not until
R/a 50, well beyond the range of the simulation or
planned simulations for some time to come. Thus it wiD
be shown that a logarithmically r»~ning coupling is capa-
ble of producing a phenomenologically confining poten-
tial. The potential is not absolutely con6ning; however,
it should be remembered that this is not necessary in
the real world with light quarks, since beyond a certain
separation a meson pair will form, breaking the "string. "
Thus the pure-gauge simulation is only relevant to real
world physics up to a distance of order 1 fm.

In what follows, the focus is first shined to the in-
terquark force, as opposed to the potential, because it is
more easily compared to the perturbative result [5,6]. For
lattice SU(2) the magnitude of the force may be written

I"(R) = (1 + 3a /4R )3a(R) /4R .

The prefactor in parentheses is from an approximation
to the lattice Coulomb propagator [valid for (R/a) & 2)
which differs slightly from that of the continu»m for smaQ
R/a [4]. It actually has very little effect on the fits. The
potential is taken to be the integral of the force, which
may become complicated for complicated a(R). For this
reason it is much easier to work with the force. The
main disadvantage to working with the force is that the
Monte Carlo data give more directly the potential itself.
Data for the force can be obtained booxn the potential
data by taking finite differences. This introduces some
horizontal (i.e., AR) uncertainty into the data, since one
is not sure where within the R interval to plot the force
value. Usually the midpoint is chosen, but because of
the inverse relationship here the geometric mean is used,
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which gives exact results for a 1/R potential.
Figure 1 shows a fit to the UK/CD data from Ref. [1]

for R/a ) 4 (the R/a = 2 point was also excluded from
the fits in Ref. [1]). The short-dashed line is a one-
parameter 6t to the one-loop renormalization-group im-
proved force with

a(R) = [1+8~t, ln(R, /R)]-', (2)

where bo ——ll/24vr2. The fit gives Ro/a=12. 28. Consid-
ering that it includes only effects from (summed) lowest-
order perturbation theory, it fa&ls suprisingly close to the
data even in the high-B region. If bo is allowed to be a
&ee parameter, only a marginally better 6t is produced
with bo increasing 5% over its perturbative value. Such
a 6t can be thought of as a determination of the scaling
parameter bo directly from the data. Thus the hypothesis
that it is the ru»»ing coupling which is responsible for the
form of the force even at intermediate and large distances
appears reasonably consistent with asymptotic scaling.
Note that the force function produced by the running
coupling is relatively fiat in the region 13 & R/a & 22,
varying only 10% from a constant. Thus the force in this
region is much closer to a constant force, which would
mimic a confining string tension, than it is to a 1/Rz
Coulomb force. The Coulomb decrease is nearly matched
by the increase in efFective coupling.

Although this function roughly fits the data it does
not fit these high statistics data well enough in detail,
giving a yz/NDF = 4.4. Clearly the fit is spoiled by
the appearance of the Landau pole at R/a 28. This
is widely believed to be an unphysical result due to the
partial summation of the series. The fit to the two-loop
renormalization-group improved force, using the running
coupling

a(R) = (4zho(ln[(Ro/R) ]

+(bi/bo) lnln[(Ro/R) ]))
with bi/bo2 ——102/121 gives the large-dashed line, which
is clearly worse than the one-loop fit. This one-parameter
fit gives Ro/a = 32.5. If one allows the constants to de-
viate &om their perturbative values, not much improve-
ment results. The worse 6t to the two-loop force can. be
attributed to the even earlier appearance of the Landau
pole, around R/a = 24. There is still a relatively con-
stant region from about 10 & R/a & 20, but the value is
about 50% too low. One can understand why the two-
loop result might be worse at long distances by consider-
ing the renormalization-group P function. If a(R) is to
remain finite, the true P function, which diverges from
the axis like g3 at small g, must eventually turn back to-
ward the axis. The two-loop P function adds a gs term
of the same sign as the gs term, which causes the P func-
tion to diverge even faster. This will cause it to disagree
even more with the ass»med behavior of the true P func-
tion at large g, even though it is more accurate than the
one-loop result at small g.

If the Landau pole could somehow be removed, thea it
would not take a r»~mng coupling much diferent &om
the one-loop form to 6t the data, because the one-loop
force already gives a qualitatively successful Gt. The
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FIG. 1. SU(2) force data from Ref. [1] with Bts to one-loop
(short dash), two-loop (long dash), and modified Coulomb
(solid line) force. The force and R are in lattice units. Error
bars range from about 1/2 the size of plotted points up to the
size of the points.

Excellent agreement with the data is found with a one-
term extension to the one-loop form, namely, n = 0,
m = 2. The solid line in Fig. 1 is a fit to the force
associated with the phenomenological running coupling:

a(R) = (1 + 8~boc ln(Ro/R) + d[ln(Ro /R)] }
where the three-parameter 6t gives c = 1.1163, d =
0.4856, and Ro = 10.953. The fit is extrapolated be-
yond the data to show a large region of approximately
constant force extending at least to R/a 35. This
is, for all practical purposes, indistinguishable from the
force due to a string tension. The force does eventually
fall ofF around R/a = 50, but this region is well beyond
the reach of today's simulations. It is remarkable that
a two-term logaritb~ic form could so electively destroy
the 1/Rz Coulomb dependence over such a large distance
range. The fit has a yz/NDF = 0.7, compared with 0.9
reported for the Coulomb + linear fit in Ref. [1]. Note
that the point at R/a = 2.83 is not included in the fits.
Vertically it is quite far ofF the 6t, but a small horizontal
correction would easily place it on. Note also the close
agreement with the two-loop result at small R. This was
not in any way built in, but came out as a result of the
6t. The agreement with the two-loop result is quite close
in the range 2.5 & R/a & 4. The phenomenological force
then begins to disagree with the two-loop force agaia. for

approach to be taken is that of a phenomenological ex-
tension of the one-loop force, consistent with functional
forms of (s»mmed) perturbation theory. It is reason-
able to assume that a(R) is given by a power series in
ln(Ro /R), but with coefBcients that differ f'rom the sim-
ple geometric series of the one-loop bubble diagrams. A
reasonable generalization for the geometric series sum-
mation is that of the Pade approximant:

n

) a, [ln(Ro /R)]'

a(R) =

) ci, [ln(Ro/R)]"
k=o
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smaller R. Since there are no data in this region, it is not
an issue for the present fit; but for work which includes
shorter distances, it would probably be best to match
the new a(R) onto the two-loop result in this region of
approximate agreement and to use the two-loop a(R)
for smaller distances than this, because it is almost cer-
tainly valid here. This would also cure the new a(R) of
its major Saw, namely, that it does not obey the two-loop
perturbative renormalization-group equation. Of course,
this is what was given up to get rid of the Landau pole.
However, the above noted agreement with the two-loop
result for 2.5 & R/a & 4 means that numerically it does
agree with perturbative scaling here.

To compare with the the linear+Coulomb fit as well as
to check the form of the potential resulting from the new
phenomenological run~lag coupling, a numerical integra-
tion of the new force was performed. A one-parameter
fit was then made to the potential data to determine the
constant of integration. This is shown in Fig. 2 along with
the potential data and the Coulomb+linear fit of Ref. [1].
Neither fit used the point at R/a = 2. The fits are seen
to be nearly identical from R/a = 4 to R/a 40. Thus
the modified me»ng coupling is capable of producing a
phenomenologically confining potential which is only dis-
tinguishable from a linear string tension potential at very
large distances. In this way the potential being discussed
here also difFers from the Richardson potential [7], since
that potential is also ultimately linear at long distances.

The two interpretations also give a suprisingly close
physical scale for the lattice spacing. Interpreting the
linear term as a string tension and using a physical
value of ~0 = 0.44 GeV gives a = 6.56 GeV [1].
This can be used to determine AL, ——9.80 MeV and
A~ ——20.78AL, ——204 MeV. Using again the two-loop
form from which A~ is defined (A~ = 1/Rp for the two-
loop force) [6],and fitting this form to the new force (with
parameters fixed to values previously given) in the short
distance region, 2.5 & R/a & 4.0, gives Rp/a = 30.57 in
the two-loop force. Thus a = 30.57A~ ——6.22 GeV,
using the same physical value of A~ as above. Thus the
two interpretations nearly agree on the physical scale of
the lattice.

The same approach was also successfully tried for the
SU(3) potential at P = 6/g2 = 6.2 and 6.4 using the data
of Ref. [8]. The SU(3) data are not as good statistically
as the SU(2) data, however, nor do they go to as far a
distance, so it is not as stringent a test as the fits given
above.

What is one to make of the fact that the interquark
potential can be fitted solely to a Coulomb force with
a logarithmically running coupling? First, a true string
tension term has not been ruled out by any means. One
can have a string tension term in addition to the modi-
fie Coulomb potential, with the Coulomb potential run-
ning more slowly. Hovever, a fit cannot easily tell the
difFerence between these. At the very least what is be-
ing shown here is that, unless it can be proven that the
coupling stops ru~~ing at some accessible distance, then
the current quoted values for the string tension should be
taken as upper limits, with one-sided error bars of the or-
der of 100%. It is therefore very important to determine
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FIG. 2. SU(2) potential data from Ref. [1]. Dashed line is
Coulomb+linear fit; solid line is fit to modified Coulomb po-
tential. Error bars range from 1/10 to 1/3 the size of plotted
points.

the true behavior of the ru~~ng coupling in the interme-
diate and long distance region. It should also be pointed
out that the modification introduced by the log-squared
term reduces the force from the one-loop perturbative
value. The problem with the perturbative force is that it
is too strong, not too weak, at long distances.

Going beyond this, it is interesting to entertain the
possibility of doing away with the string tension and ab-
solute confinement altogether for the continuum Yang-
Mills theory and possibly even for /CD. As mentioned
before, it is not necessary for the linear potential to ex-
tend beyond a few fm to successfully model meson spec-
troscopy. The modified Coulomb potential could pre-
sumably come from summed higher-order perturbation
theory without the need to invoke additional nonpertur-
bative physics. Because of the probable importance of
multiple gluon exchange at long distances, due to the
high eHective coupling, this potential could easily have a
substantial Lorentz-scalar piece, which may be necessary
to obtain the correct heavy-quark spin-orbit splittings [9].
Of course lattice Yang-Mills theories using the Wilson ac-
tion necessarily confine at strong coupling, and thus must
have a real string tension within the region of validity of
the strong-coupling expansion. However, it is possible
that this region is separated from the weak-coupling re-
gion which includes the continuum limit by a phase tran-
sition, as occurs in the U(1) lattice gauge theory. The
scaling of string tension and pseudo-specific heat are con-
sistent with the existence of a higher-order phase transi-
tion around P = 2.5 for SU(2) and P = 6.7 for SU(3) [10].
The infinite lattice critical points may be around P = 3.0
and 7.0, respectively. This transition would correspond
to the remnant of the finite-temperature transition which
exists on the symmetric lattice [11]. In other words,
it is possible that the conventionally interpreted finite-
temperature transition is in fact a true four-dimensional
bulk deconfining transition which remains at finite P as
the lattice size becomes infinite [12]. Recently it has been
shown that, when an adjoint term is added to the action,
the deconfinement transition joins the previously known
bulk transition in the fundamental-adjoint plane [13]. If
this connection persists as the lattice size becomes infi-
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nite, then the tredition must be everywhere a b»% tran-
sition. It should also be mentioned in this vein that non-
compact simulations of SU(2) lattice gauge theory have
failed to see definite signs of confinement [14]. Absolute
confinement is also questionable [15] for actions which
prohibit negative plaquettes [16].

Finally, the possible efFects of dynamical quarks should
be considered. Even without a fundamental string ten-
sion in the pure glue theory, it is very likely that the color
force is strong enough to cause chiral symmetry breaking.
If the chiral condensate is then polarized by the strong

color Gelds surrounding a q~~~rk-antiquark pair a region
of higher than normal vacu»~ energy surrounding the
pair could be formed [10]. This region can form a kind
of bag around the meson which contributes a linear term
to the interquark force, and may also contribute to the
dynamical mass [1?]. A diminishing of the vacuum con-
densate gg) in the neighborhood of a quark source has
been observed in a lattice simulation [18],lending support
to this hypothesis. Gribov has also presented a scenario
somewhat difFerent &om this in which light quarks are
responsible for confinement [19].
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