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Top quark and Higgs boson masses from vrormhole physics
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We bring together quantum field theory on S4 with the Coleman worxnhole hypothesis, which
imposes constraints on terms in the gravitational Lagrangian. In particular, we investigate the
eKect of matter fields on the trace anomaly, which is related to the (curvature) terms, by the use of
the renormalization group equations. We consider a toy model of a nonconformally coupled Higgs
boson to a single "top" quark. By numerically solving the renorxnalization group equations for the
couplings of the model, we can find preferred values of the particle masses for various values of the
bare nonconformal coupling. By making the ad hoc assumption that the tree-level, Higgs boson
trace anomaly vanishes on shell, a unique prediction can be made within this model for the masses
of both the Higgs boson and the top quark.

PACS number(s): 11.10.Hi, 04.60.—m, 14.65.Ha, 14.80.Bn

I. INTRODUCTION

Q(o.) = e'

For the action

+bR„„R""+ cR (2)

Recently, it was suggested [1] by Coleman that the
effect of wormholes in Euclidean quantum gravity is to
modify or even determine the observed values of the fun-
damental constants. In this idea, the effects of wormholes
can be described by a set of parameters (cr,). The cos-
mological constant A, the gravitational constant G, and
other matter couplings depend on (o.;), in a complicated
way, at the wormhole scale which is around or just be-
low the Planck scale. Furthermore, Coleman suggested
a mechanism by which A is exactly zero and G assumes
its minimal possible value. In the Euclidean functional
integral, it is possible [2) to integrate out the contribu-
tion of wormhole configurations to give an integral over a
distribution of parameters. It is suggested that the dom-
inant contribution comes &om classical saddle points of
the integral. The distribution is of the form

3 8m2d

8G2A 3

where d is a linear combination of a, 6, and c. The dou-
ble exponential makes the A=O surface in n space over-
whelmingly likely, and the minimization of G and d on
that surface should fix some or all of the other constants
of nature. Since the higher-derivative terms are related to
the trace anomaly [3], there have been attempts [4,5] to
use renormalization group techniques to relate the cou-
pling constants of interacting Beld theories to the con-
stant d. The tendency for A to vanish means that one
is forced to compute the effective action in the limit of
large radius, that is, in the far infrared limit, where all
but massless particles have been integrated out.

In this paper, we apply the renormalization group to
look at how minimizing d affects the masses of the Higgs
boson and the top quark. In Sec. II, we give a brief out-
line of how the minimization of d can determine particle
masses. In Sec. III, we present a toy model with a Higgs
scalar and a single top quark. We carry out the one-loop
renormalization of the model to derive the renormaliza-
tion group equations for the couplings of the model. We
then calculate the vacua' diagrams to two-loop order to
derive the corresponding equation for the parameter d.
These equations are then solved numerically, and regions
in coupling constant space are sought which minimize d
at low energies.

with A )0, the stationary point is a four-sphere of radius
II. RENORMALIZATION GROUP ANALYSIS

with

) 1/2

(8GAp (3)
In Refs. [3,6—8], quantum corrections to the constant

d were calculated. These give rise to a renormaliza-
tion group equation which describes how d changes as
the quantum Huctuations are integrated out going &om
a high-mass scale down to a low-mass scale. Defining
D = 8s'2d/3, we have an equation of the form

Electronic address: bahOtauon. ph. unimelb. edu. au
~Electronic address: joshiOtauon. ph. unimelb. edu. au

0556-2821/94/50(9)/5993(10)/$06. 00 50 5993 1994 The American Physical Society



5994 B.A. HARRIS AND G. C. JOSHI

where Ai is the one-loop free field contribution and 7(g;)
is the P function obtained from higher-order interactions.
Given that wormholes are unable to dictate the parti-
cle content of the world, which presumably arises kom
some superstring theory or the like, the wormholes will
attempt to minimize D at large distances, that is, in the
in&ared limit, by adjusting the fundamental couplings at
the wormhole scale.

Putting aside the interacting part for the moment, one
can solve Eq. (5) to obtain

D(p) = D(M h) + ) Ai;ln(M h/p) . (6)

This equation holds as one runs down kom the wormhole
scale until the mass scale associated with each particular
field is reached. At this point, the field is integrated
out and stops contributing. In the standard model, the
only fields left in the massless limit are the photon and
graviton. Since wormholes will try to minimize D, the
sign of Ai is important. Referring to Eq. (40) of Ref. [7],

62 11 2
Ay = iso NGB &sod —iso' (7)

we have Aq ) 0 for gauge bosons, fermions, and con-
formal scalar fields. Although the values were calcu-
lated for massless fields, dimensional analysis requires
that the results hold for massive fermions and scalars
as well, since masses will only contribute to A and G.
However, for nonconformally coupled scalars, the sign of
Ai may change [4]. An investigation for spin-

&
and mas-

sive vector particles is given in Ref. [9]. For a field with
Ai ) 0, D(p) will increase with decreasing p, . This leads
to the conclusion that if the field has an adjustable bare
mass at the wormhole scale, then this mass will be driven

up to that scale in order to minimize the contribution
to D. This problem may be evaded provided there is a
symmetry such as gauge invariance for vector bosons or
exact chiral symmetry for fermions. Any physical mass
will then have to be induced through a process such as
spontaneous symmetry breaking. For a conformal scalar,
there is no such protection and one is forced to consider
that scalars may require a nonconformal coupling of the
form suggested in Ref. [4]. We investigate this possibility
in the next section.

Another conclusion which may be drawn is that if
we have a model with a Higgs field, then the worm-
hole parameters will adjust the couplings to raise the
symmetry-breaking scale to eliminate the gauge bosons
and fermions as quickly as possible. However, this is
barely more than a restatement of the hierarchy problem
in a different context.

together. The interdependence of the Higgs boson and
top quark masses has been investigated previously by a
variety of authors [10—15] and collected in a review by
Sher [16]. The various results will be useful in what fol-
lows.

We choose a simple model containing a single neu-
tral "Higgs" boson coupled to a Dirac "top" quark. The
quark is coupled. to SU(3), and we assume thaf, the other
quarks in the standard model contribute to the running
of the /CD coupling constant. The scalar field has a
quartic seM-coupling as well as a nonminimal coupling to
the gravitational field. The importance of this nonmini-
mal coupling will become clear shortly.

%e are neglecting here the efFect of the electroweak
couplings since they only have a large efFect on the Higgs
boson mass for small values of the top Yukawa coupling.
This implies that this model will only be useful provided
the bound 4m' ) 2Mi44, + m4&, given in Ref. [12], is satis-
fied, which at the tree level gives mi ) 77 GeV. Given the
current experimental fits to the top mass, for example,
del Aguila, Martinez, and Quiros [17] with mi ——122+zt
GeV, this would appear to be a reasonable assumption.

The action for the model is

+,zgbt,"gP + —,zing'+ sage' D —,q ) g
2G 2G

gZigp Q —sA~T Q+ Zg, ggg2" (8)

(9)

where

1
Gg(l) =

[l + 2i(n —1) + Y][l + 2(n —1) —Y]

where the counterterms and wave function renormaliza-
tions have been included. The Feynman rules for this
model are given in the Appendix. Of course, there is also
the non-Abelian sector as well as the other quarks which
we have omitted.

The major diH'erence between this model and those of
previous papers [7,8] is the nonminimal coupling of the
scalar field. This has the effect of modifying the scalar
propagator

III. TOP QUARK AND HIGGS BOSON MASSES
and

In this section, we investigate the possible eg'ect of
wormholes on the values of the top quark and Higgs bo-
son masses. There have been attempts to address these
questions separately [4,5], but because of the strong infiu-
ence on the Higgs boson mass by the top quark Yukawa
coupling, it would appear to be necessary to look at both

That this modification has little e8'ect on the complexity
of the calculations is another example of the power of
the complex /-plane technique. The snms are evaluated
in the same way, with the dependence of the propagator
poles on ( being the only difference.
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A. One-loop renormalisation

The one-loop renormalization of this model is carried
out in a straightforward way using the techniques of
Ref. [7]. The diagrams are given in Fig. 1. The ( coun-
terterm and the relevant renormalization constants are
found to be

(i2)

(g &x+ 4m) I

—
I16+2 Eej

(6, 3) (2lsg=l —
I

g—~Ny ——A
I I

—
I16~' gA 2 j qej

(16)

B. Vacuum diagrams

Now as we have seen in Ref. [7], vacuum diagrams also
require a renormalization of the gravitational part of the
action. To one loop we have the diagrams of Fig. 2. For
the fermion we have, from Refs. [6,7],

where we have kept the non-Abelian Casimir invariants
general, using the conventions of Ref. [18].

1, t'21
,geNx I

—
I16m2 ' gs j (14)

(17)

h( = (g, Ny + -A)
I

—
I16n2 ' 2 ge j

but for the nonconformal scalar the procedure is slightly
modified as a result of the presence of the coupling (. We
have

( 1 (
I'&[0] = —ln det ——

I

—M+ —
&

t,
'

Ip2 ( oz j J
OO

= ~ ) ln [l+ ~(n —1) —Y][l y 2(n —1) + Y] dim(l, 0)
I,=O

1
(Ig (n) + I2(n) j,

where

0

Ig(n) =-
—(a/2 —Y)

n
x I'

2 )

I t (n
dr Sir rr

~

r + —
~

I'
~

—+ r)2j E2

and

„fl . ) n
I2(n) = —Im i dye "I —+iy

I

I' —+iy
p (2 j 2

x I' ——1 —iy (20)
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~ g r FIG. 1. One-loop 6eld renormalization di-
agrams.
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FIG. 2. One-loop vacuum diagrams. FIG. 3. Two-loop vacuum diagrams.

Note that I2(n) is the contribution from the conformal
part of the propagator and is half of the result from
Ref. [7], since we are dealing with a neutral field. Evalu-
ating the integrals at n = 4, we obtain

6 2 )
ra[0] = (ysp g4C ) I

&a)
(21)

This result agrees with Ref. [4] and also the last chapter
of Ref. [19] once normalization differences are accounted
for. We therefore require the counterterm

1 ii i 2 i (2)
4g Xio+& + 24 Xsoa40s

(22)
%e noir turn to the interacting bvo-loop vacuum dia-

grams given in Fig. 3. The techniques to handle such di-
agrams have been described in Ref. [7]. In the following,
we adopt the slightly different convention TR{I)=4 for
the I' matrices than that used in Ref. [20], TR{I)= 2")'z,
to eliminate an annoying prescription dependence which
feeds through to the two-loop renormalization group
equations. The change in convention simply results in
a finite renormalization of the 6( counterterm and the
vertex constant Z~, .

For the scalar-fermion loop, we have

N
OO OO OO

r&&[0] = — (pa)
"

~ ) ) ) G(L)G(a)G~(J)A(L, a, J)F(L, a, J),
r(n)n„„2(n—1)r2[-,'(n —1)], ; (23)

where A(l, a, J) is given by

n 2

A(l, s, J) = ——1 + 1~[—j(j+ n, —1) + l(l + n—1) + s(s y. n —1)))2

Evaluating the l and 8 sums gives

(24)

gR2Ng 4 „2s2"n 7r . - fnn ') I'[J+n —l]r[J+n —2]r,', [0]= ' ' (~ )r(n)O ~ 2(n —l)l' [~ (n —1)]sinn'(n/2 —2) ( 2
'

2, J) I'[J + 2]I'[J + 1]
G( JA

g~2N 26—2m~ 7r 'Ir
lnn

() a)' " AI ——,——, (n —1)+Y—I—r(n)0„2(n—l)I' [~ (n —1)]sine(n/2 —2) sinn (n —4) g 2
'

2
'

2

I'[2(n —1) —Y]r[~~(n —1) + Y]
I [2 —,'(n —1) —Y]r[—2—,'(n 1) +—Y]-'

and expanding about n = 4 leads to

2 2

[0] = (.
'

I

—
I

+ [
——3~+ I 4 v —2@(- — ——(.') —2@(-+ ——(.')]

I

—
I

g Ng 2 P2) 2 2 3 1 f'2)
384n.~ (a ) 2 4 4 Ea)

(26)

Now we must include the counterterm 6(a, in order to compensate the fermion loop in the boson propagator. This
gives

r..., (S) = ', S&. f'S.G((, ,„),
rp(n - 1) - Y]r p(n - 1) + Y]

2r(n) ' sinn(n/2 —2) I'[2 + Y]I'[2 —Y']

+ ——, + 4W+ 20(-, — ——(,') + 24'(- + ——(,')us Ny 3 1 a
384'' ga)

(27)
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Combining Eqs. (26) and (27) gives

r.[o]=,&
—

I

—
I + [

——, +7+ln4mp a ]
g~Ng 2

384z s
I ps) Es),

which is canceled by the new counterterm

(28)

1 g~2Ng 2 (2& (2b
a40 384''

Note that the nonlocal logarit&~ic term is canceled in the efFective action by performing the integration and expanding
the result about n = 4.

The scalar self-interaction, Sgure-eight diagram is simple to evaluate, with the result

r'„[0]= A 2 (2l,4
I

—
I

+ ——3~+in4~u a —2y(z — ——t,') —2y(-+ ——() I

—
I

2 2 3 1 (21 t

768z2
f (s) 2 4 2 4

and the associated counterterm

1r.*„lo)=, ,bq. /~. a,(„,„)
2 I (2't

,&' -2I —
I

+[--", +47+2~(-', — —.'-~)+2~(-', + —.'-~)]
I

—
I768'' ks),

(s1)

which combine to give

z 't (2&
&~IoI =

~88~, C'[—I; I

I

differentiating the bare parameters with respect to p, and
setting the results to zero leads to

' = —(2Iluc+ I', (alp's+ il —6u*&s)

+[——, + ~+h 4~v a ] I

—
I

~
8

&s)

This divergence is canceled by the counterterm

A, (2)'
Ictb = d&P 4 2a40s 768''2 (s )

(33)

BA 12
p = —sA+ (3%+4g, Ny) — g, Ny,

By, 16m 2 t 16%2 t

(A+ 2g~zNg) .
Bp 16m~

(s9)

It is important to note that for a conformal scalar field
/=0, there would be no divergence for the diagrams in
Fig. 3.

C. Renormalisation group equations

From Eqs. (12) to (16), we are able to derive the one-
loop renormalization group equations for this model. We
define

Defining the bare gravitational parameter

2lD+(1(2 1
) I24 180

384zs gs) (s) 768z'z (s) J

(41)
e/2 —1/2 —1

gto = P Z&, Z& Z2 gt

Ap
——p'ZpZ~ A )

(o =6+K,

(34)

(35)

(s6)

gives after difFerentiating

p =sD+(—g ——) — Ny — t,
' . (42)—

BD
Bp, 12 90 90 g6&2

It is interesting that A does not directly afFect the r~~~ing
of D since there is no A dependent single pole term in Dp.
However, it infiuences indirectly through the r»~~ing of

(—& d
—-T'x)11

Bp 2 16'2 (37)

and given the non-Abelian coupling satisfies the Bat space
form Specializing to one top qu~~k coupled to SU(3) with n~

quarks contributing to the rn~~Ing of g, we have Cy ——6,
Ny=s, C~1 ——3, and Ty = 21n~. Equations (37)—(42)
become, at n = 4,
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Og g
P~ = —

z (11 —s71q)
p 16m

9
V~ = 6, (~m —8g ),Bp 16' (44)

:: g„=5.0

16m2
(3A + 12g, ) — g4,t 16%2 t (45)

2.0
gto=2.0

y, = (A+6g ),C

Bp 16+2 (46) a(v)

2

=(—C ——) ———
C .12 90 90 (47) 1.0

g,o=0.5

D. Analysis

In this section we will numerically solve the renor-
malization group equations (43)—(47) from the wormhole
scale, which is taken to M b

——10 GeV, down to @=1
GeV. We take, in what follows, nq ——6 and the strong
coupling constant g to be go ——0.5 at the wormhole scale.
This choice gives e, = gz/4m 1/7 at 100 GeV, which
is consistent with the value used in Ref. [15].

Putting the gravitational aspect aside for a moment,
a short explanation of how the Yukawa and A couplings
determine the respective masses of the top quark and the
Higgs boson is required. Note that the procedure here is
the reverse of the procedure followed in Refs. [12,13] and
is closer to the work of Ref. [15].That is, we choose values
of the bare couplings at the wormhole scale and evolve
them down to the weak scale. En the standard model, the
Higgs 6eld acquires a vacuum expectation value, which
can be calculated &om the Fermi constant G~, which
we take to be v —245 GeV. The mass of the top quark
is then given by mq ——(v/~2)gq and the physical Higgs

boson mH —— —2p& —~ —— v 6 A, where —pH is

the negative squared mass of the unbroken Geld. In the
limit of large a, the efFect of the zeta term is expected to
be small. We also have the self-consistency condition that
the couplings stop running when the mass scale of the
respective particles is reached. This means that we must
solve the equation p = (v/~2)gq(p) for the top mass and

p = (v /6)A(y, ) for the Higgs boson mass. Figure 4
shows the top mass solution for a variety of initial values
of gto. Note that as gto tends to large values, the top mass
tends to a maximum value described as an "intermediate
fixed point" by Hill [15]. Although the Yulotwa coupling
rises without limit at small values of in@ as a result of
the strong coupling g, this is unphysical as the threshold
condition marks the end of the running.

For the case of the Higgs boson mass, we have a more
complicated situation. For large values of gto, the gt term
dominates the running of A for small Ao and the gt domi-
nates for larger Ap. The net result is that A(p) is pulled to
another intermediate-type Gxed point largely determined

gto=o

0.0
0.5

I

10.5
I

20.5
I

30.5
I

40.5

FIG. 4. gI (p) vs logy. Here log represents the natural log-

arithm.

BD~ 33 g,
Bp 90 647rz

(48)

( 1q2 1) gt q212 90

by the value of gto. This is essentially the merging of the
upper and lower bounds described by Cabibbo et al. [12].
In Fig. 5, a series of curves is shown for various initial
values Ao for gto ——2 corresponding to a top mass mt ——212
GeV and a Higgs boson mass mH ——158 GeV. For smaller
values of yto, the value of Ao becomes much more impor-
tant. Figure 6 shows the behavior for gto ——0.2, that is,
mt ——98 GeV, again for a range of values of Ao.

The general procedure for minimization of D is as fol-
lows. Given a value of (p, one chooses the pair (gyp, Ap)
and evolves the set of coupled renormalization group
equations (43)—(47) down to the weak scale. The mass
consistency equations are then solved to give the top
quark and Higgs boson masses for the given pair of bare
couplings. Now the terms in (47) will drop out at mq for
the fermion contribution and at mH for the scalar contri-
bution. The interaction term will drop out at whichever
scale is reached 6rst. Various threshold efFects will also
modify the total set of renormalization group equations
as one or both particles drop out. Since we are assum-
ing lnmt and lnmH are of a similar magnitude, we ig-
nore such corrections in the following. Similarly, we will
take as an approximation that half of the interaction
term drops out at mt and the other half at mH. That
is, we de6ne the two quantities Dt and D~ such that
D = Dq + DH The linearity o. f Eq. (47) then gives
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FIG. 5. A(p) vs logy, for gqp=2. 0. Here log represents the
natural logarithm.

We then evaluate Dq(mq) and DIr (m~). Since this is the
end of the running for each quantity, the results may be
combined to give Dfi„~i= Dq(mq) + DIr(m~). It is this
quantity Dg ~ which must be minimized. This quantity
may be evaluated for a range of values (gyp, Ap) for a
given (p, and if Dfi i assumes an absolute minimum for
a particular pair of couplings, then the conclusion will
be that wormholes force the couplings, and hence the
masses, to these precise values. The procedure may be
repeated for difFerent (p to see the eIFect on the predicted
masses.

A brief discussion of the consistency of the above pro-
cedure is necessary. We have given no explanation as
to why the Higgs vacuum expectation value (VEV) is
v 245 GeV. This is fixed by the negative, unbroken,
mass-squared parameter p,~. Now, in the spherical for-
malism, all the previous calculations go through un-
changed if we include a mass term for the Higgs boson,
provided we make the substitution ( ~ (+ y&a . This
will then require the introduction of counterterms which
renormalize the cosmological constant A and Newton's
constant G. Presumably, on dimensional grounds, the
minimization of these parameters will fix the mass of the
scalar. However, we make no attexnpt to describe how
this may occur. Therefore it may appear as if our at-
tempt to predict the mass of the scalar is inconsistent.
However, a short argument will convince the reader that
this is not so. Given our particular choice of v 245
GeV, we may find a set of bare couplings (p, gqp, Ap, . . .
such that Dg ~ is minimized. This will give us a predic-
tion of the masses and, therefore, @~2 at the weak scale.
If we choose a difFerent value v' for the Higgs VEV, then
we will find a difFerent set of couplings (p, g~p, Ap, . . . and
hence a difference p~. Consistency then implies that if
we have p~ as the value fixed by minimizing A and G,
then we would have a VEV of v'. We assume, there-
fore, that there is a one-to-one correspondence between

(P) = v and prr(m~) at the minimization point. Given
that experiment tells us that v 245 GeV, we uniquely
evaluate the fixed, but unknown p,&.

4.0
E. Results

&» 3.0-

2.0

1.0

.5

Q Q, / a

0.0
I

10.0
I

20.0
I

30.0
I

40.0 50.0

&(p) vs logy, for g,o=0.2. Here log represents the
natural logarithm.

Before presenting the results a few preliminary obser-
vations can be made.

First, as far as D is concerned, the sign of ( is irrel-
evant, since /=0 is a fixed point of Eq. (46) and all
quantities depend on (2.

For (=0, the sign of the one-loop coefficient in D~ is
negative, and so Dg„~will be minimized for large values
of mq and m~. This leads to the prediction that the top
mass will be pulled to its largest possible value consistent
with umtarity, an observation first made by Grinstein
and Hill [5]. The Higgs boson mass will also get pulled
up to its largest value, determined by the merging of the
upper and lower bounds with respect to mq, as described
in Ref. [12],as a result of domination by the large value of
gq. In the framework of this simple model, we obtain the
previously mentioned values m& ——216 GeV and m~ ——163
GeV. This behavior is expected for nonzero ( provided
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(p &(,the critical value in Eq. (49).
For large (p » 1, ((p) remains large over the full evo-

lution even for reasonably large gqo &1. This implies that
D~(m~) is minimized for the smallest possible value of
m~. For large (p, D~(mH) is minimized for by choosing
small Ao and small gqo, as both must be small in or-
der for mIr to be minimized. D~(m~) will overcome
the disadvantage of a small top mass in Dq(mq) pro-
vided (~&( —sp) && ~~. However, one must assume
that the dependence of ~(p on the wormhole (a;) param-
eters prevents the value from increasing without bound,
since DH(m~) can be made arbitrarily small for suffi-
ciently large t,"p. Also, one must remember that for small

gqp the electroweak couplings will become important and
may act to put a lower limit on the Higgs boson mass
through the requirement that (P) = v remain the abso-
lute minimum of the potential. Such limits were given
by Linde [11]and Weinberg [10].

We turn now to the numerical results. Figures 7—
12 show the value of Dfi~gf for 0.001( gqo ( 2.0 and
0.001( Ap ( 1.0 over a range of values of (p Rom 0.1 to
10.0. However, one should bear in mind that the approx-
imation of neglecting the electroweak couplings probably
means that for gqo &0.1 the procedure is invalid. Also,
although a maximum value of Ap ——1.0 is rather low
given the perturbative limit A 50, given our definitions,
the behavior for large values of Ap is essentially fiat and
uninteresting.

First, for (p ——0.1 we see in Fig. 7 the expected prefer-
ence for large values of yqo. There is a surprise, however,
that even in this limit, where A is expected to have lit-
tle efFect, the minimum of Dfi ~ occurs along the line
Ap ——0.001, which is efFectively zero with respect to gq.
Now as gp is increased to gp

——0.3, the"potential" Dfi
exhibits a kink at about ggp ——0.5 and begins to increase
again. This is extremely interesting as we have a de6-
nite minimum value of Dfi ~ and so a preferred value of
mq. Note again that the minimum occurs again along the
line Ap ——0.001. This behavior continues as (p is increased
further, with the link becoming more pronounced and
moving farther toward the lower end of the range of gyp.
As we get to very large values of (p, the kink disappears
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and we tend to the limit of small couplings, as we expect.
Looking at the behavior of the potential Dg„~for in-

termediate values of (o, we have the expected repulsion
away &om small gqp due to the coefficient gp in Eq.
(48). Now, as we raise the value of gqo, this begins to
cause ((p) to run down at a faster rate. This has the
effect of decreasing the rate at which D~(y, ) runs down,

and if (s runs down to below zz, Dff(p) in fact be-

gins to rise with decreasing scale. Therefore a point is
reached where one loses more by running ((p) down than
the gain of raising mq. This explains the kink in the po-
tential. Clearly, the relative strength of the respective
forces changes with the initial value (o. For small (o,
maximizing mq will win out, but for large go it will be
much easier to slow the running of ((p, ) by lowering the
couplings. For the case of Ap, it appears that it is always
more efficient to slow the running of ((p) than to raise
or lower Ao to move the Higgs boson mass depending on
whether the one-loop coefficient in Eq. (49) is positive or
negative. This is probably due to the fact that m~ de-
pends on ~A rather than the linear relationship between

gq and mq . It also appears that the interaction term in.

Eq. (42) plays little part compared to the running of (.
Therefore the minimization hypothesis unambiguously

predicts the following. First, for a given value of (o the
masses of the top quark and the Higgs boson are uniquely

determined. A range of values of mq and mfa is given in
Table I. We also list for future reference the quantity4—:g (m~) —

~~, which is proportional to the one-loop
coefficient in Eq. (49) and as such is a measure of the
Higgs boson contribution to the conformal anomaly [19].
Second, and perhaps more importantly, given that the
go parameter is unknown, we nevertheless predict that
the Higgs boson mass is forced to the lowest possible
value with respect to the top mass. This is the constraint
that the Higgs potential remain bounded below up to the
wormhole scale and corresponds to the lower bound given
in Ref. [12] and improved upon in a review by Sher [16].
Given the improving statistics on the possible top mass
[17], we can predict a range of values where the Higgs
boson mass is likely to lie. In our simple model, the pos-
sible top masses fall between about (s——0.4 and 0.6. This
leads to the bounds 40 GeV( m~ (80 GeV. This bound
is most likely to be too low as a result of electroweak
corrections. Simply applying the lower-bound prediction
to the lower bound given in [16], we predict that the top
mass is most likely to be 60 GeV( m~ &130 GeV. This
appears to be more realistic.

As a final remark, in the absence of any constraint on
(p, if we make the totally ad hoc assumption that the
Higgs field conformal anomaly vanishes at m~, so that
mH will fall at the minimum of D~(p, ) as a function of
p, then there is only one value of (o which satisfies this
constraint. We find, to the accuracy of this analysis,
(o ——0.493+0.001, which corresponds to mq ——126.2+0.3
GeV and m~ ——59.1+0.3 GeV. Allowing for an increase
of 10% or so for mq and perhaps a little more for mlf
because of electroweak corrections, this value is highly
consistent with the current experimental data fits. While
we do not claim to have uniquely predicted the top and
Higgs boson masses, this appears to be an extremely in-
teresting coincidence.

IV. DISCUSSION

In this paper, we have investigated, using the tech-
niques of previous papers [7,8,20] the consequences of
the Coleman wormhole hypothesis for the couplings and
masses of the standard model. We looked at the effect of
vacuum diagrams up to two-loop order on the renormal-
ization of the higher-order curvature terms in Eq. (20).
When projected onto a four-sphere, we have the param-
eter D —= 3 d, where d is a combination of the higher-
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FIG. 12. Ds„~&vs (Ao, g&o), for (p=10.0.

0

10.0
2.0
1.0
0.6
0.5
0.4
0.3
0.1

geo

0.012
0.035
0.107
0.225
0.283
0.373
0.549

no min

mg (GeV)
9
23
60
107
125
147
173
216

mls (GeV)
3.2
3.7
14
43
58
80
110
163

99.638
3.807
0.762
0.108
0.006

—0.069
—0.115
—1.333

TABLE I. Top and Higgs boson masses for various go.
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order couplings in Eq. (2), which must be minimized in
the infrared limit.

Using a model incorporating a nonconformally coupled
Higgs scalar, we derived the renormalization group equa-
tions for the matter couplings, the nonconformal cou-
pling (, and the gravitational parameter D W. e then
proceeded to investigate whether or not D developed a
minim»m for various values of the bare top quark Yukawa
coupling gto and the bare Higgs self-coupling Ao given a
fixed value of (o. We found that for all values of (o, D is
minimized for the smallest possible value of Ao, leading
to the prediction that the Higgs boson mass is pushed to
its lowest possible value relative to the top mass. Also,
D develops a minimum for a particular value of gto, pro-
vided that (o is in an intermediate range. For large (o
the top mass is pushed to a low value, and for small (o it

I

is pushed to a large value. Using the current experimen-
tal predictions for the mass of the top quark, we were
able to give a possible range for the mass of the Higgs
boson. Also, assuming that the conformal anomaly for
the Higgs Geld vanishes at the scale of the Higgs boson
mass, we obtained a unique prediction for mt and mH
which is consistent with current bounds.

APPENDIX A: FEYNMAN RULES
FOR NONCONFORMAL SCALARS

The propagator of a nonconformal scalar Geld is

(AI)

with

Y= /- —('

The interaction rules are
(1) Self coupling:

gt
b p.

(A3) (3) Conformal counterterm:

(A5)

(2) Yukawa coupling (top quark):
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