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Regularization in the gauged Nambu —Jona-Lasinio model
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Various prescriptions employed for regulating gauged Nambu —Jona-Lasinio —type models such as
the top-quark condensate xnodel are discussed. The use of dimensional regularization maintains
gauge invariance but destroys the quadratic divergence in the gap equation. If instead a simple
ultraviolet momentum cutoK is used to regulate loop integrals, then gauge invariance is destroyed
by a quadratically divergent term as well as by ambiguities associated with arbitrary routing of
loop momenta. FinaQy it is shown that one can use dispersion relations to regulate the top-quark
condensate model. This prescription maintains gauge invariance and does not depend on arbitrary
shifts in loop momenta.

PACS number(s): 12.60.Rc, 11.55.Fv

I. INTRODUCTION

In the past few years, following the realization that the
top quark is heavier than the gauge boson masses, there
has been renewed interest [1] in the original Nambu-
Jona-Lasinio (NJL) model [2] to provide a possible dy-
namical symmetry-breaking mechanism for the standard
model. In particular, new strong forces at a high energy
scale are ass»~ed to cause the formation of tt bound
states (top condensation) and dynamically break the
SU(2) xU(1) symmetry. This leads to an effective low en-

ergy theory which is qualitatively equivalent to the stan-
dard model, but with a heavy top quark playing a direct
role in the symxnetry breaking.

A minimal scheme implementing the NJL mechanism
for the standard model was given by Bardeen, Hill, and
Lindner (BHL) [3], who obtained precise predictions for
the top-quark and Higgs boson masses. They argued that
the low energy effective Lagrangian in the fermionic bub-
ble approximation gives rise to the usual gauge coupling

P functions in the standard model from fermion loops.
By imposing the compositeness conditions as ultraviolet
boundary conditions on the renormalization group How
and assn~ing the full one-loop P functions of the stan-
dard model, BHL found that typically the top quark mass
is heavy, ~tzp —225 GeV and YAH&ggs —1 1fA&zp& for
composite scales ranging &om 10 GeV to 10 GeV.
These quantitative predictions are controlled by the in-
&ared fixed point structure of the renormalization group
equations [4] and consequently a heavy top mass is a
generic feature of this model.

In order to show that the gauged NJL model is quali-
tatively equivalent to the standard model, one must take
care in choosing a consistent regularization scheme. This
is because the four-Fermi interaction in the NJL model
leads to quadratically divergent terms which can destroy
many of the desired qualitative features of the standard

model, before any quantitative predictions can be made.
In this work we discuss various regularization schemes

one can implement in the gauged NJL models, such as
the top-quark condensate model [3]. In these models the
dynamics leads to a gap equation, where, unlike in the
original BCS theory, there are quadratically divergent
terms. While these terxns lead to fine-t»»ng problems,
they are absolutely necessary for any consistent model
and the choice of regularization scheme must be xnade
compatible with them. In order to xnake contact with
the standard model, the vector gauge boson masses in
the NJL model must be induced in a locally gauge in-
variant manner. One common scheme often employed is
dimensional regularization and we will discuss the con-
sequences of implementing this scheme consistently for
the NJL model. In addition, Willey [5] recently argued
that the NJL model suffers &om inherent ambiguities
arising &om the arbitrary routing of momenta through
quadratically divergent fermion bubble graphs. Willey
employed an ultraviolet momentum cutofF for all inte-
grals and we will exaxnine the consequences of these am-
biguities for the top-quark condensate model. Finally
we will show that a consistent prescription for regulating
the top-quark condensate model is to use dispersion re-
lations. This prescription is gauge invariant and avoids
the problems of ambiguities arising &om quadratic diver-
gences.

II. THE NJL MODEL AND DIMENSIONAL
REGULARIZATION

Let us begin with the xninimal top-quark condensate
model of Bardeen, Hill, and Lindner [3]. The NJL La-
grangian for the standard model at the scale A is given
by
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where a and 6 are color indices and l:g;„t,„contains only
the gauge boson and ferxnion kinetic energy terms. Note
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that (1) is an effective Lagrangian of some renormaliz-
able interaction above the cutoE scale A and that the
four-Fermi coupling constant t must be positive to en-
sure an attractive interaction. The induced top-quark
mass resulting from the four-Fermi interaction in (1) is
obtained by solving the gap equation to leading order in
Ncolor ~

FIG. 1. The inSnite sum of fermion bubble diagrams. The
scalar tt channel has a pole at 2m~, vrhich corresponds to the
composite Higgs scalar. The pseudoscalar tt and Savored tb
channels give rise to three massless Nambu-Goldstone bosons.

d4k 11:2GNc&
( )4 (2)

Assuming that (1) describes physics up to the scale A,
the integral (2) can be regularized with an ultraviolet
Euclidean momentum cutofF A. This leads to the gap
equation

While this is fine for the quadratically divergent non-
gauge-invariant terms in the gauge boson self-energy, it
is a disaster for the gap equation because dimensionally
regularizing the integral in (2) destroys the quadratic di-
vergence in (3). In particular the gap equation without
the quadratically divergent term is given by

where we have only kept leading order terms. Notice
that there is a quadratically divergent term in the gap
equation (3) which is nothing other than the reincarna-
tion of the Higgs boson mass quadratic divergence in the
standard model and leads to the usual gauge-hierarchy
problem.

The low energy efFective Lagrangian (1) is clearly gauge
invariant because it only contain. s the gauge boson ki-
netic energy. When the scalar tt condensate forms, the
gauge bosons must acquire mass in a SU(2) xU(1) gauge-
invariant manner because an explicit mass term would
break gauge invariance. In the top-quark condensate
model the gauge boson mass arises &om the fermion mass
dependence of the gauge boson self-energy, and so one
cannot simply discard all the non-gauge-invariant terms
in the self-energy. If one employs dimensional regular-
ization then it turns out that only the fermion mass-
dependent non-gauge-invariant terms survive and they
combine with terms &om the Nambu-Goldstone mode
contributions, so that the gauge bosons become massive
in a gauge-invariant manner. However, the unfortunate
feature of the dimensional regularization scheme is that
it also &i%~ all quadratic divergences. This is because, in
dimensional regularization,

d Ic
lim = 0.

o

1= — m~~ ln 2+1Szz ( m~

where p is the renormalization scale. Equation (5) would
mean that the four-Fermi coupling 0 & 0, correspond-
ing to a repulsive interaction. This would contradict
the assumed attractive interaction between top quarks
in (1). Clearly we need a regulator that is sensitive to
the quadratic divergences.

III. AMBIGUITIES IN THE NJL MODEL

The simplest prescription for regulating divergent inte-
grals that does not destroy the quadratic divergences in
the gap equation is to use an ultraviolet Euclidean mo-
ment»m cutofF A. Let us now examine the consequences
of using this simple prescription for the top-quark con-
densate model. Consider the sum of fermion-fermion
scattering amplitudes depicted in Fig. 1, where the am-
plitudes are summed to leading order in N, I, and the
/CD coupling constant is zero (fermion bubble approx-
imation). Ass»ming that the gap equation is satisfied,
the fermion. -fermion scattering amplitude in the scalar tt
channel is given by

1 1

y+(1 —n)gt —m, P—aP —m, )
iG ~ iG d4lI', (p ) = —1 — N, Tr—
2 2

' (2z)4

—A(a)p2 + (p2 —4m, ) dx ln
2N, 2 s m~2 —pzz1 —x )

where o; is an arbitrary routing parameter introduced in
the loop moment»~ (see Fig. 2) and b, (a) = (1 —2n+
2a ). Normally the parameter a is neglected because
the moment»m integration variable can be shifted by a
finite amount for integrals which are at most logarithmi-
cally divergent. However, for integrals which are more

FIG. 2. The loop momentum routing in a fermion bubble
diagram.
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divergent, this shift of integration variable results in the
appearance of an extra "surface. term" which depends on
a [6]. This causes the pole in the scattering amplitude (6)
to shift by an amount proportional to b, (a)/ln(A /m~)
kom the usual value at p = 4&a~. However, since A is
necessarily finite and o. is an»~restricted constant, the
pole receives an arbitrary correction and so makes the
relation between the top-quark and physical Higgs bo-
son mass arbitrary. Note that when there is no routing
ambiguity or a = 0, the correction to the pole term is
negligible for large A.

This momentum routing ambiguity, in the context of
the NJL model, was first noticed by Willey [5] and is the
result of using a moment»~ cutofF regulator. It should
be remarked that this routing ambiguity is completely
diferent kom an earlier ambiguity noted by Hasenfratz
et al. [7], who considered a lattice formulation of the
NJL theory. In the lattice theory, higher derivative in-
teraction terms can be added to the NJL Lagrangian,
which are in equivalent »niversality classes, in the sense
of defining the theory by going to a critical point. These
terms introduce additional arbitrary constants and give
an ambiguous prediction for the ratio m2/m2. However,
assuming that the nonrenormalizable four-fermi inter-
action arises from a renormalizable gauge theory at high
energy, it can be shown that the additional arbitrary con-
stants associated with higher derivative interaction terms
are numbers of order 1 and do not greatly innuence the
BHL predictions [8].

Similarly in the neutral pseudoscalar tt channel the
arbitrary surface term, b, (a) will appear. The scattering
amplitude is given by

(4z)2 (6(a) ' A2
p p 2N, p2 ( 2 0 m~ —pzz(l —z) )

where the gap equation has again been invoked. Notice
that the neutral Nambu-Goldstone pole still occurs at
p = 0, except that now the coupling constant depends
on the arbitrary parameter a. A similar dependence on
the arbitrary parameter a occurs for the charged Nambu-

FIG. 3. Diagrams contributing to the gauge boson vacuum
polarization in the fermion bubble approx~~ation.

Goldstone modes when one performs the fermion bubble
sum in the Savored tb channel. Assuaging ms 0 one
obtains, for the scattering amplitude in the tb channel,

I'p(p ) + dz(l —z)
(4~)' &&(a)

8Ncpz ( 4 0

A2
xln

m~z (1 —z) —ps'(1 —z) )
Again notice that the routing ambiguity afFects only the
coupling constant. and not the masslessness of the charged
Nambu-Goldstone boson.

The gauge bosons in the N JL model become massive by
absorbing the dynamically generated Nambu-Goldstone
modes. This corresponds to a dynamical Higgs mecha-
nism. Since there are routing ambiguities in the Nambu-
Goldstone modes it is clear that the gauge boson masses
will also be addicted with this arbitrariness. The question
of whether gauge invariance can survive this arbitrariness
needs to be checked.

Consider first the W-boson propagator, where the
gauge fields are rescaled so that the kinetic energy is

1/(4g )F""—F„„.In the fermion bubble approximation,
corrections to the propagator arise &om the diagrams de-
picted in Fig. 3. Again we will choose to regularize all
divergent integrals with an ultraviolet cutofF, A and intro-
duce an arbitrary parameter, a to represent the routing
ambiguity in the loop momentum. The W-boson inverse
propagator is given by the sum of three terms:

1 gf y 1
—,D„„(p)-= —,(p„p„g„„p) i II„„-(p)
g2 g2

——4(p)1&(p )J (p)

where g2 is the SU(2) coupling constant and

i d4l 1 1
J4&(P) 8 (2 )4 7P( 'Ys)

P (1 ) P
O'v( 75)

y
(10)

d4l 1 1
4(p) =~

(2 ),T ~~(i —7s)~ (1 ) ~
(1+ps)

In Eq. (9),II„„is the usual one-loop gauge boson self-energy. There will be two types of divergent integrals appearing
in (10) and (11) which are not invariant under an arbitrary shift of the loop momentum. These are given by

f
d4l I„d4l —~„ i

(2z)' [(l + ~) —M ] (2s)' (I' —M') 32''
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d4l l„l„d4l(l„l„+g2p„p„) i
(2 )4 [(l+~)2 —M2]2 (2 )4 (l2 —M2)2 96z2

+ 2 g p~p~p dQ dz
4m2 0 0 M2 —yzp2y[1 —y+ yz(1 —z)]

'

where y is an / and p-independent constant. Using these expressions and ass»ming the top-quark mass satis6es the
gap equation (3), we find the W-boson vacu»~ polarization becomes

2

—,D„.(p) '=
~

""," —g,- .. . , f—(p' a) g-—l'(p' a) * (14)

where

13 5——+ —a(1 —a) —SB(a,M)
18 3

2
1 dz(1 —z) ln, —— —+ aA 1

N M (e) 2(2

f (pz, a) = m,' (4~)2 f,
' dz(l —z)1 M~(.)

——,'(-,'+ a —a')

h2(p2, a) = ' i (A —m, A(a, M) + p [- —a + a + SB(a,M)]},N,

a(l + a) fe dz(l —z) ln I+( )
—4ia(1+ 3a)

A(a, M) =
fo dz(1 —z) ln I",( )

—2(2+ a —a') (1S)

1 1 1 x —a 4y3z2
B(a,M) = p2 dz dy dz

M2(z) —(z —a)2pzy[1 —y+ yz(l —z)]
'

and M2(z) = m2(1 —2:) —pzz(l —2:). The expression for the W-boson inverse propagator (14) contains a quadratic
divergence (oc g„„A) which does not appear in the corresponding expression f'rom BHL [3]. This stems from the
fact that an ultraviolet cutofF has been used instead of dimensional regularization. This quadratic term destroys
gauge invariance and was first noticed a long time ago by Wentzel [9]. Apart &om this quadratically divergent
term, which would appear irrespective of loop moment»m ambiguities, note that the arbitrary constant a is enough
by itself to destroy gauge invariance. Unfortunately, the ambiguity in the one-loop W-boson self-energy and the
Nambu-Goldstone boson term do not combine together to save gauge invariance.

Similarly for the neutral gauge bosons we consider the contributions arising from the diagrams in Fig. 3 and include
all surface terms arising from divergent integrals. Working in the (B —W ) basis we obtain, in the limit ms 0,

s,*(s',~)(
yv P 2 gglP

0
1 I

&s(&' ~)
f'(p' )

0 —, 0 —,
h2(p2, a)

where gi is the U(l) gauge coupling constant, g2 is. the SU(2) gauge coupling constant, and

&20,

11 13 5 80 8———a(1 —a) ——B(a,M&) — B(a,Ms)—
9 18 3 9 ' 9

(21)
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(4

13 5 16 8
18 3

——+ —o.(1 —o.) — —B(n, Mg) ——B(a,Ms)
3 ' 3

(22)

f (p, a) = ' —
l dzz(1 —z)ln 2

—4B(a, Mq)+4B(a, Ms)

1 A
fo dz ln M, ( )

—1

fo dz ln M",
( ) + 26(a) —1

Q;(p, o., m;) = ' —(A —m;+p [&' —a+a +8B(a,M;)]), (24)

&'(p', ~) — ' "' — '[B(~,M, ) B(—n, M, )](4s') 4 ( f~ dz ln M",
( )

+ ~~K(o.) —1 )
(25)

with M2(z) = m~s —p2z(1 —z) and M&~(z) = mss —p2z(1—
z). Again we note that gauge invariance is destroyed by
ambiguities coming from the surface terms of the linearly
and quadratically divergent integrals as well as &om the
Wentsel term. In the limit that all surface terms are
zero and ignoring the quadratic divergence arising kom
the cutofF regulator, the above expressions reduce to the
results of BHL [3]. Thus by regulating divergent loop
integrals with an ultraviolet momentum cutoK, one finds
that the gauged N JL model is plagued with the problems
of a non-gauge-invariant Higgs mechanism and ambigu-
ous quantitative predictions resulting &om arbitrary loop
moment»m routing. These problems are solely an arti-
fact of using a simple momentum cutoK

IV. DISPERSION RELATIONS

by a cutofF scale 4A2, which represents the maximum
total energy squared. For energies greater than this scale
ImA = 0.

The first immediate consequence of the dispersion re-
lation (26) is that quadratically divergent amplitudes are
no longer dependent on an arbitrary parameter a result-
ing &om loop momenta shifts. This is because to cal-
culate the imaginary part of a one-loop amplitude, for
example, the intermediate particle states must be put
on shell according to Cutkosky's rule. As a result the
arbitrary dependence cancels out and quantitative pre-
dictions will not be jeopardized.

In the NJL model the fermion mass satisfies a gap
equation and so we need to reformulate this self-
consistent condition using dispersion relations. Consider
first the sum of fermion bubbles in the pseudoscalar tt
channel (ps). The scattering amplitude is given by

An alternative prescription for regulating the top-
quark condensate model is to use dispersion relations.
This prescription was previously employed by Nambu
and Jona-Lasinio [2] in their dynamical model of ele-
mentary particles. In this prescription one first calcu-
lates the imaginary part of an amplitude A by means of
Cutkosky's rule [10] and then forms the complete ampli-
tude by use of the unsubtracted dispersion relation

where

GN ]c2 4m2
Jg(p)= '

d~ . 1 — '. (28)4' 4~m K —p K

1, 2 Tm&(+2)

7C g K —P

Requiring J~(0) = 1 or

(29)
where L is some cut along the real axis and the surface
term at infinity has been neglected by ass»mption. In
general the high energy behavior of A makes the right-
hand side of (26) divergent. This ultraviolet divergence
is regulated by replacing the upper limit of integration

leads to a pole at p2 = 0, which is the massless neutral
Nambu-Goldstone mode. Evaluating the integral in (29)
to leading order gives rise to the self-consistent condition
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1= 2A —m, lnsx' ' m') (30)

This is equivalent to the gap equation obtained earlier,
(3), by noting that the ultraviolet Euclidean momentum
cutoff (Aa) used in Secs. II and III is related to the
dispersion integral cutoff by A@ = ~2A.

Similarly for the scattering amplitude in the scalar tt
channel we obtain

4A

f2( 2) C

2 (4~)2 ICp —M(K)
(37)

Note that the W-boson inverse propagator is transverse
and corresponds to a gauge-invariant Higgs mechanism.
The induced W-boson mass appears as a pole in the prop-
agator and is a solution of the equation

(31)
MW' 2 2

2
—f (Mw) =o (38)

where To leading order in A and assuming M~ && m~, the S'-
boson mass is given by

4A 2 4 4m2

(4s )2
4 ~ ~2 —p' —is

N, m~ A2 2

' (4 )2 2
'

m
(39)

If we invoke the condition (29) then Js(4m~2) = 1 and I's
will have a pole at p = 4m~. This is the dynamically
generated scalar bound state or Higgs mode.

The remaining aavored tb channels will similarly give
rise to

which is similar to the mass relation derived by BHL. As
an aside we note that (39) is the same as the one-loop
correction to the S'-boson mass in the standard model
with an elementary Higgs scalar. The eHective top-quark
Yukawa coupling fq obtained from (31) is

where

E(P ) 1 J ( 2)
I N. A'

f' (4n)" m2 ' (4o)

GN
~(p ) —

(4 ), d~ . 1—
K —p —xf ( K )

(34)
and the bottom mass has been neglected (ms
0). Again, invoking the self-consistent condition, (29),
leads to the massless charged Nambu-Goldstone modes

[Jy(0) = 1]. Thus in the dispersion relation approach
the gap equation is replaced by the condition requiring
massless Nambu-Goldstone modes.

In the absence of spontaneous symmetry breaking, on-
shell quantities are always gauge invariant. When the
symmetry is spontaneously broken we need to check that
the gauge bosons receive their mass in a gauge-invariant
manner. As depicted in Fig. 3, the gauge bosons acquire
their mass by absorbing the massless Nambu-Goldstone
modes. In particular, evaluating the R'-boson vacuum
polarization diagrams using dispersion relations, one ob-
tains, for the W-boson inverse propagator,

DO ( )
—1 (

where

f 1
u& (m')

0

0
1

u~(J')
f'(p')—1 1

(41)

gl(p') gl
= —+ —g(m„p,A ) + —g(ms, p, A ),

and this is easily seen to be compatible with (39), where
Mw = 2g2m~!f

Finally for completeness we give the dispersion inte-
grals for the neutral gauge boson propagators. Working
in the (13 —Ws) basis leads to

"") (g2(p') )
'

(35)

where the dispersion integrals for g22 and f2 are

= —,+ -J(m,', p', A')+ -g(m,',p', A'), (43)

dK
1

K —P

1 1 1N.
g2(p') g2 3 (4~)' -;

x ]1+
)E ")

f (p ) = pg(m, ,p, A -) — pg(ms, p, A -)

+m, K(m, ,p, A ), (44)

and the dispersion integrals are given by
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4A

6 (4~)2 ~ ~2 —p2 —«
2m'i 4m2

X 1+ 2 1 —
2K ) IC

(45)

utilize the full one-loop P functions of the standard model
to obtain definite predictions for the top and Higgs bo-
son mass as originally advocated by Bardeen, Hill, and
Lindner [3].

V. CONCLUSION
4A

)(.(m2 2 A2) ~ d„2
2 (4~)2 i ~2 p2 1e

(46)

It is apparent from (41) that the neutral gauge boson will
become massive in a gauge-invariant manner. Thus in the
case of spontaneous symmetry breaking Eqs. (35) and
(41) show that gauge invariance is saved by the Nambu-
Goldstone mechanism when dispersion relations are used.

The high energy renormalization group running of the
SU(2) and U(1) gauge coupling constants can be obtained
from the dispersion integral expressions (36), (42), and
(43). Assuming that p2 » m~2 one obtains

d 1 11
dp2 2 (p2) 27

(47)

and

d 1 2 2 d 1 Nc16m'p
d (2)

——16~ p d 2( )
. (48)

16 2 "g1
dt

1 11 3—+ —Nnq+n& g1,6 27
(49)

2 dg2 43 Nc 116' = ——+ n,q+ —n,
& g2 )

dt 6 3 ' 3
(5o)

where nz(nl) are the number of quark (lepton) genera-
tions. One can see that the single generation quark loop
contributions to the standard model P functions agree
with the high energy rimning [Eqs. (47) and (48)] ob-
tained in the fermion bubble approximation from the dis-
persion integral expressions for the gauge coupling con-
stants. This agreement further establishes the consistent
equivalence between the minimal top-quark condensate
model and the standard model when dispersion relations
are used.

Clearly, in order to go beyond the fermion bubble ap-
proximation in the top-quark condensate model one can

Note that the SU(2) gauge coupling running obtained
from the charged gauge boson and neutral gauge bo-
son expressions have identical high energy running as
expected.

Let us now compare Eqs. (47) and (48) with the usual

P functions. The standard model one-loop P functions for
the SU(2) and U(l) gauge coupling constants are given

by

The choice of a consistent regulator in the gauged NJL
model is important in order to establish a qualitative
equivalence with the standard model. The use of an ul-
traviolet Euclidean momentum cutofF A to regulate di-
vergent loop integrals is not a good regularization pre-
scription for the gauged NJL model. This is because
the prescription sufFers &om ambiguities associated with
quadratic divergences, which destroy the gauge invari-
ance of the theory. The dependence on the arbitrary
parameter n also means that no quantitative conclusions
could be drawn from the model if this regulator were
used. In addition, the simple cutofF prescription produces
the well-known quadratic divergence (oc g„„A2)which
destroys gauge invariance. An alternative prescription
would be to use dimensional regularization which would
eliminate this quadratically divergent term and give rise
to a gauge-invariant Higgs mechanism. However, the
quadratic divergences in the gap equation would also be
destroyed, leading to an inconsistent theory.

A more suitable regularization prescription for the top-
quark condensate model that maintains gauge invariance
without destroying the quadratic terms is to use unsub-
tracted dispersion relations. In this case the gap equation
is equivalent to the condition requiring the masslessness
of the Nambu-Goldstone bosons. Arbitrary shifts in the
loop momenta do not afFect quantitative predictions be-
cause intermediate particle states are put on-shell when
the imaginary part of an amplitude is calculated. Thus
provided the gap equation is satisfied, the dynamical
Higgs mechanism is gauge invariant with no correspond-
ing routing ambiguities. If the high energy running of
the gauge coupling constants is obtained from the dis-
persion integral expressions in the fermion bubble ap-
proximation, then the usual fermion loop contributions
to the standard model P functions are obtained. This
consistently shows that the top-quark condensate model
is equivalent to standard model when dispersion relations
are used. The BHL predictions for the top-quark and
Higgs boson mass are then obtained by employing the
full one-loop P functions of the standard model and im-
posing the compositeness conditions of the gauged NJL
model.
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