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Consistent derivation of the quark-antiquark and three-quark potentials
in a Wilson loop context
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We give a new derivation of the quark-antiquark potential in the Wilson loop context. This
makes more explicit the approximations involved and enables an immediate extension to the three-
quark case. In the ¢g case we find the same semirelativistic potential obtained in preceding papers
but for a question of ordering. In the 3¢q case we find a spin-dependent potential identical to that
already derived in the literature from the ad hoc and incorrect assumption of scalar confinement.
Furthermore we obtain the correct form of the spin-independent potential up to the 1/m? order.

PACS number(s): 12.39.Pn, 11.10.5t, 12.38.Aw, 12.38.Lg

I. INTRODUCTION (stat) of the potential but also the spin-dependent (SD)
) ) . . . . and the velocity-dependent (VD) ones at the 1/m? order.
The aim of this paper is twofold. First we give a sim- For what concerns the ¢g potential, the result is identi-

plified derivation of the quark-antiquark potential in the 4] to that reported in [4,5] (see [6] for the spin dependent

context of the so-c.a.lled Wilson 1‘_’99 approach [1] in which potential) except for a problem of ordering of minor phe-
the basic assumptions, the conditions for the validity of a nomenological interest:

potential description and the relation with the flux tube

model [2], can be better appreciated. Second we show Ve =V + VI + VA, (1.1)
how the procedure can be extended to the three-quark

system [3] obtaining consistently not only the static part =~ where

J

- 4qa,
Vi = -3 tor, (12)
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1 4aq
33 (82 (T X 1) =81 (r x pa)]
1 4 173 8w
i {ﬁ [ﬁ(sl x)(Sz-1) - S - Sz] + 58S 'Sz} , (13)
v — 1 4_2-1(5% + #hik)phpk - ZZ: ——1—{arp2- w — {orp1r - P2r}W - (1.4)
VD 2mymy |3 7 172 w o Gm? iT 6m;mo

Obviously in Egs. (1.2)-(1.4) r = z; — z; denotes the relative position of the quark and the antiquark and p;r the
transversal momentum of the particle j, iy = (6"* — #h#*)p% where £ = (r/r); the symbol { }w stands for the Weyl
ordering prescription among momentum and position variables (see Sec. IV). Furthermore, in comparison with [5] the
terms in the zero point energy C have been omitted, since they should be reabsorbed in a redefinition of the masses
in a full relativistic treatment.

For the 3¢q potential the result is

V3= V3 + Vi + Vob (1.5)
with
Vi =Z ey +o(ri+r2+73), (1.6)
stat o~ 3 T}l
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Again r;; = z; — z; denotes the relative position of the
quark j with respect to the quark ! (5,! = 1,2,3) and
r; = z; — Zp the position of the qua.rk Jj with respect to
a common point M such that _1 T; is minimum. As
well known, if no angle in the trlangle made by the quarks
exceeds 120°, the three lines that connect the quarks with
M meet at this point with equal angles of 120° like a
Mercedes star [type-I configuration, see Fig. 1(a)].
one of the angles is > 120°, then M coincides with the
respective vertex and the potential becomes a two-body
one [type-II configuration, see Fig. 1(b)]. Furthermore,
V?j) is the Laplacian with respect to the variable z; and
now v{,‘.j = (6% — Fh7k)v*, where #; = (rj/r;j). The
quantity zas in (1.8) is given by

FIG. 1. The two types of configurations of the three-quark
system.
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2
2 U"'j pJTJ}W
i=1 J

(1.8)

[

ig = N33, (pjr;/rim;) type-I configuration,
pi/m; type-1I configuration : zpr = 2y,

(1.9)

N being a matrix with elements

3

Nt = Z(l/r,-)(&”‘ — 7h7F).

=1

Finally Eq. (1.7) properly refers to the I configuration
case. In general, one should write

Vip = - Z om 2S V(J)Vstat X Pj - (1.10)

In comparing (1.10) with (1 7) one should keep in mind
that the partial derivatives in zps of VER vanish due to
the definition of M.

We observe that the short-range part in Egs. (1.6)-
(1.8) is of a pure two-body type: it is identical to the elec-
tromagnetic potential among three equal charged parti-
cles except for the color group factor 2/3, and it is well
known. Even the static confining potential in Eq. (1.6) is
known [7,1,3]. The long-range part of Eq. (1.7) coincides
with the expression obtained by Ford [8] starting from
the assumption of a purely scalar Salpeter potential of
the form

o(r1+72+73) 515203, (1.11)
but at our knowledge it has not been obtained consis-
tently in a Wilson loop context before. Eq. (1.8) is new.
It should be stressed that (1.11) corresponds to the usual
assumption of scalar confinement for the quark-anthuark
system. As well known from this assumption V3, an
V3 result identical to (1.2) and (1.3), but Vi turns out
different from (1.4).

The important point concerning Egs. (1.1)-(1.8) and
(1.10) is that they follow from rather reasonable as-
sumptions on the behavior of two well-known QCD ob-
jects Wyg and W3g related to the appropriate (distorted)
quark-antiquark and three-quark “Wilson loops,” respec-
tively.
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For the ¢g case the basic object is

We=3 <TrPexp (igﬁdm# A,‘(z)>> .

Here the integration loop I is assumed to be made by a
world line I'; between an initial position y; at the time t;
and a final one x; at the time ¢ for the quark (t; < ty),
a similar world line I'; described in the reverse direc-
tion from x; at the time t; to y, at the time ¢; for the
antiquark and two straight lines at fixed times, which
connect x; to Xz, y2 to yi1, and close the contour (Fig.
2). As usual A,(z) = 3\, A% (), P prescribes the order-
ing of the color matrices (from right to left) according to
the direction fixed on the loop and the angular brackets
denote the functional integration on the gauge fields.

The quantity iln W5 is written as the sum of a short-
range (SR) contribution and of a long-range (LR) one:
ilnWyg =ilnWR +iln WER. Then it is assumed that
the first term is given by the ordinary perturbation the-
ory, that is, at the lowest order,

(1.12)

4
imWSR =~ 3 / de* [ deiD,(ey —z5) (1.13)
T, r;

(D, being the usual gluon propagator and a, = g?/4m
the strong interaction constant) and the second term by
the so-called “area law” [9,1,4]

ilnWER = 0Smin (1.14)
where Sy, denotes the minimal surface enclosed by the
loop (o is the string tension). Obviously Eq. (1.13) is
justified by asymptotic freedom, Eq. (1.14) is suggested
by lattice theory, numerical simulation, string models,
and other types of arguments.

Up to the 1/m? order, the minimal surface can be iden-
tified with the surface spanned by the straight line joining
(t,z1(t)) to (t,22(t)) with t; <t < tg; the generic point
of this surface is [4]

0

udin =t, u™® = sz, (t) + (1 — s)z2(t) (1.15)

with 0 < s < 1 and 2,(t) and z2(t) being the positions of
the quark and the antiquark at the time .
We further perform the so-called instantaneous ap-

N1 Y,

Il A

FIG. 2. Generalized Wilson loop for the quark-antiquark
system.
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proximation in (1.13), consisting in replacing

+oo

dr D, (1,x) (1.16)

—0o0

Dy (z) — D=t (z) = §(¢) /

and use (1.15) and (1.16) at an early stage in the deriva-
tion procedure. In this way we shall obtain Eqs. (1.1)-
(1.4) in a much more direct way and without the need
of assuming a priori the existence of a potential as done
in [4]. So, once that Egs. (1.13) and (1.14) have been
written, Eqgs. (1.15) and (1.16) give the conditions under
which a description in terms of a potential actually holds.

Notice that, while (1.12), (1.14), and even (1.13) in
the limit of large t; — t;, are gauge invariant quantities,
the error introduced by (1.16) is strongly gauge depen-
dent. The best choice of the gauge at the lowest order in
perturbation theory is the Coulomb gauge for which the
above error is minimum. To this choice Eq. (1.4) does
refer.

For the three-quark case the quantity analogous to

(1.12) is
a1b
Pexp (zg/F dz*1 A, (z)) ]
azby
X [P exp (ig /T dzh3 A4, (z))]
agbs
Pexp (ig /f dz* A, (z))] > . a1

Here a;,b; are color indices; T'; denotes a curve made by
a world line T'; for the quark j between the times ¢; and
ts (t; < tg), a straight line on the surface ¢t = ¢; merging
from a point I (whose coordinate we denote by yas) and
connected to the world line, another straight line on the
surface t = t; connecting the world line to a point F
with coordinate zps (Fig. 3). The positions of the two
points I and F are determined by the same rules which
determine the point M above.

The assumption corresponding to (1.13) and (1.14) is

1
W3q = gi <€a1a1036bl babs

X

FIG. 3. The analogous of the Wilson loop for the
three-quark system.
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then
. 2., u L. -
zan3¢1 = gg z;/l:. dzi Aj dzj zDﬂv(zc _z.‘l)
+0Smin (1.18)

where now Sy, denotes the minimum among the surfaces
made by three sheets having the curves T, Tz, and T3
as contours and joining on a line I'js connecting I with
F.

We shall see that Egs. (1.5)—(1.8) follow if we sub-
stitute (1.16) in (1.18) and again replace S, With the
surface spanned by the straight lines

U min = b, u® = sz;(t) + (1 — s)zm(t) (1.19)
|

with j = 1,2,3, s € [0,1], zp(t) being again the point
for which E?=1 |z;(t) — za(t)| is minimum.

The plan of the paper is the following one. In Sec.
II we shall report the simplified derivation of the quark-
antiquark potential as sketched above. In Sec. III we
shall report the derivation of the three-quark potential.
In Sec. IV we shall make some remarks and discuss the
connection with the flux tube model.

II. QUARK-ANTIQUARK POTENTIAL

As usual the starting point is the gauge invariant
quark-antiquark (g1, g2) Green function (for the moment
we assume the quark and the antiquark to have different
flavors)

G(z1,%2,¥1,Y2) = %(0|T1/)§(m2)U(m2, 1)1 (21) %1 (¥1)U (1, 92) ¥2(v2)10)

1 _
= gTr(U(-’Bz,zl)Sf(-’bl,yllA)U(yhyz)C 15T (y2,22|A)C) .

(2.1)

Here ¢ denotes the charge-conjugate fields, C is the charge-conjugation matrix, U the path-ordered gauge string

b
U(b,a) = Pexp (zg/ dz* A“(z)>

(2.2)

(the integration path being the straight line joining a to b), S and Sf the quark propagators in an external gauge
field A#; furthermore in principle the angular brackets should be defined as

D[A]M;(A) f[A]e*5™4]
(f[AD = L f’D[A]]fo(A)e'S[A] ’

(2.3)

S[A] being the pure gauge field action and M;(A) the determinant resulting from the explicit integration on the
fermionic fields. In practice assuming (1.14) corresponds to take My(A) = 1 (quenched approximation).

Summarizing the first part of the procedure followed in Ref. [4}. (see such paper for details) first we assume
z) = 23 = ty, y? = 3y = t; with 7 = t; —¢; > 0 and note that S are 4 x 4 Dirac indices matrices type. Then
performing a Foldy-Wouthuysen transformation on G we can replace S]F with a Pauli propagator K; (a 2 X 2 matrix
in the spin indices) and obtain a two-particle Pauli-type Green function K. We shall show that in the described
approximations this function satisfies a Schrédinger-like equation with the potential (1.1)—(1.4).

One finds (see [4]) that, up to the 1/m? order, K satisfies the equation

.0 1 1 g
zEFK,-(a:,yM) = HrwK;(z,y|A) = |m; + E(p,— —gA)? - g?(pj —gA)* - E;Sj ‘B +gA°
i s rai i 9 i i
= g3 OF — g4’ BY) 4+ g 5™ S (s — 94)', '} | Ky (=, 314) (24)
with the Cauchy condition
K;(z,y|A)|z0=yo = *(x — y) (2.5)
where €*** is the three-dimensional Ricci symbol and the summation over repeated indices is understood. By standard

techniques the solution of Eq. (2.4), with the initial condition (2.5), can be expressed as a path integral in phase
space:

5;(2%)=x
&&MM=/ (2.6)
55 (¥°)=y

D(z;,p;] T exp {1/ dt[p; - z; — HFW]} ;
yo

here the time-ordering prescription T' acts both on spin and gauge matrices, the trajectory of the quark j in config-
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uration space is denoted by z; = z;(t), the trajectory in momentum space by p; = p;(t) and the spin by S;. Then,
by performing the translation

p_)p+gAa (27)

we obtain an equation containing the expression dt (9A° — gz - A) = gdz* A,,, which is formally covariant.! It is also

useful to have an expression for K; in which the tensor field F** and its dual F#* appear. To this end we make the
further translation

p—p-L(ExS) (2.8)

and, apart from higher-order terms, we obtain

']

D(z;,p;] T exp i/ dt [Pj'ij—mj—
yo

5;(z%)=x pf p;l

2m,- 8’"1.?

I(j(mvyl‘l) /
5 (y°)=y

g g g .
_gAO_}___jsj.B_{_z_is]..(pj x E) — ——;S,--(z,— x E)

2

+g2;- A+ #(B,E‘ - ig[A*,E‘])} } . (2.9)

Thus we obtain the two-particle Pauli-type propagator K in the form of a path integral on the world lines of the
two quarks:

81 (tf)=x1 52 (ts)=x3

K(x17x2’y11}'2;7—) = / D[ZI,PI] D[ZZ,PZ]

1(ti)=y1 83(ti)=y2
2

.Y . pz. p‘%
X exp z/ dtZ[pj'zj—mj—WJ."'ﬁ}
ti j=1 g ]
X l'I‘rT,,Pexp igf dz* Au(z) +i ﬁ/ dz*
3 r j=1 mj r;

~ 1 - 1 "
x (S}F,“(z) - o SIS Fo(0) = oD F,,,,(z)) }> . (2.10)

T
Here T, is the time-ordering prescription for spin matrices, P is the path-ordering prescription for gauge matrices
along the loop I' and, as usual,

F* = 94 A¥ — 9 A* + ig[A¥, A7), (2.11)
P = %e‘"’”"FW : (2.12)
D*F,, = 8F,, +ig(4*,F,,] (2.13)

and €#¥79 is the four-dimensional Ricci symbol.

Furthermore as in Eq. (1.12) I'; denotes the path going from (¢;,y1) to (tf,x:) along the quark trajectory (t,z:(t)),
T, the path going from (ts,x;) to (;,y2) along the antiquark trajectory (t,z2(t)) and I is the path made by I'y
and I'; closed by the two straight lines joining (¢;,y2) with (¢;,y1) and (t5,x;) with (¢f,x2) (see Fig. 2). Finally Tr
denotes the trace on the gauge matrices. Note that the right-hand side of (2.10) is manifestly gauge invariant.

What we have to show is that the term in angular brackets in Eq. (2.10) can be expressed as the exponential of an
integral function of the position, momentum and spin alone taken at the same time ¢:

ty ~
<%TrT,Pexp{---}> ~ T, exp [—i/ dtqu(zl,22,p1,p2,Sl,Sz)] ; (2.14)
t

'More precisely, since the A* are matrices, the step f d®p f(p — gA) = [ d®p f(p) can be justified by expanding f(p — gA)
in powers of g; apart from the zeroth-order term, all the other terms involve derivatives of f(p) and do not contribute to the
integral.
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indeed then we can conclude that

a 2 P} P
; = ) i 3 97 .
zaK J.§=l(m,+2 p ~3 3)+V K, (2.15)

V94 playing the role of a two-particle potential. To this aim, expanding the logarithm of the left-hand side of (2.14)
up to 1/m? order, we should have

o Wag 43 2 [ ot (5] (@)~ g S8 (@)

1 . 1 ig
g (D Fuu(z)>>) 32

T, / de* [ dz' S) Sk
T; T

(W@ Brale) ~ (i) (BraleM ) = | [ Y a va] s 21e)
with the notation l

3 (Tx P {explig §. dz* A.(=)]} fIA])

((f[AD) = 1(Tr Pexp(ig §. dz* A,(z)))

(2.17)

and Wy; defined in Eq. (1.12).
At this point in Ref. [4] we assumed that a quantity V92 satisfying (2.16) existed and derived its form. Here we no
longer make such an a priori assumption but start directly from (1.13) and (1.14).

A. Contribution to the potential coming from iln W;

In the Coulomb gauge we have

Dyo(z) = | l 8(t), (2.18)
Dii() = (Snk — (V2) 048%) Dr(z) = ’/ (347,;4,:—2 (Jhk - %) e ke, (2.19)
Do}, (:E) = Dko(m) = 0, (2.20)

where Dp(z) = [(d*k/16m%)(i/k?)e =,
The pure temporal part Dgg(z) is already of instantaneous type, for the pure spatial part we have the instantaneous
limit

¢ e, Thak
Dist(z) = §(t) / dr Dia(r, %) = ~5(t) g1 I l (5 + W) . (2.21)
Replacing (2.18), (2.20), and (2.21) in (1.13) we have
ty
iln WSk = / dt {—3& + ;:a' (6™* + *"f*)z;'z;} . (2.22)
t;

Similarly, if we denote by u* = u*(s,t) the equation of any surface with contour I (s € [0, 1], ¢ € [t;, ts], u®(s,t) =
t, u(1,t) = 2z,(t), u(0,t) = z2(t) ), we can write

/2

ts 1 duH Ou du* Bu ouk du,\ 2]
LR : - {4 (i uthadiidied .
zan__aSmm—ammA dtLds[ (Bt at)(as 63)+(3t as)

=amin/:fdt [ds bu {1— [(%‘:) ]2}1/2, (2.23)

ds
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where the index T' denotes the transverse part with re-
spect to the unit vector §:

s 2u /|ou 2.24
" Os Os | (2.24)
Then in approximation (1.15) we have
‘9‘; =2,(t) — z2(t) = 1(t) (2.25)
s
umin . .
pran sz1(t) + (1 — s)z2(t), (2.26)

and so

tf 1
inWat = /; dt arﬁ ds[1 — (8217 + (1 — 8)z27)?)*/?

ty 1
=/ dtor [1 - (et + 33 + inr - dar)
t

+o0 (2.27)

where obviously now § = £ and we have expanded the
square root and performed the s integration explicitly.
Notice now that, at the lowest order, z; can be replaced
by pj/m; in (2.22) and (2.27). Then such equations be-
come of the correct form required by (2.16) and so does
the entire iIn W5. In conclusion we have a first contribu-
tion to V97 (pure Wilson loop contribution) in the form
V3, + VI3 with VI, and Vi as given in (1.2) and (1.4).
The ordering prescription in (1.4) shall be discussed in

Sec. IV.
|

g (<<Fw<z1>Fpo(Z2>>> — (Fu(22))) ((Foa(zz)»)

From (1.13) we have then

4 te . .
9 (Fule))*™ = 56" [~ dtzil0,Dyp(es = 52) = B, Dupler — 2}i%
t;

and

B. Spin-related potential

To obtain the remaining part of the potential we must
evaluate the expectation values of the form (2.17) occur-
ring in (2.16). Let us consider an arbitrary infinitesimal
variation 2 (t) — z;(t) + 62, (t) vanishing at t = t; and
t = t; and evaluate §(i1n Wyg).2 From (1.12) we have

. ity
6Weq = —332<T1‘P'[. 85*(21) Fuw(21)

X exp (ig }i da* A,‘(m)) >

where 85" (21) = §(dz} 02y — dz}0z{) is the element of

the surface spanned by z,(t).
Then

(2.28)

6;/"? —y [ 7’55W(Zl)<<Fw(z1)>> (2.29)

q

and we may write

8(iln Weg)
=~ U 2.30
g ((Fuu(zl))) (55‘“’(21) ( )
(see Appendix A for a definition of §/65#¥(21)). The
computation is similar for the case of 2; with a minus
sign of difference.
Similarly it can be seen that

57 (0B ) o (220) = (s (21) (Frn(z2))) = 3971000 D1 = 22) = DD 21 = )]

Notice that obviously in the terminology of Appendix A we have C(z1,2}) = 0 and then

(<<Fw<z1>Fpa(z1>>> — (B () <<F,,,(z;)>>> ~0.

02 ((Fun(22) Foo(22))) = Wiqq P (‘;;’;’gpa o 23
and therefore
5% In Wy ey 5

T 55m(21)8507 (z5) | U 55°%(z5) ((Fuv(21))) - (2.32)
(2.33)

=850y Dyp(21 — 22) — 8uDyp(21 — 22)]} - (2.34)

SR
(2.35)

2The result is easily achieved in the case of an Abelian gauge theory: in fact one can freely commute the fields A,. In our
case, on the contrary, the gauge theory is non-Abelian: one can still commute fields referring to different points because of the
presence of the path-ordering operator P; however, fields at the same point do not commute and this fact must be taken into
account. As a rule, one can make calculations in the Abelian case; by rewriting the final result in a gauge invariant form, an

expression also valid in the non-Abelian case is obtained.
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By using the Coulomb gauge and the instantaneous approximation we have then

o (Fu(e)™ = a5, (236)
g (Fu(s))® = 22 5 (rhpk — ) (237)

SR

g (((Fhk(zl)Flm(zZ))) = ((Fi(21))) ((th(zz))))

= —éﬁts(t —t 8,6 1 5hm+,,1h~1n) — 8,0 gkm 4 phpm
3,0l 2) { 010k 'r 1On ( )
0,0 [% (87 + #h7) ] + O a,,[ (ak'w"f')”. (238)
In a similar way we obtain also
R 4 Tk
o (Fon(z2))™ = 35 (239)
(P ()5 = 325 % (rhph — riph) (2.40)
g hk\22 3m, 3 1 1)- .

Let us now consider the confinement part of iln Wg. From Eq. (2.23), taking into account that ul™® satisfies the
appropriate Euler equation, one has (see Appendix B for details)

e [(F) - (E) (AN G} e

where the subscript 1 indicates that the derivative is calculated in s = 1. A similar formula is valid for z,. Moreover,
as in the short-range case,

LR

(((Fle)Fpa(z;)» — ((Fu(21))) <<F,,,(z;)>>) 0. (2.42)
By using the straight-line approximation one obtains
9 (Forlz))P™ = 0= + 00, (243
F (P )™ = L9 = rp}) + O(v) (2.44)
with j = 1,2 and
LR 5
e (<<Fhk(z1mm<zz)>> — (Fra(=1))) <<Fzm(z2)>>) = 0 gy (Fus(2))) ™ = 007 (2.45)

Finally replacing (2.35)—(2.40) and (2.42)—(2.45) in (2.16) we obtain the terms in Eq. (1.3) involving explicitly spin.
As concerns the Darwin-type terms one should evaluate g ((D¥F, . (z))) in Eq. (2.16). By using the results of this
section one can obtain, by gauge invariance,

o [ dst (D" Boster = [ a0 (Eunten))
= g/: dt (a"((Fuo(Zl))) + 2{‘8"((Fuk(z1)))) = /t’ dtah(_ %a‘:_’; . ‘. )

r

t;

ty
= dtvz<_§% +ar)+---, (2.46)

t;

from which finally we have the Darwin terms as reported in Eq. (1.3).
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III. THREE-QUARK POTENTIAL

Let us define the three-quark color singlet state (again for three quarks of different flavors):
1 7 " " diby dzby dsbs
Jachbaa Y1, (y1)¥ 24, (V2) Y34, (Y3)U ™™ (w1, ym U™ (32, ym U™ (ys, ym)|0), (3.1)

where the path-ordered gauge strings U are defined in Eq. (2.2), ya is defined as explained after Eq. (1.17), b; and
d; for i = 1,2,3 are the color indices, €p,5,5, is the completely antisymmetric tensor in the color indices, which puts
the system of three quarks in a color singlet state and 1/+/3! is the normalization factor.

The corresponding gauge invariant Green function can be written

1
G(a:ls T2,T3,Y1,Y2, y3) = gealazﬂashbnbs
X(O|T U (zpr, x3) U (201, Z2) U (T, T1) Y3y (€3) Y2, (T2) P10, (T1)

X1, (Y1) P24, (2)Psas (¥3) U D" (31, ya) U (y2, yrnr ) US* (33, ym)0), (3-2)

and we assume o§ = a8 = o3 = a8, = t7, 30 = 93 = Y8 = vy = ts; 7 = b5 — ts (1 > 0).

The integration over the Grassmann variables is again trivial and one can write

a1by

1
G(X]_, X2,X3,¥Y1,Y2,Y3; T) = geaﬂlzasebll’zbs ([U(:EM’ zl)Sf(zlv yllA)U(yh yM)}

X [U(zar,22)S7 (22, y2| AU (2, yn)1*** [U (zp, 23) S5 (23, y3| A)U (ys, ymr)]***) 5 (3.3)

if some of the quarks are identical we have simply to sum over all permutations of the corresponding final variables.
By performing even in this case the appropriate Foldy-Wouthuysen transformations and using (2.9) we find, in place
of (2.10),

51 (t5)=x1 %3(ty)=x2 83 (ty)=xs
K(xl,xz,x3,Y1aY2,Y3;T!xM,yM) =/ D[z17p1]/ D[Zz,pz] D[Za,p;;]
[

51 (ti)=y1 2(ti)=y2 53(ti)=ys
t 3

Y . p: P}
X exXp Z[i dt]gzl [szJ_mJ_E;n—;_*-m]
x lec-: |3| T,Pexplig | dz* A,(z)+ 9 dz#
S ’ T; * mj Jr;

< (SEue) ~ g Sl B @)~ gD @) V) 69

2m; 8m;

K being now the three-quark Pauli-type Green function.

In (3.4) we have suppressed for convenience the color indices but have left trace of the tensors €4,4;45€b,5;6; With
the notation €. As above T, denotes the chronological ordering for the spin matrices and P is the path-ordering
prescription acting on the gauge matrices; I'; and T'; are defined as in Eq. (1.17) and following. Notice that the
curve I made by the union of T';, T, and T3 is a closed three-branch loop, which generalizes the Wilson loop of the
two-body system.

From now on one can proceed strictly as in Sec. II. We shall show that from (1.18) using (1.16) and (1.19) one can
write

3 ty
<—;—'E€HT,PeXp'--> ~ T, exp [—z/ dtVaq(zl,zz,za,pan,Ps,ShSz,Sa)] ) (3-5)
A ”
and so the propagator K obeys the three-particle Schrodinger-like equation
d 2 p; P}
0 ) i _ Yi 3g . 3.6
iz K ;(m,+—2mj 8m?)+V K (3.6)

Again expanding the logarithm of the left-hand side, Eq. (3.5) turns to be equivalent to
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3
Zan3q+lZ

i=1

- s [ ae (s’ (Fru(e))) —

~ g (D Fou(z) >>) -3

5887
s 2% (Four (2)))
da:“ d:z:"’S’ S"
IR I‘
x(<<ﬂu(z)ﬁkc(x')>>—<<m( 2))) ((Fro (&' ) [ dtvsq] (3.7)

with W3, being defined as in Eq. (1.17) and now

ai{ee {[1; Plexp(ig [, dz* Au())]}f[A])
%(ee{nj Pexp(ig frj dzr A,(2)})
(3.8)

(fla)) =

A. Contribution to the potential coming from
iln Wy,

Having in mind (1.19) let’s evaluate Sy, in the same
manner as we did for the two-body case. The quan-
tity Smin is the area made by three sheet surfaces as
described in Sec. I. Let us denote by zas(t) an arbi-
trary world line joining yas to zar and by uf = uf(s,?)
the equation of an arbitrary sheet interpolating between
the trajectories 2 = z}(t) and 2}, = zM( ); obviously
u;(0,t) = zam(t), u;(1, t) =z;(t ) and u] (s t)=t.

Assuming that the minimum is taken in the choice of
u%(s,t) and of zs(t) we can write, in analogy with (2.23),

3 1 7] 1
Smin = min y° / dt / ds | 2%
j=1 ti 0

24 1/2
{1_[(%) ]} )
T
J
) ts 2a, 12a, hh | 2h s

where againrj; =r;
Z;Ll (rj/r;) = 0. We get
3

oy
=17

1 Ahak
Z — (8% — #rk)2E =

[
where now the index T} stands for transverse part of a
vector with respect to

A _ 8u,-

Su
5= s Bs

- (3.10)

Then, performing the straight-line approximation (1.19)
we have

min

ou®
a’ =z;(t) —zm(t) =1;(t), (3.11)

s

auxpin
(';t =s2;(t) + (1 — 8)Zm(2) (3.12)
and expanding in the velocities
ty 3 1
Smin = / dt ZTJ' [1 - g(Z?TJ + iIZWT,-
t; =1

+z;T; - EmT;) + ] (3.13)

with §j = f'j.
Taking into account this result and introducing (2.18),
(2.20), and (2.21) in (1.18),

+ azr_., [ - JT +zMT + Z;T; - zMT,)]}? (3.14)

j=1

—r; = z; —2;. In the I configuration case the quantity Zss can be obtained deriving the equation

3

1 hs
Z___(ahk h k)zM

=1

Tj

Obviously in the II configuration case we have zp = %; (M = quark!).

Finally replacing z; by p;/m; we obtain Eq. (1.8).

B. Spin related potential

As in the ¢g case we can write

9 ((Fuv(2))) =

5(i1n Waq)
6Smv (Zj) ’

5 (o 23) Eue ) = (o)) () ) = 9 gy (P )

(3.15)

(3.16)
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with j,i = 1,2,3 and adapt immediately the procedure used in the derivation of Egs. (2.35)-(2.40) and (2.42)-(2.45)
to the variation of each single quark world line separately.
From the short-range part of (1.18) we have then

9 ((Fu (23)))°F = %92 {[

f
dtn i[8,Dyp(2; — zn) — 0uDp(z; — z,.)]zg} (3.17)

f
dt; [0, Dyp(2; — 2:) — OuDup(2; — 2:)]27

1

with j,i,n = cyclic permutation of 1,2,3 and

SR

2
7 (<<Fuu(z,~)Fw(z,~)>> — (B (23))) <<F,,,(z,.)>>) = 20%00,0,Dyp(25 — 2) — 0,0,Dup(2 — %)
— 0,0,Dyo(2j — 2:) + 0,0,D,o (25 — 2:)] (3.18)
for j # 4; furthermore,
SR
(<<Fw<z,-)Fw(z;>>> ~ (B (23)) <<F,,,(z;)>>) =0. (3.19)
By using the Coulomb gauge and the instantaneous approximation we have, from Egs. (3.17) and (3.18),
2 T,Fl' Tkn
9(For(z:)) R = a0 [ F+ 5 » (3.20)
g 3 o
2a, 1 2a, 1 4 k _h
9 {{Fre(z;)))5® = gar?:("ﬁpf - T;ip?) + 3m., T,jT.n("jan — TinPn) (3.21)
(4,%,n = cyclic permutation of 1,2,3) and
SR
7 («Fhk(z,-mm(zi)» ~ {(Fuk(z))) <<Fzm(zi)>>)
2ig? g [ 1 (shm o, zham @@ [ 1 [skm o 2k am
=2 55 - 1) {a, 8y [E (8" + r,.'.r,.,.)] — ey [; (™ + r;f,.rj,.)]
_ a(i)a(j) i (5hl +,;;i}.1~,l”) +a(i)a(j) i (akl +’f"~'~'f"~-) (3 22)
m “k Tji Ji' gt m “h "'ji Ji' ge ] .

where j # .

Let us now consider the long-range part of Eq. (1.18). Notice that, because of its definition, an infinitesimal
variation of the intermediate point world line zps = zar(t) leaves the quantity iln W3, unchanged. Then, in the
evaluation of the functional derivatives (3.15) and (3.16), we can treat such world line as fixed. From Eq. (3.9),
taking into account that u;?;‘i“ satisfies the appropriate Euler equation, one has

—1/2

. . o\ 2 . 2
Qurin oul™\ | ., [ Ou™n . [ Our™™
o Eute® =7 | (FE) 5= (5E) w] 1-2(%5) +[s (%) | 29
7 /a1 7/ VA VA

where the subscript 1 indicates that the derivative is calculated in s = 1. Moreover,

LR

(((F,‘.,(z,-)Fp,,(z;))) — ((Fuv(2))) ((F,,,(z;-)))) =0. (3.29)
By using the straight-line approximation one obtains
rk
9 {(Fo(z)))* " =02, (3.25)

T
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9 (B )™ = T (et~ ) (3.26)
with j = 1,2,3 and
LR 5
g’ (((Fh,,(z,-)ﬂ,,.(z;))) = ((Fhr(23))) ((Fzm(zz')))) = iym((ﬁk(za')))m =0(v?) (3.27)

with j # 1.

As concerns the Darwin-type terms we must evaluate
g ({DYW*F, (z;))) for j = 1,2,3 with DW» = §l)v 4
igA¥. This can be done by using the same line of deriva-
tion as for the two-body case.

At this point we may derive the spin-dependent poten-
tial: after some calculations using Egs. (3.19)—(3.22) and
(3.24)—(3.27) in Eq. (3.7) we get Eq. (1.7).

IV. ADDITIONAL CONSIDERATIONS

To complete the work some additional considerations
and remarks are necessary.

(1) In Sec. III we have assumed different flavors for
the three quarks. If two or three quarks are identical we
must identify the corresponding operators in Eq. (3.1)
and add the appropriate normalization factor 1/4/2! or
1/4/3!. Correspondingly we have to replace the right-
hand side in (3.3) with the corresponding sum over the
permutations of the final identical particles divided by
the combinatorial factor (2! or 3!). For what concerns
the potential this means only that we have to equate the
masses of such particles in (1.7) and (1.8). Similarly if in
Sec. II the quark and the antiquark have the same flavor,
a new term must be added to the last member of (2.1),
which is obtained by interchanging the roles of y, and
3. Such “annihilation” term is not properly of potential
type but can be treated perturbatively [10].

(2) Concerning the ordering problem in (1.4) and (1.8)
we recall that there are two independent possible pre-
scriptions for a quantity quadratic in the momenta:
the Weyl prescription

U hw = {70),2").5) (41)
and the symmetric one
U Ep"s*)s = 1), 0"} (42)

As well known, in the path integral formalism the order-
ing prescription corresponds to the specific discretization
rules used in the definition of it.

In Ref. [5] we adopted a somewhat ad hoc rule corre-
sponding to the ordering { }ora = 2{ }w + 3{ }s. Such
rule was motivated by the fact that it enables a by part
integration at the discrete level which was necessary to
eliminate a dependence of the potential from the accel-
eration.

Notice, however, that the limit procedure used for the

—

definition of the path integrals in (2.9) or (2.10) is not at
our choice, but it is a consequence of the corresponding
procedure used in the definition of the field functional in-
tegration in (2.1). To see what is the correct prescription,
let us assume a definite lattice with spacing € in the time
direction and a spacing a in the space directions. Let us
consider the corresponding discrete counterpart of (2.1),
written according to the usual rules for gauge theories
[11] and perform the integration of the fermionic fields at
this discrete level. Then in place of (2.10) we arrive at an
equation in which not only the time integral is replaced
by a sum over the appropriate discrete times t,, but for
every t, even the integrals on z; and z; are replaced by
the sum over all the sites of the lattice corresponding
to that time coordinate. Finally Eq. (1.12) has to be
interpreted as

Wog ~ / H dU,, SVl T P H Uy, (4.3)
{n',n} {r,r'}er

where U,,:,, denotes the element of the color group asso-
ciated to the link between the contiguous sites n and n'
and the product is extended to all such links or to all
links laying on the curve I'. Since in turn U,, can be
interpreted as

exp [ig(:z:n, —z,)*A, (#)] ,

we see that, after having explicitly integrated over U [and
so used (1.13) and (1.14)] and performed the limit a — 0,
we are left with the discrete form of an ordinary path
integral with

) U
X (r)pkph — XM (——1) php} (4.4)

2 isljs *

Equation (4.4) does correspond to the Weyl ordering, as
indicated in (1.4) [12]. Notice, however, that a differ-
ent ordering in (1.4) would bring simply to additional
Darwin-like terms, which, in practice, can be nearly com-
pletely compensated by a readjustment of the potential
parameters. Similar arguments apply to Eq. (1.8) in the
3q case.

(3) To clarify the connection between the gg potential
and the relativistic fluz tube model [2] it is convenient to
neglect the spin-dependent terms in (2.10) and replace
the 1/m? expansion by its exact relativistic expression.
We have
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t;

17 2
K%z, y1,2its ~t) = [ Dlas,pa) [Pz palexp { JIEDXUR WD +1an¢}- (4.5)
Jj=1

Further by taking advantage of (2.22) and of the first step in (2.27), after expanding again the exponential in (4.5)

around the values p; = mz;/, /1 — 22 and performing the integration in the Gaussian approximation (semiclassical

approximation), we can write (see, however, in this connection Ref. [12])

K(x1,%X2,¥1,¥2;ts — t;) = /'D[zl]A[zl]/D[zz]A[zz] exp {i[jf dtL(zl,zz,il,iz)}

with

[z, 4% 1 sk sh '
L=- ij 1-2%+ 5%— [1 - 5(5"" + r"r")z{‘zé’] - o‘r/ ds[1 — (sz1r + (1 — 8)227)?]Y/2.
0

In (4.6) D[z] denotes the usual nonrelativistic configura-
tional measure and A[z] is a determinantal factor, which
has to be be considered part of the relativistic measure.
Formally we can write

Dla] = (5%)3/21:[ [(2—%)3/2 d3z(t): (48)
(€ = time lattice spacing) and
Alz] = { Udet [%(1 _ 32)1/2(ghk _ shk)] }_1/2
(4.9)

What we want to stress is that Eq. (4.7) is identical to the
center of mass Lagrangian for the relativistic flux tube
model. This is consistent with what is already observed
at the 1/m? order in Ref. [2].

(4) In phenomenological analysis the following long-
range static potential of two-body type has been often
adopted [7] for the 3q case:

1
Vim = 27 (r12 + 723 + 731)

with a corresponding spin-dependent potential again of
the form (1.10),

(4.10)

3
1
Vsb =-) oz Si -V (5)Vetat X Pj - (4.11)
j=1 "3

The factor 1/2 in Eq. (4.10) is motivated by the fact that
when two quarks collapse they become equivalent from
the color point of view to an antiquark and V3%, and Ve
must reduce to V%, and VJZ. It has been shown that
(4.10) and (4.11) produce a spectrum very close to that
obtained from (1.6) and (1.10). From a numerical point
of view the use of (1.6) amounts to replace the factor
1/2 in (4.10) by a factor of the order of 0.54-0.55 [7,8].
Notice, however, that from a fundamental point of view
(4.10) has no clear basis.

(5) As we already mentioned in lattice gauge theory
the area law is obtained under the approximation in

(4.6)

(4.7)

which the quantity My(A) is replaced by 1, the so-called
quenched approximation. Our entire treatment has to
be understood in this perspective. Then the effect of vir-
tual quark-antiquark creation should be introduced as a
correction at a later stage. Various attempts have been
done in this direction: see Refs. [13,14].

(6) In Eqs. (1.6)—(1.8) Vg has been written in the
coordinates ry,rp,rs and ryz,rzs,rs;, which provides a
symmetric form of the potential. For numerical compu-
tations it may be useful to express such variables in terms
of a system of independent coordinates like the Jacobi co-
ordinates (see [3] and [8]).

V. CONCLUSIONS

In conclusion we have strongly simplified the deriva-
tion of the quark-antiquark potential as given in [4,5].
We have shown that, once the assumptions (1.13) and
(1.14) are done, the existence of a potential follows when
one performs the instantaneous approximation (1.16) and
the straight-line approximation (1.15). We have also cor-
rected the ordering prescription.

Because of the above simplifications, the method has
been extended without difficulty to the three-quark case,
where the relevant assumptions and approximations are
(1.18), (1.16), and (1.19). As aresult a 3¢ spin-dependent
potential has been consistently obtained in the Wil-
son loop context. This coincides with the one already
proposed by Ford under an assumption of scalar con-
finement. It has also been evaluated the O(1/m?) 3¢
velocity-dependent potential, which is new at our knowl-
edge.

Notice that in both the gg and 3q cases the spin-
independent relativistic corrections obtained by us differ
from those resulting from the mentioned assumption of
scalar confinement and seems to agree better with the
data [14,10] (for the difficulties of the scalar confinement
hypothesis see also [15,16]).

Finally we have seen that if in Eq. (2.10) we replace
the kinetic terms by the exact relativistic expressions and
neglect the spin-dependent terms, if further we use the
first step in Eq. (2.27) (without any velocity expansion)
and perform the momentum integration in the semiclas-
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sical approximation, we obtain the Lagrangian for the _ u
relativistic flux tube model [2]. Fy]=4+ .,dz Bu(z)
+l dz* [ d2'? Cyp(2,2') +--- (A1)
2 Jy v
APPENDIX A with Cy,(2,2') = Cou(z,7'), etc. Let us denote by

z = z(A) the parametric equation of v and consider an in-
Concerning the definition of the symbol §/65#(2),let  finitesimal variation of such curve z2(A) — z(A) +6z().
us consider a functional of the world line 7 of the form We have
|

'
Y
1 0By(z) BB (2) 0C,up(2,2')  0C,p(z2,2")
_ BSV _ v B I3 Ip up _ P e
_ZL(dzaz dz6z)[( el a“) /ydz ( o2 o )+ ] (A2)

where a partial integration has been performed at the second step. Assuming §z(A) different from zero only in a small
neighborhood of a specific value A of A we write

SF _ 8B,(z) algz#z) /d 10 (30#9(7’ ) _ 8C,,(z, z')> L. (A3)

oSwv(z) 0zv 0zv Oz#

with Z = z(X). Furthermore, if we consider a second variation §z(\) different from zero only in a small neighborhood
of a second value X # X we have

6F P57 105 1p 9 0C,up(2,2") _ 9C,,(2,2')
8SHv(z /(d 627 — d2'°62") [az"’ ( oz¥ Oz» )
_ 0 (0Cus(3,2")  9Cue(2,7) 3
9z ( 3z 320 ) + ] (A4)
and
0%F 0%Cyp(z,2)  0%Cyp(7,7')  9°Cu0(z,7') | 0%°Cus(2,7) A5)
05pe(Z')6SH (Z) = T 0z09zv 02'79z+ 02'POzv 0z/P0z+ (

Notice that the assumption A’ # X is essential to make the definitions unambiguous. The case in which a §(z — 2)
term occurs in C(z,2’) must be treated as a limit one. In practice this amounts to say that (A3) and (A5) hold true
even in this case.

APPENDIX B

In applying (A3) and (A5) to iln W4 [17] and iln W3, and specifically to Egs. (2.23) and (3.9) it is convenient to
think of ¢ as an arbitrary parameter on the same foot of A. It is obviously understood that at the end t is identified
with the ordinary time by setting 22(t) = t and u°(s,t) = ¢ (this in the ¢g case). In particular rewriting Eq. (2.23) as

17 1 X
iMWER = 08 =0 / dt / ds S(u™) (B1)
; 0
with
Bub Bu,\ [Ou d out du,\ 2]
B B ) Uu ou” Ouy
S(“)‘[ (at at)(as 83)+(8t 83)] (B2)

one can notice that the equation of the minimal surface u* = ul; (s,t) is the solution of the Euler equations

o 0S8 a9 098

955 (52) "o () (B3)

satisfying the contour conditions u#(1,t) = 24'(t), u#(0,t) = 25(t). Then considering an infinitesimal variation of the
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world line of the quark 1, 24 (t) — 24'(¢) + 624 (t), even ul; (s,t) must change, ul, (s,t) — u

and one has

5(iln WLR) —0'/ dt/ ds [—317'73_) “y

__ 95 0 u Y
9 (Ou+/0t) 8t ]u:um_ [‘.
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(s,t) + dur(s,t)

mln

ty

s
P Il
dt [a(au“/as)su :|s . )

(B4)

where §24'(t) was assumed to vanish out of a small neighborliood of a specific value of t. Finally taking into account

that
dut(1,t) = 624 (¢t),

one obtains

. b 1 .
6(11anI~‘qR) = 0'[ dt [‘S]j [—zf (

1

= 50‘/ dt (dz462Y — dz¥62y)
t;

Ceeerb o]

and so Eq. (2.41).

ou 1,¢t .
DLV _ ) (B5)
3umin 6umin
_s) + 8 2z, | 627
1 1
mxn au:-lnin> z
1
as ), "
2
(B6)
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