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Consistent derivation of the quark-antiquark and three-quark potentials
in a Wilson loop context
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We give a neer derivation of the quark-antiquark potential in the Wilson loop context. This
makes more explicit the approximations involved and enables an immediate extension to the three-
quark case. In the qq case @re find the same se~i~elativistic potential obtained in preceding papers
but for a question of ordering. In the 3q case we find a spin-dependent potential identical to that
already derived in the literature from the ad hoe and incorrect assumption of scalar confinement.
Furthermore we obtain the correct form of the spin-independent potential up to the 1/m order.

PACS uu~ber(s): 12.39.Pn, 11.10.St, 12.38.Aw, 12.38.Lg

I. INTRODUCTION

The aim of this paper is twofold. First we give a sim-
pMed derivation of the quark-antiquark potential in the
context of the so-called Wilson loop approach [1] in which
the basic assumptions, the conditions for the validity of a
potential description and the relation with the Hux tube
model [2], can be better appreciated. Second we show
how the procedure can be extended to the three-quark
system [3] obtaining consistently not only the static part

I

(stat) of the potential but also the spin-dependent (SD)
and the velocity-dependent (VD) ones at the 1/ms order.

For what concerns the qq potential, the result is identi-
cal to that reported in [4,5] (see [6] for the spin dependent
potential) except for a problem of ordering of mluor phe-
nomenological interest:

Vqq V'qq + Vqq+ Vqq

where

qq 4a,
V = ———+or,stat (1.2)
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Obviously in Eqs. (1.2)—(1.4) r = z' —zq denotes the relative position of the quark and the antiquark and p~T the
transversal momentum of the particle j, p"-& ——(b""—r"rs)p" where r = (r/r}; the symbol ( )~ stands for the Weyl

ordering prescription among momentum and position variables (see Sec. IV). Buthermore, in comparison with [5] the
terms in the zero point energy C have been omitted, since they should be reabsorbed in a redefinition of the masses

in a full relativistic treatment.
For the 3q potential the result is

+stat + SD + VD

sq ( 2a)
V.,'., =) i--—~+ ( +,+ ),

,(i E ")
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Ag ia», i = z,. —zi denotes the relative position of the
quark j with respect to the quark l (j, / = 1 2 3) and
rI = zI —zM the position of the quark j with respect to
a co~~on point M such that p. 1 r~ is mi»imum. As
well known, if no angle in the triangle made by the quarks
exceeds 120', the three lines that connect the quarks with
M meet at this point with equal angles of 120' like a
Mercedes star [type-I configuration, see Fig. 1(a)]. If
one of the angles is ) 120', then M coincides with the
respective vertex and the potential becomes a two-body
one [type-II configuration, see Fig. 1(b)]. Furthermore,
V'2&.

~
is the Laplacian with respect to the variable zj and

now liTh, = (bhh —rhrh)uh, where r,. = (r, /r ) The.
quantity zM in (1.8) is given by

N being a matrix with elements

3
Nhh ) ~(1/ )(ghh rh h)

Finally Eq. (1.7) properly refers to the I configuration
case. In general, one should write

3
LR 1 LR

Vso = ) 2SI ~ V(~)V~~~t x p
j=1

(1.10)

In comparing (1.10) with (1.7) one should keep in mind
that the partial derivatives in zM of V~~Rt vanish due to
the definition of M.

We observe that the short-range part in Eqs. (1.6)—
(1.8) is of a pure two-body type: it is identical to the elec-
tromagnetic potential among three equal charged parti-
cles except for the color group factor 2/3, and it is well
known. Even the static confining potential in Eq. (1.6) is
known [?,1,3]. The long-range part of Eq. (1.7) coincides
with the expression obtained by Ford [8] starting fi'om

the ass»mption of a purely scalar Salpeter potential of
the form

~ N p~ 1 (p~z; /rzm~) . type-I configuration,

pi/mr type-II configuration: zM =—zi,
(1.9)

(b)
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PIG. 1. The two types of coxdigurations of the three-quark
system.

p (rl + r2 + r3) pl p2p3

but at our knowledge it has not been obtained consis-
tently in a Wilson loop context before. Eq. (1.8) is new.
It should be stressed that (1.11) corresponds to the usual
assumption of scalar confinement for the quark-antiquark
system. As well known &om this ass11mption V,~, and

Vgo~ result identical to (1.2) and (1.3), but Vv~o~ turns out
difFerent from (1.4).

The important point concer»i»g Eqs. (1.1)—(1.8) and
(1.10) is that they follow from rather reasonable as-
s»mptions on the behavior of two well-known /CD ob-
jects Wq~ and W3~ related to the appropriate (distorted)
quark-antiquark and three-quark "Wilson loops, " respec-
tively.



5880 N. BRAMHLLA, P. CONSOLI, AND G. M. PROSPKRI SO

For the qq case the basic object is proximation in (1.13), consisting in replacing

Wqq = — TrPexp
~

ig dz" A„(z)
~

I l
ee r

(1.12) D.-(*) : D„"'(„z)= b(c) / dr D„„(r,x) (1,M)

Here the iategration loop 1 is assn~ed to be made by a
world line I'i between an initial position yi at the time t;
and a final one xi at the time ty for the quark (t; & tf),
a siuu&ar world line I'2 described in the reverse direc-
tion from xs at the time ty to y2 st the time t, for the
antiqiwrk and two straight lines at fixed times which
connect xi to xq, yq to yi, and close the contour (Fig.
2). As usual A„(z) = 2A A„(z),P prescribes the order-
ing of the color matrices (from right to left) according to
the direction fixed on the loop and the angular brackets
denote the functional integration on the gauge fields.

The quantity i ln Wqq is written as the sum of a short-
range (SR) contribution and of a long-range (LR) one:
i ln Wqq = i la Wqq +i ln W — . Then it is assumed that
the first term is given by the ordinary perturbation the-
ory, that is, at the lowest order,

aad use (1.15) and (1.16) at aa early stage ia the deriva-
tion procedure. In this way we shall obtain~ Eqs. (1.1)—
(1.4) in a much more direct wsy aad without the need
of assumiug a prior the existence of a potential as done
in [4]. So, once that Eqs. (1.13) and (1.14) have been
written, Eqs. (1.15) and (1.16) give the conditions under
which a description in terms of s potential actually holds.

Notice that, while (1.12), (1.14), and even (1.13) in
the &i~t of large ty —t;, are gauge invariant quantities,
the error introduced by (1.16) is strongly gauge depen-
dent. The best choice of the gauge at the lowest order in
perturbation theory is the Coulomb gauge for which the
above error is minimu~. To this choice Eq. (1.4) does
refer.

For the three-qu~~k case the quaatity analogous to
(1.12) is

i ln Wqq = g dzi dz2iD~ (zi —z2) {1.13)

(D„„being the usual gluoa propagator and n, = g2/4m
the strong interaction constant) and the secoad term by
the so-called "area law" [9,1,4]

l.
Wsq= —

i
6', 8s s s Pexp~ 'bg dz+ A&~(z)

~a%

ilnW- = OS; (1.14)

where S~;„denotes the minimal surface enclosed by the
loop (0 is the striag tension). Obviously Eq. (1.13) is
justified by asymptotic freedom, Eq. (1.14) is suggested
by lattice theory, nn~erical simulation, striag models,
aad other types of arguments.

Up to the 1/ms order, the u)iuimal surface caa be iden-
tified with the surface spanned by the straight line joining
(t, ai(t)) to (t, zs(t)) with t; & t & ty, the generic point
of this surface is [4]

0
min = ~& u ' = ss, (t)+ (1 —s)z2(t) (1.15)

with 0 & s & 1 and si (t) and ss(t) being the positions of
the quark and the antiquark at the time t.

We further perform the so-called instantaneous ap-

Here a~, bz are color iadices; I'~ denotes a curve made by
a world line I'~ for the quark j between the times t; and

tf (t; & ty), a straight liae on the surface t = t, merging
from a point I (whose coordinate we denote by yM) aad
connected to the world line, another straight line oa the
surface t = ty connecting the world line to a point F
with coordinate zM (Fig. 3). The positions of the two

points I and F are determined by the same rules which
determine the point M above.

The assumption corresponding to (1.13) and (1.14) is

X

&M

FIG. 2. Generalized. Wilson loop for the quark-antiquark
system.

FIG. 3. The analogous of the Wilson loop for the
three-quark system.
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then

iln Ws~ ———g ) dx", . Ch" iD„„(z;—x~)
r; r,

+frSmin t (1.18)

We shall see that Eqs. (1.5)—(1.8) follow if we sub-
stitute (1.16) in (1.18) and again replace Sm; with the
surface spanned by the straight lines

0u. ; =t, u~ = sz~(t) + (1 —s)zM(t) (1.19)
I

where now S; denotes the mimm»m among the surfaces
made by three sheets having the curves I'i, I'2, and I's
as contours and joimng on a line I'M connecting I with

with j = 1,2, 3, s 6 [0, 1], zM(t) being again the point

for which g. i ~z&(t) —z~(t)[ is minimnm.
The plan of the paper is the following one. In Sec.

II we shall report the simplified derivation of the quark-
antiquark potential as sketched above. In Sec. III we
shall report the derivation of the three-quark potential.
In Sec. IV we shall make soine remarks and discuss the
connection with the fiux tube model.

II. QUARK-ANTIQUARK POTENTIAL

As usual the starting point is the gauge invariant
quark-antiquark (qi, q2) Green function (for the moment
we ass»me the quark and the antiquark to have different
fiavors)

+(+i +& yi y2) = -(0IT42(&2)U(2'2 &i)@i(»)@i(yi)U(yi ys)Wz(y2)I0)3

= —Tr(U(z2, zi)S, (xi, yilA)U(yi, y2)C 'S2 (y2, 22IA)C) .
3

(2 1)

Here c denotes the charge-conjugate fields, C is the charge-conjugation matrix, U the path-ordered gauge string

( ft

U(b, a) = Pexp ig ds" A„(z)
a

(the integration path being the straight line joining a to b), Si+ and Sf the quark propagators in an external gauge
field A"; furthermore in principle the angular brackets should be defined as

f 17[A]My(A) f [A]e*s~+~

f 17[A]My(A)eg&i&j
(2.3)

S[A] being the pure gauge field action and My(A) the determinant resulting &om the explicit integration on the
fermionic fields. In practice assuming (1.14) corresponds to take My(A) = 1 (quenched approximation).

S arising the Brut pert of the procedure followed in Ref. [4) (eee such paper for details) Brst we assume
zsi = x2 = ty, yis = y20 = t; with r = ty —t; ) 0 and note that S. are 4 x 4 Dirac indices matrices type. Then
performing a Foldy-Wouthuysen transformation on G we can replace S with a Pauli propagator K,. (a 2 x 2 matrix
in the spin indices) and obtain a two-particle Pauli-type Green function K. We shall show that in the described
approximations this function satisfies a Schrodinger-like equation with the potential (1.1)—(1.4).

One finds (see [4]) that, up to the 1/m2 order, K~ satisfies the equation

,K~(»ylA) = IIFwK~(&tylA):= &~+ (p~ —g&) — (p~ g&) — S~—&+gA
1 q 1 4 g 0

(8;E' —ig[A', E*])+ 2
c'""S ((p~ —gA)', E"). K~ (z, y~A)

2

(2.4)

with the Cauchy condition

K'(* ylA)l- =. =b'(x-y) (2.5)

~here c'" is the three-dimensional Ricci symbol and the s~~metion over repeated indices is understood. By standard
techniques the solution of Eq. (2.4), with the initial condition (2.5), can be expressed as a path integral in phase
space:

s,-(a')=x
l0

K, (x, y~A) = . 'D[z, , p,.]Texp i dt[p, z,. —IIFw] (,
~& (ff') =if

f
Bf'

here the time-ordering prescription T acts both on spin and gauge matrices, the trajectory of the quark j in config-
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uration space is denoted by sz ——si(t), the trajectory in moment»m space by p~ = p~(t) and the spin by S~. Then,
by performing the translation

P r P+gA, (2.7)

we obtain an equation contai»ing the expression dt (gA —gi A) = g dx"A„, which is formally covariant. It is also
useful to have an expression for K~ in which the tensor Beld F""and its dual F""appear. To this end we make the
further translation

g:p ——(ExS) (2.8)

and, apart from higher-order terms, we obtain

s~(a )=x
K, (z, y/A) =

~&(v')=y
17[@,, p~]Texp) c dt pi s, —m, —

0 2m~ Sm3

—gAo+ S, B+ 2S,. (p,. x E) — S, (i:,. x E)
m2

' 2m2 m2
'

+gs, A+ 2(8;E' —ig[A', E'])
8m2 (2.9)

Thus we obtain the two-particle Pauli-type propagator K in the form of a path integral on the world lines of the
two quarks:

sg (t
K(xp, x2, yp, ysI~) =

sg (t, )=yg

sg (ty) =xg

&[»,pi] &[s2, p2]
~i(ti) =y~

f
ty 2 p2 p4

xexp(i dt) p; i, —m, —

x TrT, Pexp—( ig dz" A„(z) + ) dz"
3

x
~

S~Fil (z) — S~s'""p~ Fl„„(z)— D"F„„(z (2.10)

Here T, is the time-ordering prescription for spin matrices, P is the path-ordering prescription for gauge matrices
along the loop I' and, as usual,

F""= 8"A" —8"A"+ig[A", A"], (2.11)

(2.12)

D"F„„=8"F„„+ig[A", F„„]
and sl""~ is the four-dimensional Ricci symbol.

Furthermore as in Eq. (1.12) I'q denotes the path going &om (t;, yq) to (tf, xq) along the quark trajectory (t, sq(t) ),
I'2 the path going from (tf, x2) to (t;, y2) along the antiquark trajectory (t, s2(t)) and I' is the path made by I'q

and I'z closed by the two straight lines joining (t, , y2) with (t, , yq) and (tf, xq) with (ty, x2) (see Fig. 2). Finally Tr
denotes the trace on the gauge matrices. Note that the right-h*Lnd side of (2.10) is manifestly gauge invariant.

What we have to show is that the term in angular brackets in Eq. (2.10) can be expressed as the exponential of an
integral function of the position, moment»~ and spin alone taken at the same time t:

(
1 ty
—Tr T.Pexp{. .j T.exp i dt V (zg, s2, pg, p—2, Sg) 82)

ti
(2.14)

More precisely, since the A" are matrices, the step Jd p f(p —gA) = Id p f(p) can be justiSed by expanding f(p —gA)
in powers of g; apart &om the zeroth-order term, all the other terms involve derivatives of f(p) and do not contribute to the
integral.
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indeed then we can conclude that

(2.15)

Voo playing the role of a two-particle potential. To this aim, expanrh~g the logarit&m of the left-hand side of (2.14)
up to 1/m2 order, we should have

2

~&~qq+ ~) d*"~ S, ((&i/(z))) — ~,'s'""pg (y'p. (z)))
m& r, g

2m&

with the notation

((D"E„„(z))) ——) T, dz" dz' S'. S",
8m, ""

) 2 .;mm,
2'll

ty
x

~

((P,„(z)P,.(z'))) —((P,„(*)))((P„.(z')))
~

= dt Voo
~s

-' (TrP(exp[igg z& A„(z)])f[A])
s' (Tr P exp(ig g dzl' A„(z)))

(2.16)

(2.17)

and Wqq de6ned in Eq. (1.12).
At this point in Ref. [4] we assumed that a quantity Vo'r satisfying (2.16) existed and derived its form. Here we no

longer make such an a prion, assumption but start directly &om (1.13) and (1.14).

A. Contribution to the potential coming from i ln W~q

In the Coulomb gauge we have

i 1
D ()=— ~(t)4s ix)

(2.18)

Dgs(z) = (bshe
—(V ) BgBg)Dp(z) = i

—1
(2.19)

Dol (z) = Dl o(z) = 0, (2.20)

where Dp(z) = f(d4k/16m'4)(i/k2)e
The pure temporal part Doo(z) is already of instantaneous type, for the pure spatial part we have the instantaneous

limit

( zhzk )DJg'(z) = b(t) d7 Dal, (7)x) = —h(&)
~

b (2.21)

Replacing (2.18), (2.20), and (2.21) in (1.13) we have

ty
I W'-" = d --—'+ --—'(b"'+."")'"'"

ee
Cs

Similarly, if we denote by u" = u&(s, t) the equation of any surface with contour I' (a 6 [0, 1], t p [t;, ty], uo(s, t) =
t, u(l, t) = zz(t), u(0, t) = z2(t) ), we can write

Z/2

r,R . ~

d
(Bu" Bu„) (Bu" Bu„) (Bu" Bu„)= crS~;n = 0 mm dt ds ') & ')

2, 1/2
Bu (Bu)= 0 min dt ds

e, o E )
(2.23)
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where the index T denotes the transverse part with re-
spect to the unit vector s:

B. Spin-related potential

Oll
S =

Bs
l9U

BS

Then in approximation (1.15) we have

(2.24)

To obtain the remaining part of the potential we must
evaluate the expectation values of the form (2.17) occur-
ring in (2.16). Let us consider an arbitrary infinitesimal
variation zI(t): zI(t) + bz1(t) vanishing at t = ty and
t = t; and evaluate b(i ln Wqq). From (1.12) we have

(t) — (t) —:(t) (2.25)
ty

bWqq ————Tr P bS""(zI)F„„(z1)qq

aIld so

um, „= szI(t) + (1 —s)i2(t), (2.26) x exp ig dz" A„(x)
)

(2.28)

tf 1

zin W" = dt err ds [1 —(siIT + (1 —s)z2T) ]
0

ty
dt &r 1 ——(zIT + z2T + zlT ' z2T)

6

where bS""(zI) = 1(dz1 bzz —dzzbzz") is the element of
the surface spanned by zI(t).

Then

ty

b(z»Wqq) =z "=g bS" (z1)((E»(zI))) (229)

+ 0 ~ ~

where obviously now s = r and we have expanded the
square root and performed the s integration explicitly.

Notice now that, at the lowest order, z~ can be replaced
by p~/m~ in (2.22) and (2.27). Then such equat1ons be-
come of the correct form required by (2.16) and so does
the entire i ln Wqq. In conclusion we have a first contribu-
tion to Vqq (pure Wilson loop contribution) in the form
Vqzq, +Vvq~& with Vqzqz and Vvqf, as given in (1.2) and (1.4).
The ordering prescription in (1.4) shall be discussed in
Sec. IV.

and we may write

Z1
(2.30)

and therefore

(see Appendix A for a definition of b/bSP"(zI)). The
computation is similar for the case of z2 with a minus

sign of difference.
Similarly it can be seen that

1 b2Wqq
F„„( )Fp { ))) = {2.31

W,—, S»z, Sp z,

((E ( )E ( ))) (( ( )))((E ( )))
I

=
bS ( )bS ( )

=
gbS ( )

((E ( )))' (2.32)

From (1.13) we have then
Cy

g ((E»(z1))) = —g dt2 z[t9„D„p(ZI —z2) —BpD&p(zI —z2)]z2
3

{2.33)

g
I

((F»(zl)Ep&r(z2))) ((E»(zl))) ((Epcr(z2 ))
I

g {Bp[BvDpcr(zl z2) ~gDva(zl z2)]

8[8„D„p(z—I —z2) —B„D p(z, —z2)]) . (2.34)

Notice that obviously in the terminology of Appendix A we have C(zz, z1) = 0 and then

SR
(2.35)

The result is easily achieved in the case of an Abelian gauge theory: in fact one can freely commute the fields A„. ln our
case, on the contrary, the gauge theory is non-Abelian: one can still commute Selds referring to difFerent points because of the
presence of the path-ordering operator P; however, fields at the same point do not commute and this fact must be taken into
account. As a rule, one can make calculations in the Abelian case; by rewriting the final result in a gauge invariant form, an
expression also valid in the non-Abelian case is obtained.
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By using the Coulomb gauge and the instantaneous approximation we have then

g((F»(»)))' = 3&
—
„2

g ((Fhh(zl)&) 3 2 (r P2 r P2) )

SR

(2.36)

(2.37)

g
I

((Fhh(zl)Fi (z2))) —((Fhh(zx))) ((Fi (z2)))
I

4ig 1
6(tl —t2) BlBh

3 8x

1
(6hl + -h-i) + g g (6hl + -h-l) (2.38)

In a similar way we obtain also

g ((F-(z2)))"= 3~.—„. (2.39)

g((Fhh(z2)))' =
3

' „.(r"I~—r"pi)- (2.40)

Let us now consider the confinement part of iln Wqq. From Eq. (2.23), taking into account that u„' satisfies the
appropriate Euler equation, one has (see Appendix B for details)

g ((F~-(»)))"= ~
+min +min

zl„
I g I

zqi, ~ zl

)~

—1/2
min 2 - min . 2i

I+z~
Il ~')~ (2.41)

where the subscript 1 indicates that the derivative is calculated. in s = 1. A similar formula is valid for z2. Moreover,
as in the short-range case,

LR

((Fl (zl)Fl, (zl)&) ((Fi (zl))& ((F~~(zz) =0. (2.42)

By using the straight-line approximation one obtains

g((F»(z~)))' = ~—+O(v') (2.43)

with j = 1, 2 and

g ((F (hh)z))' = „(r"p," —r"S-,")+ o(v') (2.44)

(2.45)

ty
d."((D"F-.(z )» = «'"~"((F-.( )&)r, t;

iy ( h C 4 r" r"«
I

~"((F-o(»)&&+ 4&"((F-h(»)&) I

= «&'I —-~ —.—~—+ ".
Il ), l 3 'r' r

4o..

dt's'

I

———'+Or~+.
3 r (2.46)

Finally replacing (2.35)—(2.40) and (2.42)—(2.45) in (2.16) we obtain the terms in Eq. (1.3) involving explicitly spin.
As concerns the Darwin-type terms one should evaluate g ((D"F„„(2:))&in Eq. (2.16). By using the results of this

section one can obtain, by gauge invariance,

from which finally we have the Darwin terms as reported in Eq. (1.3).
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III. THREE-QUARK POTENTIAL

Let us define the three-quark color singlet state (again for three quarks of difFerent flavors):

~3 43 Tt d (y ) P2d (y2)43d (y )U (y yM)U (y2 yM)U ('y yM)l0) (3.1)

where the path-ordered gauge strings U are defined in Eq. (2.2), yM is defined as explained after Eq. (1.17), b, and
d; for i = 1, 2, 3 are the color indices, e3,3,3, is the completely antisym11)etric tensor in the color indices, which puts
the system of three quarks in a color singlet state and 1/~3. is the normalization factor.

The correspondi11g gauge invariant Green function can be written

1
G(z1, z2, zs, y1, y2, ys) = —,so, .o,s3,3,3,

x(0ITU *"(zM,z3)U (zM) z2)U (zM)zj)$3cg(z3)@2cg(z2)41cg(zl)

xold, (y1)@2d, (y2)03d. (y3)U"'"(y1 yM)U'*"(y2 yM)U""(y3 yM)lo)

andweass1' ez1=z2=zs=zl=tf~y1 =y2 =y3 =yM ——t;; 7 =tf t (~) 0)'.0 0 0 0 0 0 0 0

The integration over the Grassmann variables is again trivial and one can write

1
G'(x1 x2 x3 y1 y2 y3'7. ) = —,so. .o.s3.3,3.([U(zM»)~1 (» y1I&)U(y1 yM)]""

(3 2)

x [U(zM1 z2)~2 (z21y2l~)U(y2) yM)] [U(zMy z3)~3 (z31 y3l+)U(y3) yM)] ) j (3 3)

if some of the quarks are identical we have simply to sum over all permutations of the correspondi11g final variables.
By performing even in this case the appropriate Foldy-Wouthuysen transformations and using (2.9) we find, in place
of (2.10),

sg(ty)=xI sg(tg)=xg +s(ty)=xs
K(x1 x2 x3 y1 y2 y3 7 lxM yM) = V[z1, p1] V[z2, p2] Z [zs, p3]

EI (t') =yI sp(t;)=ys ~s(ti) =ys

ty 2

xexp(i dt) p, z, —m, —
t;

4

+
8m2

x —,ss T, Pexp ( ig dz" A„(z) + dz"
~ ~ ~ F fAjj=1

x
~

s,'Pj„(z) — s,'2 "p,"F„„{z)— D"F,„(z)
~ }), (3.4)

K being now the three-quark Pauli-type Green function.
In (3.4) we have suppressed for convenience the color indices but have left trace of the tensors s. . .e3,3,3, with

the notation ss. As above T, denotes the chronological ordering for the spin matrices and P is the path-ordering
prescription acting on the gauge matrices; I'~ and I'f are defined as in Eq. (1.17) and following. Notice that the
curve I' made by the union of I'1, I'2, and I'3 is a closed three-branch loop, which generalizes the Wilson loop of the
two-body system.

From now on one can proceed strictly as in Sec. II. We shall show that from (1.18) using (1.16) and (1.19) one can
write

ty

T, P exp T, exp i dt V ~(z—1,z2, z3, p1, p2, p3, S1,82, S3) (3.5)

and so the propagator K obeys the three-particle Schrodinger-like equation

(3.6)

Again expanding the logarithm of the left-hand side, Eq. (3.5) turns to be equivalent to
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2

«D"y„„(z)» —) g T. dx" dz' S,'. S,".,

ty

x) «+.( )+-(*')» —«+~.(*)&& &&~h-( ')&&
I

=
t;

with Ws~ being de6ned as in Eq. (1.17) and now where now the index Tz stands for transverse part of a
vector with respect to

—', &ss(g,. P[exp(ig Jr dz" A„(z))])f[A]&
—,', &ss(g,. Pexp(ig Jr de~A„(z)))&

Bu~
Sj Bs

(3.10)

(3.8)

A. Contribution to the potential coming from
i ln WI~

Having in mood (1.19) let's evaluate S~ in the same
manner as we did for the two-body case. The quan-
tity S is the area made by three sheet surfaces as
described in Sec. I. Let us denote by zM(t) an arbi-
trary world line joining yM to zM and by u" = u". (s, t)
the equation of an arbitrary sheet interpolating between
the trajectories z". = z". (t) and zM ——zM" (t); obviously

u, (0, t) = zM(t), u~(l, t) = z, (t) and u (s, t) = t.
Assuming that the minima~ is taken in the choice of

u" (s, t) and of zM (t) we can write, in analogy with (2.23),

Umin
= '(t)- M(t) -=~(t)Bs

(3.ii)

B min

e7
= sz;(t) + (1 —s)zM(t) (3.i2)

and expanding in the velocities

tfS; = dt ) r~ 1 — (z~T—+zM,T
t;

Then, performing the straight-line approximation (1.19)
we have

Bu,.S; = min) dt ds
Bsts 0

2i 1/2

+z~T; zMT, ) + . . (3.i3)

(Bu )x&1
) r~

e

(3.9)
with sj = rj.

Taking into account this result and introducing (2.18),
(2.20), and (2.21) in (1.18),

ty

3T l 23T l

3

+ cr) r, 1 ——(z2.~, +z'MT, +z,.T, zMT;. ) ), (3.14)
6

where again r~~
——r~ —r~ = z~ —z~. In the I con6guration case the quantity zM can be obtained deriving the equation

g, ,(r, /r, )= 0. We ge.t.
3

) (ghh rh&h)zh
~ Tj=1

Obviously in the II con6guration case we have iM ——i~
Finally replacing z~ by p~/mz we obtain Eq. (1.8).

3

T T' ZM
j=1

(M = quark/).

As in the qq case we can write

B. Spin related potential

g &F~-(z')&& = S~" z,.
(3.i5)
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with j,i = 1,2, 3 and adapt immediately the procedure used in the derivation of Eqs. (2.35)—(2.40) and (2.42)—(2.45)
to the variation of each single quark world line separately.

From the short-range part of (1.18) we have then

ty

9((+ -( )))' = -9' «* (~-D ( — *) —B D- ( — *)1;
tf

+ dt [8 D„(z, —* )
—8„D (, — )j*'„)

C~

with j,i, n = cyclic permutation of 1,2, 3 and

(3.17)

&
~

((+ (z)+ (z'))) ((+ (z )))((+ (z')))
~

= 3g P B D (zi — ') —B B D (z —z')

—BpB„D„(z,—z;) + BI,B„D„(z,—z;)j.

for j p i; furthermore,

SR

(3.18)

l
((+.-(')+ ( ))) —((+.-('))) ((+.-(z,')))

~

=0. (3.19)

By using the Coulomb gauge and the instantaneous approximation we have, &om Eqs. (3.17) and (3.18),

„ie
~((+"(z')))' = 3~ „s'+ „s"

"2 "2-
(3.20)

(3.21)

(j,i, n = cyclic permutation of 1, 2, 3) and

~'
l
((&-(')&-( '))) —(P'.('))) ((+-( ')))

l

W

g(t t ) B{)B{i) (gh + „-a „-~) B{')B{i) (ham + „j t a ~ji~ji ) l gt j."2t "zi

B{~)B{j) ghl + -h -I
~ + B{i)B{j) goal + -k -i q

gaj ji ji j"2z ."2
(3.22)

where j p L
Let us now consider the long-range part of Eq. (1.18). Notice that, because of its definition, an infinitesimal

variation of the intermediate point world line sM ——zM(t) leaves the quantity i la Wsq unchanged. Then, in the
evaluation of the functional derivatives (3.15) and (3.16), we can treat such world line as fixed. From Eq. (3.9),
taking into account that u.„satisfies the appropriate Euler equation, one has

(B&min )")
(B&min )

Bsj )
fBu. .l '

g
—z.

Bs&

- 2i —1/2
(Bu,.. ' l

where the subscript 1 indicates that the derivative is calculated in 8 = 1. Moreover,

~

((+.-(')+.-( ))) —((F.-(.)))((+.-( )))
~

(3.24)

By using the straight-line approximation one obtains

k

a((+os(z~)))' = &—„' (3.25)
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(3.26)

with j = 1,2, 3 and

LR

~
(P ( )F ( '))) (F ( ))) (P ( ')))

~

='g ((+ ( ))) =O( ) (3.27)

with j pi.
As concerns the Darwin-type terms we must evaluate

g((D!~&"F„„(Z7)))for j = 1,2, 3 with D&~&" = 8&i!"+
igA". This can be done by using the same line of deriva-
tion as for the two-body case.

At this point me may derive the spin-dependent poten-
tial: after some calculations using Eqs. (3.19)—(3.22) and
(3.24)—(3.27) in Eq. (3.7) we get Eq. (1.7).

IV. ADDITIONAL CONSIDERATIONS

To complete the work some additional considerations
and renuLrks are necessary.

(1) In Sec. III we have assumed difFerent fiavors for
the three quarks. If two or three quarks are identical we
must identify the corresponding operators in Eq. (3.1)
and add the appropriate normalization factor I/~2! or

I/y% Correspondingly we have to replace the right-
hand side in (3.3) with the corresponding snm over the
permutations of the final identical particles divided by
the combinatorial factor (2! or 3!). For what concerns
the potential this means only that we have to equate the
nmsses of such particles in (1.7) and (1.8). Simi!arly if in
Sec. II the quark and the antiquark have the same fiavor,
a new term must be added to the last member of (2.1),
which is obtained by interchanging the roles of yq and
z2. Such "a~~ihilation" term is not properly of potential
type but can be treated perturbatively [10].

(2) Concerning the ordering problem in (1.4) and (1.8)
we recall that there are two independent possible pre-
scriptions for a quantity quadratic in the momenta:
the Weyl prescription

(4.1)

I

definition of the path integrals in (2.9) or (2.10) is not at
our choice, but it is a consequence of the corresponding
procedure used in the definition of the field functional in-
tegration in (2.1). To see what is the correct prescription,
let us assume a definite lattice with spacing s in the time
direction and a spacing a in the space directions. Let us
consider the corresponding discrete counterpart of (2.1),
written according to the usual rules for gauge theories

[11]and perform the integration of the fermionic fields at
this discrete level. Then in place of (2.10) we arrive at an
equation in which not only the time integral is replaced
by a sum over the appropriate discrete times t„but for
every t, even the integrals on zz and z2 are replaced by
the sum over all the sites of the lattice corresponding
to that time coordinate. Finally Eq. (1.12) has to be
interpreted as

Wqq
fn', n}

dU„„e' ~ ~ TrP
~ h ~ ~

g~,~ }qr
U„ „, (4.3)

(z„i+z
exp 'kg(z~i —z~) A~

~ ).
we see that, after having explicitly integrated over U [and
so used (1.13) and (1.14)] and performed the limit a ~ 0,
we are left with the discrete form of an ordinary path
integral with

where U„~„denotes the element of the color group asso-
ciated to the link between the contiguous sites n and n'

and the product is extended to all such lin&s or to all
b~ks laying on the curve I'. Since in turn U„~„can be
interpreted as

and the sy~~etric one
ghkl & h k, ghk ~r&+r& —&l h k

)
(r)Ip' p, (4.4)

(f( )
h k) (f(r) h k) (4.2)

As well known, in the path integral formalism the order-
ing prescription corresponds to the specific discretization
rules used in the de&uition of it.

In Ref. [5] we adopted a somewhat ad hoc rule corre-
sponding to the ordering ( ),s = ~s( )w + s( )s. Such
rule was motivated by the fact that it enables a by part
integration at the discrete level which was necessary to
elinrinate a dependence of the potential from the accel-
eration.

Notice, however, that the &i~it procedure used for the

Equation (4.4) does correspond to the Weyl ordering, as
indicated in (1.4) [12]. Notice, however, that a difFer-

ent ordering in (1.4) would bring simply to additional
Darwin-like terms, which, in practice, can be nearly com-
pletely compensated by a readjustment of the potential
parameters. Si~i&ar arguments apply to Eq. (1.8) in the
Sq case.

(3) To clarify the connection between the qq potential
and the mlatiuiatic fluz tube model [2] it is convenient to
neglect the spin-dependent terms in (2.10) and replace
the 1/m2 expansion by its exact relativistic expression.
%e have
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f W

ty 2

yt(xt, xz, yr, ye, tt —t;) = f 17[sr,pr]f t7[zt, pt]exp i i rtt) (p, . zr —
pm +p, ) +tztpee t . (4t)

j=1

Further by taking advantage of (2.22) and of the first step in (2.27), after expandiiig again the exponential in (4.5)
around the values p~ = mz~/ 1 —z. and performing the integration in the Gaussian approximation (semiclassical

approximation), we can write see, however, in this connection Ref. [12])

ty
yt(x r xytyrtet —t ) = f tt[ ]tetr[ ]zfrtt[ze]tt[ze]exp [t rt Lt(z r ze zr )Zje (4.6)

with

2 1
I, = —) m, )t(l —zt t- ——' t ——(b"" t-t"t")ttte —ze tie[1 —(tits+ (t —e)zty) ]

i .
j=1 0

(4.7)

In (4.6) D[z] denotes the usual nonrelativistic configura-
tional measure and b, [z] is a deter~nantal factor, which
has to be be considered part of the relativistic measure.
Formally we can write

d'z(t)
t

(4.8)

(e = time lattice spacing) and

6[z] =
)

-1/2

(I z )i& (P~ —z"z")1

LR
V„~, = —0 (ri2 + r2s + rsi) (4.10)

with a corresponding spin-dependent potential again of
the form (1.10),

3
LR ~ LR

sD = ) 2S~. V~~~Vpi~i x p
~=2 jj=1

(4.11)

The factor 1/2 in Eq. (4.10) is motivated by the fact that
when two quarks collapse they become equivalent from
the color point of view to an antiquark and V,~ ~ and VSD
must reduce to Vlf, and VsvDv. It has been shown that
(4.10) and (4.11) produce a spectruin very close to that
obtained from (1.6) and (1.10). From a niiyyterical point
of view the use of (1.6) amounts to replace the factor
1/2 in (4.10) by a factor of the order of 0.54-0.55 [7,8].
Notice, however, that from a fundamental point of view
(4.10) has no clear basis.

(5) As we already mentioned in lattice gauge theory
the area law is obtained under the approximation in

(4.9)

What we want to stress is that Eq. (4.7) is identical to the
center of mass Lagrangian for the relativistic fiux tube
model. This is consistent with what is already observed
at the I/m2 order in Ref. [2].

(4) In phenomenological analysis the following long-
range static potential of two-body type has been often
adopted [7] for the 3q case:

which the quantity My(A) is replaced by 1, the so-called
quenched approxiyy)ation. Qur entire treatment has to
be understood in this perspective. Then the efFect of vir-
tual quark-antiquark creation should be introduced as a
correction at a later stage. Various attempts have been
done in this direction: see Refs. [13,14].

(6) In Eqs. (1.6)—(1.8) VsD~ has been written in the
coordinates r i, r2, rs and r is, rls, rsi, which provides a
synimetric form of the potential. For niiiiierical compu-
tations it may be useful to express such variables in terms
of a system of independent coordiiiates like the Jacobi co-
ordinates (see [3] and [8]).

V. CONCLUSIONS

In conclusion we have strongly simplified the deriva-
tion of the quark-antiquark potential as given in [4,5].
We have shown that, once the assiimptions (1.13) and
(1.14) are done, the existence of a potential foHows when
one performs the instantaneous approxiyytation (1.16) and
the straight-line approximation (1.15). We have also cor-
rected the ordering prescription.

Because of the above simpli6cations, the method has
been extended without difficulty to the three-quark case,
where the relevant assumptions and approximations are
(1.18), (1.16), and (1.19). As a result a 3q spin-dependent
potential has been consistently obtained in the Wil-
son loop context. This coincides with the one already
proposed by Ford under an assumption of scalar con-
finement. It has also been evaluated the O(l/m2) 3q
velocity-dependent potential, which is new at our knowl-

edge.
Notice that in both the qq and 3q cases the spin-

independent relativistic corrections obtained by us differ
&om those resulting &om the mentioned ass»option of
scalar con6nement and seems to agree better with the
data [14 10] (for the difficulties of the sc iiar confinement

hypothesis see also [15,16]).
Finally we have seen that if in Eq. (2.10) we replace

the kinetic terms by the exact relativistic expressions and
neglect the spin-dependent terms, if feather we use the
first step in Eq. (2.27) (without any velocity expansion)
and perform the momentum integration in the semiclas-
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sical approximation, we obtain the Lagrangian for the
relativistic fiux tube model [2].

F[p] = A+ dz" B„(z)
7

dz" dz'~ C„~(z,z') +
7 7

(A1)

APPENDIX A

Concer~i~g the definition of the symbol b/bS""(z), let
us consider a functional of the world line p of the form

with C„(z,z') = C~„(z,z'), etc. Let us denote by
z = z(A) the parametric equation of p and consider an in-
fimtesim'Ll variation of such curve z(A): z(A) + hz(A).
We have

6B=f ~

6dz»B»(z)+dz» " bz" ~+ dz »'~ bdz C »(zzz»')+, d» z" „' bz" ~+
BB„z BC„~ z, z'

1 „„„„)(BB„(z) BB„(z))(, (BC„p(z,z') BC„~(z,z') ) (A2)

where a partial integration has been performed at the second step. Assunung bz(A) different from zero only in a small
neighborhood of a specific value A of A we write

bF
hS~"(r)

BB„(r) BB„(z), (BC„p(r,z') BC„p(r,z') )
Bz" Bzb' ~~ Bz" Bz6'

with z = z(A). Furthermore, if we consider a second variation bz(A) different from zero only in a small neighborhood

of a second value A P A we have

and

8 (BC„(r,z') BC„(r,z') ~
Bz'b' ~i Bz" Bzd'

bzF BzC„p(r, z') BzC„B(z,r') 82C„(r,z') 8 C„(z,z')
bS6 (z')hS6'"(z) Bz' Bz" Bz' Bzb' Bz'6'Bz" Bz'6'Bzdb (A5)

Notice that the assumption A' P A is essential to mske the definitions unambiguous. The case ia which a b(z —z')
term occurs in C(z, z ) must be treated as a limit one. In practice this amounts to say that (AS) and (A5) hold true
even in this case.

APPENDIX B

In applying (AS) and (A5) to iln Wq& [17] and i ln Ws~ and specifically to Eqs. (2.23) and (3.9) it is convenient to
think of t as an arbitrary parameter on the same foot of A. It is obviously understood that at the end t is identified
with the ordinary time by setting zo(t) = t and uo(s, t) = t (this in the qq case). In particular rewriting Eq. (2.23) as

t,y 1
ilnW- = oS = o dt ds8(u )

t; 0
(Bl)

with

Z/2
(Bu" Bu„) (Bu" Bu„) (Bu" Bu„'b

Bt Bt )' )
8 8 ) ) Bt 8

one can notice that the equation of the minimal surface u" = u". (s t) is the solution of the Euler equations

8 88 8 88'8(.:) ~8('* )
(BS)

satisfying the contour conditions u" (1,t) = z~~(t), u" (0, t) = zg(t). Then considering an infinitesimbbJ variation of the
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world line of the quark I, zf (t)
and one has

: z~~(t) + bz~~(t), even u";„(s,t) must change, u", .(s, t) : u",„(s,t) + bu" (s, t)

08 cl „M 0
&=&min

08
8 (Bu&/cls) 8=1

(84)

where bz~~(t) was assumed to vanish out of a small neighborhood of a specific value of t. Finally taking into account
that

bu" (I, t) = bz,"(t), min( & ) 'P(t)Zg

one obtains

and so Eq. (2.41).

Cf

b(ilnWLR) = o dt
mj~

q f gulllxD )—z~
~ ~

+ z~ zy„bz~)'
t y (' cpu ) p

clumin ~—0 dt (dz, bz," —dz,"bz,") ", zq„—
~ ~

zq„

-Z/2
m1g, 2 - min

xi-zeal g I

+ z&

)~ . &
' )&

J

(86)
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