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There exist relativistic quark models (potential or MIT bag) which satisfy the heavy quark sym-
metry (HQS) relations among meson decay constants and form factors. A covariant construction
of the momentum ei0;enstates, developed here, can correct for spurious center-of-mass motion con-
tributions. The proton form factor and M1 transitions in quarkonia are calculated. An explicit
expression for the Isgur-Wise function is found and model-determined deviations &om HQS are
studied. All results depend on the model parameters only. No additional ad Roc assumptions are
needed.

PACS number(s): 12.39.Ki, 12.39.Hg, 13.25.Gv, 13.40.Gp

I. INTRODUCTION

A simple, but covariant quark model [1—4], used pre-
viously to calculate meson form factors [5], possess also
the heavy quark symmetry (HQS) [6—14 . Actually this
might be true for a whole class of quark models. This
class contains models in which quarks are confined by a
central potential. Their wave functions must be Lorentz
boosted [2—5]. It is hoped that such models might serve as
a useful semiempirical tool. They can be used to roughly
estimate physical quantities and efFects and to illustrate
HQS relations.

Once the model confinement parameters [15—17], the
quark masses, and the interaction hypersurface [3,5] are
selected, everything else follows &om our formalism. No
additional assumptions, such as, for example, about the
q2 dependence of form factors [18], are needed. HQS is
intimately connected with the Lorentz-covariant charac-
ter of the model.

Model hadron states, used previously [1—3], were not
momentum eigenstates [19—24]. This can be remedied
by a projection [19—25] of model states into momentum
eigenstates. A Lorentz-covariant projection [25] is devel-
oped here. It is shown that this removal of the spurious
center-of-mass motion improves the model description of
proton electromagnetic form factors. Such corrections
are not important if the hadron contains heavy quarks c
or b. In that case they are smaller than 5%%uo.

The model calculations give some corrections to the
extreme HQS. Some of those, for example, concerning
meson decay constants f~ and f~. agree with QCD sum
rule results [26]. Model predictions for meson form fac-
tors in the heavy quark limit (HQL) follow exactly the
HQS requireinents. One can extract a model prediction
for the Isgur-Wise function ( [7].

z; = y+z;. (2 1)

The con6ning "ball" of mass M can be boosted, ac-
quiring the four-momentum P. Individual quark wave
functions @„depend on z and P:

Q„(z ) = S(P)rt„(z~)exp( —
iz~~ e„). (2.2)

Here

S(P) = (Ppp+ M)/[2M(E+ M)]
E = (P'+ M')'~',

zi(P)„= z„—P"(P z),
zii(P) = P„z",

P„=P„/M, (2 3)

and e„ is model energy. For P„= 0 the Dirac spinor rl

has a generic form

(2.4)

Here y is the Pauli spinor.
One can introduce the quark 6eld operator

(2.5)

and de6ne model states for meson "m": for example,

I I

~m, M, P, s, y) = ) C„'„,&&,a'&~b„'& ]0)e ' ". (2.6)

model was employed [3—5]. Here a harmonic oscillator
confining potential [16,17] will be used.

In any of them one can envisage a hadron as located
around y. The quark q, coordinate is

II. RELATIVISTIC MODEL

Any static model in which quarks are con6ned by a
central force can be relativized [1—5]. Earlier the MIT bag

Here m is the fiavor (B,D, etc.), M is the meson mass,
and 8 is the spin.

Using the configuration space operators [27] (2.5), one
can obtain a model wave function whose generic form is
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(0~@(z~)@(z,)@(z, )~b, M, P, a, y) III. MOMENTUM EXCENSTATES

= ~Pe +b(4'f (zi )4'f (z2 )Qf (z3 ))

= hb(P, zi, z2, zs)e (2.7)

Here N~ is the norm and Eg symbolizes the symmetrized
combination of quark Bavors.

A quark line in the configuration space, in the nonrel-
ativistic limit, corresponds to the normalization integral

The factor exp( —iPy) (2.6) describes the motion of
the center of force (c.f.). The center of mass (c.m. ) of
centrally confined quarks oscillates about the c.f. As is
well known [1—6,25] the spurious center-of-mass-motion
(c.m.m. ) persist even in the static (P = 0) case. Thus the
boosted centrally confined model (BCCM) states (2.6)
are not the moment»m eigenstates. This can be remedied
by decomposing a BCCM state into momentum eigen-
states ~l, a) as follows [19—24]:

@'gd z = 1.

This can be generalized as

~ = J(z)&( ')&@(z ').

(2.8)

(2.9)

)ts, M P s, y) = 2M f d l6(t' —M )8(z)e s"dy(t)(l, s)

~'& -a= 2M e ""Pp(l)~l, a).
2ccp

Here

d(z) = f d z 6(Lz)

Among all possible hypersurfaces

(2.10)
(l'a'ala) = b'„b(l' —I),

l = ((u, l). (3 2)

Here h denotes a hadron. The momentum eigenstates
normalization is

I, z=O

only the one defined by

(2 ll) For a BCCM state one has

(h, M, P, aOiO, aP, M, h) = 1

I, = (P„*+&f)l[(A+ Pf)'1"' (2.12) = fd'I, Idy(t)l'

leads to the proton electromagnetic form factors f; which
satisfy the conserved current constraint fs(q ) = 0 (5.2).
A model defined on a hyperplane is connected [2,3]
with the quasipotential approximation [28] of the Bethe-
Salpeter equation.

The vertex spatial dependence follows from (2.9) by
replacing

This provides a normalization of the components P of the
momentum eigenstates.

The momentum eigenstates in (3.1) are not the exact
physical hadron states but the model hadron states, i.e.,
some kind of "mock" hadron states [29].

In the occupation number space one finds, for a baryon
b, for example,

p~r„,

I'~ ——p~, p~p5) etc.
(2.i3)

(y = O, a, P, M, b~b, MP, a, y = (~(P))
d3l= M' ~P~(l, ur)(!'e "&~lpga
4P

(3.4)

Figure 1 shows the vertex for the sem~&eptonic B ~ D
transitions. For mesons mf, m; (2.6) a current matrix
element is

Iz(I's) = f dsy(y, stPtm, tM)Zt(z, )4 (z, ',)I' @( s')z

x J(z2)%(z2') g4'(z2')~m;I M;, P;, a;, y). (2.14)

In coordinate space this becomes

(y = 0, a, P, M, b~b, M, P, a, y = (~ (P)) = &(P, (~(P))

= J(»)J(z2)J(zs)hb'(»zi zz») hi424s (3 5)

x hb (P, zi —(g (P), zs —(~(P), zs —(g (P) )

For the proton, with all light quark masses equal (m„=
mq), one finds

B
Zl

d

Pf

PEG. 1. Vertex for the semileptonic B m D transitions.
Quark lines (5, c, d), momenta P; f, and the overlap integral
Z are indicated.

p~~(P, C (P)) =
l J(z)&(z~(P))~ '

l ~)
pl——4([z(P) —((P)1~)

(3.6)
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i(l—k)(~ (P) (3.7)

The end result is the Lorentz-covariant expression for the
components of the momentum eigenstates:

—id~(& ~~)i' =, , f d'(d(~ O

( p. ~
P ~ ( Ol(d (P) (3.8)

Some explicit expressions for P's are listed in the Ap-
pendix.

Integrating (3.4) and (3.6) over (, one Bnds

d3k~(0~(»(~(P))e*"' ' = M'J(0 2 I&~(~ ~~)l'
~A:

Thus only the "large" component U survives in (4.3).
One can also show that in the MIT bag model [15] a

"small" component V vanishes in the HQL. In the numer-

ical evaluation the MIT bag model parameters employed
previously by Ref. [5] will be used.

The HO model parameters are

V, = —O.35 GeV,

K = O.OS5 GeV'.
(4.6)

The constituent quark masses and related quantities P,
E, and Bo are listed in Table I.

Table II shows model hadron masses calculated using
either model states (2.6) or model-dependent momentum
eigenstates (3.2). The relevant formula for the valence

quark contribution to the hadron mass Mq is

IV. CONFINEMENT

The Dirac equation for quarks can be solved for the
potential

MO
——(h, M, O, s, 0~~ fT d ~h,sM, O, 0)s

= (h, M, O, s, OiP ih, M, O, s, 0). (4.7)

1( Pl
V (r, P) = — 1 + —[Vp —

2 Kzi (P) ],2( M)
(4.1)

which in the hadron rest frame has the harmonic oscilla-
tor (HO) shape [16]

V(r) = 2(1+p )(Vp+ 2Kr ). (4.2)

U = exp( —r /2R() ),

V =rP U/Rp, (4.3)

Here Vo and K are model parameters. The rest kame
solution has a general form (2.4), with

M = Mq+ AMM+ AME. (4.S)

Using momentum eigenstates, one obtains the following
identities for a meson m or a baryon b:

d3Ic
M = ~rP (k)~ V M™+k2

$2

MQ d3k $ I 2 Mgs+g2
Qp

2

(4.9)

(4.10)

Here TPP is the momentum-energy tensor. One must add
magnetic AMM and electric 6M@ effective one gluon ex-
change contributions [15,16] which for the HO potential
model can be calculated explicitly. Finally one has a
BCCM-based hadron mass without c.m.m. corrections:

N =[R w) (1+-P)]

Rp =2/K(m +E ), (4.4)

P = Rp'(m +E )

The index a denotes the quark's flavor. The quantities
Rp and P depend on the constituent mass m and the
energy E:

E = m +Vp+3[K/2(m +E )] ~,

Here M's and P's are determined by parameters from Ta-
ble I. The c.m.m. corrected masses M~ ~ can be found
numerically. Inspection of Table II reveals that c.m.m.
corrections improve the agreement with the experimen-
tal values [6]. The mass of the pion is quite wrong, as
in all valence quark models which do not account for the
Goldstone-boson nature of the pion. Other theoretical
masses are correct within 10% or better. c.m.m. correc-
tions increase the mass difference in a SU(6) multiplet,
(p, 4, etc.), bringing theory closer to experiment. Cor-
rections decrease with the increase of the heavy quark
mass. Thus, for example, (Mg —M~)/M~ = 1.6'%%up.

0. (4.5)

An approximate solution [6] for the linear potential
V(r) = 2(1+p )(Vp+Ar) would also have the form (4.3),
with an accuracy of 6%. All general HQS features,
discussed below would thus apply for that potential also.

In the heavy quark limit (HQL), where m ~ oo and
E —+ m, one has u, d

S
0.315
0.525
1.850
5.450

0.426
0.557
1.710
5.221

0.455
0.343
0.140
0.062

TABLE I. HO model parameters.

Flavor m (GeV) E (GeV) Rp (GeV )

2.96
2.70
2.00
1.52
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Hadron

TABI E II. Hadron masses in HO model. All masses are in GeV.

Mexpt
M MgzPt

I

P/
~expt

P
K
K
gC

4
D+
D+'
D,
DQ

B+
B+'
B,

1.191
1.365
0.679
0.910
0.817
1.019
3.381
3.433
1.906
2.005
2.138
2.229
5.207
5.249
5.580
5.620

0.928
1.138
0.329
0.677
0.528
0.798
3.267
3.322
1.752
1.858
1.994
2.091
5.125
5.168
5.501
5.541

0.938
1.236
0.139
0.770
0.498
0.892
2.979
3.097
1.869
2.010
1.969
2.110
5.279
5.325
5.384
5.431

0.78
0.83
0.48
0.74
0.65
0.78
0.97
0.97
0.92
0.93
0.93
0.94
0.98
0.98
0.99
0.99

1.1
8.0

12.1
6.0

10.5
9.7
7.3
6.3
7.6
1.2
0.9
2.9
2.9
2.1
2.0

V. PROTON FORM FACTORS

Calculation of the proton form factors is a useful test of any quark model. All calculational details have been
discussed and described in Refs. [3] and [5]. It remains to be shown that the inclusion of c.m.m. corrections improves
upon earlier results.

These corrections are included by the equality

f
3

d y J(z;)(M, Py, yl ) V"(z;)C(z~)C(zg)e *~ 'IM, P;, y)
i=1 i,j,le, perm

= (2vr) b(Py —P; —Q)J(z), M PJ (I,', u')Pp, . (I, w)(l'IV" (z)e '~'ll). (5.1)

Here,

V"(z;) = 4'(z;)&"C(z,),

C(zs) = 4'(z~) &@(») (5.2)

I

Here

W = IOZ,
O' = I2Z,

MfZ= 4s drr j (p)[V +V],
f

s=l' —l, fs(s ) =—0.

The left-hand side (LHS) of (5.1) is the expression used
earlier [5] to calculate electromagnetic form factors. Here
it is written in the occupation n»mber space.

In general one cannot invert the expression (5.1). How-
ever, at the momentum transfer Q2 = 0 one can deter-
mine [23] the Sach's form factor Gsf(0).

The LHS of (5.1) can be written as

(5.1)(LHS) = (2n.) b(Py —P; —Q)

I. = 4~ ' dr r'&o(P)[V'+ V'],

I2 47' «r' io(f )V' —[-,'io(p) —-', i2(p)]V

l
+ iiP()VV2Ey .

Py

2(M —e) lrl.I pfl

The quantities W were identi5ed [3,5] as Sachs form
factors:

O' GE,
xyt W + cr xQW2

2M
(5.3) (5.4)
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However, (5.4) was obtained using BCCM states, which are not momentum eigenstates.
More accurate approach is based on the equality

(5.1)(RHS) = (2n) b(Pg —P; —Q)D",

M3
D = 2m l dlsin8dg

4M2(ur + M)((u'+ M)

, t'

x GE(q ) b~
('-4M) . M

+' (") 2M2M) I
2M

xtr(I.)x, (5.5)

x'r(v)x = x'[bpo + ~~a + ~~ii~2 —~„2i~i]x.

Here

l'=l+g, (u' =l' +M,

q= (q' 9)

b =aay+l +Q l,

DlcI=o = 0,

BD 1
x icr x Qx~2M

cI=O

Xtio x C}XW (Q = 0),
1

2M
(5.S)

= (a' ay)lllcose+ a

= af Illcose + a;(lllcose + Iql),

& =(aX-a')9 l-a'9',

&' = &' = a'a~I&I + I%I(l'+ l&) —l'lql»n'8

(5 6)

~=W (Q=o)
M2= 4~ l'dl p=o l

Ga(0) (M l GM(0) ( M M21

)

With G@(0) = 1 one finds

+(~' —u) (—ay Il Icose —a; ]i]cosa —a*' IQ I)

GM(0) = 2.212, (5 9)

n' = (~' —~)[aslllcose —a'(lllc»~+ I&l)]

which is about 20% too small. However, without c.m.m.
corrections one would have obtained

GM(0) = 1.736, (5.10)

l = Igllllcose.

The four-momentum q is an average value of l' —l cal-
culated between two wave packets P~, which have speeds

Pf and P&, respectively.

For the Sach's form factors one can ass»me the well
known dipole shapes

Gz(q') GM(q')
GE(0) GM(o)

&
„') (5 7)

The magnetic moment GM(0) = p~ can be determined
from the equalities (5.4) and (5.6) taken at Q2 = O. One
obtains

which is much smaller than the experimental value [30]
GM(0) = 2.793. The c.m.m. corrections have resulted in
27% improvement of the model value [23].

The equality (5.5) can be used to determine the pa-
rameter ri. For Q ( 1.17 GeV equality is, within 10%
error, satisfied with

g = 0.70 GeV (5.11)

which is very close to the experimental value [30] g,„z& ——

0.71 GeV'
The fit (5.11) fails progressively as Q2 increases above

1.17 GeV2. Qualitatively this agrees with other model-
based calculations; see for example Ref. [31].

An analogous formalism can be used for the nucleon
axial vector coupling constant g~. Without c.m.m. cor-
rections, one finds g~ ——1.14. With c.m.m. corrections
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the theoretical result g~ ——1.22 is surprisingly close to
the experimental value [30].

A strong point in favor of BCCM with c.m. m. correc-
tions is that corrections are much larger for GM (27Fo)
than for g~ (7%), just as needed.

(~(Py)IC (0)l~(P' e)) = 1 P PlFP

(2w) s /4E;Eg
x e„(Py —P;) (Pg + P; )p,

(6.2)

VI. Ml TRANSITION IN QUARKONIA

The Ml transitions

V-+ P+p,

( Sg m Sp+p),
(6.1)

with the corresponding decay width

kgb',
I'(n ~ mp) = 4so.

M,2 —My2

2M;

(6.3)

provide useful informations [32,33] about c.m.m. correc-
tions for systems containing heavy quarks c and b. The
decay amplitude is

Here a is the Gne structure constant.
In BCCM's the form factor g can be calculated with

[g(s )] and without [g(s2)] c.m.m. corrections. In the
first case one starts with

(2vr) b(Py + k —P, ) J(z;) ) K~ =
(Py)zy, z2, y = 0)s=o P P

~ 5 1 ~

i=1 l,n, perm

x (p")&e'""g„K„'='(P;,z, , z2, y = 0) = (2~) h(Py + k —P;)A "Ny;, (6.4)

MiMf

As Af" must have the same form as (6.2) one can iden-
tify the form factor g(0). Here e' is the meson wave
function analogous to (2.7). The calculation was carried
out in the generalized Breit frame

By expansion of JV" around Q2 = 0 one can find, for
smaller Q2,

P.
Mi Mf

'
Mi

Pi=Pf+k,Py

f
(6.5)

2 g(0)
1 —Q2/Ag + Q4/A2 +

M,' —Mf
2/M My My 2

The c.m.m. corrections are introduced by using the
equality

d3l d3l'
&"Ny' = J(z), vI, (l' ~')v J.(l ~) (l'IJ." (z)e'"'ll) (6.7)

si2 @Pi(l —k, (u')(P~, (l, u) g(q ) 2u 1 + M IP;I —2(~ —~')lllcos
M~)

Here

= (l —k) +M&,
cosg = P; . l/IP; I Il I,

q = ((d —ca/, k).
(6.8)

I

In (6.7) one must introduce the form (6.6) for g(q ). Then
using the equality (6.7), where JV" is determined by the
integration over the model wave functions (6.4), one can
determine g(0) = g.

Model predictions, based on the parameters listed in
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TABLE III. The Af1 transition decay widths without (I') and with (I') c.m.m. corrections.

Mode

Dt m Dtp
D' ~ D'p
Dt' —+ Dt7
Bt. ~BtB'+B p
B,' + B,p

g(0) (GeV ') I'0

0.367
—0.127

0.811
—0.062

0.639
—0.367

0.290

(10 GeV)
2.041
0.393

16.656
0.094
0.382
0.126
0.084

g(o) (GeV ')
0.377

—0.132
0.847

—0.064
0.645

—0.371
0.293

I' (10 GeV)
2.148
0.429

18.164
0.103
0.389
0.128
0.086

s(o)-s(o) (y)u(o)
2.6
4.4
4.4
4.2
1.0
1.0
1.0

Table I, are shown in Table III. The decay widths (6.3)
are calculated using either g(0), (I') or g(0), (I'). No at-
tempts have been made to select model parameters in
order to improve the agreement with the measured value
I'(@' ~ ri,7) = (1.12 6 0.35)10 s GeV [34]. It is interest-
ing that such, unadjusted, results are in a very reasonable
agreement with the unadjusted results of Ref. [33) (their
Table II, columns 2,3), which were obtained in a quite
diH'erent quark model.

The main aim here was to calculate the magnitude
of c.m.m. corrections. They turned out to be 4.4% or
smaller, decreasing with the increase of the heavy quark
mass. With a 6 quark present c.m.m. corrections are
practically negligible. Indeed, when one of the valence
quarks is very heavy the c.f. and c.m. almost coincide
[6], so that the spurious c.m.m. almost vanishes.

Here

K p
——4x drr U Up —VVp,

2Roz R2sp P
R& +R2 ' o 4+6P2

In the HQL (4.5) one has

Kap m 4x drr UaUq ——Ka„z~,

VIL HEAVY QUARK SYMMETRY LIMIT AND
MESON DECAY CONSTANTS Rap W RaHqg & (7.5)

The decay constant f, for a meson m, can be calcu-
lated in the BCCM [22,24]. The Lorentz covariant c.m.m.
corrections are introduced through the equality

d y J(z)(0~4'(z )p»7s4'(z )~m, P, M, s = O, y)e's

= (2s) b( )(q —P)Z»(P)

1
fm + +asq,M

Here q is a heavy quark (c, b) while a denotes a light
quark (u, d, s). With (7.5) a meson decay constant has

M dependence as required by the heavy quark sym-
-X/2

metry (HQS). One obtains, for example,

d y J(z) &pJ (l, ~)(0~Js"(z)~l, O, m)e'(s ~) 'se'sd3l

(7.1)

M~
f~HQL faHol, o 6'„„Mg

(7 6)

In the RHS of (7.1) is the meson decay constant f
defined for a momentum eigenstate ~P, O, m):

With full expression (7.1), using parameters listed in Ta-
ble I, one obtains

(O~J»s(z)~P, O, m) = P„f e-' *.
2E(2s)s

(7.2)
fD = 130.6 MeV, f~ = 90.9 MeV,

(7.7)

12

M (27r) ~R pCps

(7.3)

In the HO potential version of the BCCM, integrations
in (7.1) can be carried out explicitly. One finds

P» (2~) ('~'
+6 K p= pg(P E)P f2M 2E

fQ/fD = 0.696.

The ratio f~/ f~ (7.7) is in a very good agreement with
the result f gy / fD = 0.69 obtained by the I/mg expansion
of the heavy-light currents [14,35]. However, it is about
30% smaller than the results based on QCD snin rules,
lattice calculations, and semilocal parton-hadron duality
[36].

The BCCM based calculation gives
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fD. = 149, 2 MeV,

fD /fD = 1.14.
(7.8)

smaller than the QCD s»~ rule or lattice QCD based
estimates [14,26,37—40].

The BCCM with c.m.m. corrections predicts

f~+ = 171 MeV,
The ratio fD, / fD is in reasonable agreement with previ-
ous results obtained &om lattice QCD or potential rnod-
els [36]. QCD sum rule analyses gave f~ /f~ = 1.19
[26] and f~. /fD = 1.1 [37]. However, absolute values
[(7.7),(7.8)] for heavy meson decay constants seem to be

which is in good agreement with the experimental value
f~+ = (160.6 + 1.3) MeV [34]. The pion decay constant
f = 271 MeV is too large [f „=(131.73+0.15) MeV
[34]], as is usual in valence quark models.

VIII. MESON DECAY FORM FACTORS AND HQS

The calculation of meson decay form factors has already been described [3,5] so only some examples need to be
shown here. The matrix elements for B ~ D(D') transitions are

(Pg, s = 0, D]cp"b~B, s = 0, P;) = '
[f+(Q )(P, + Pg)" + f (Q )(P, —Py)"],

2vrhi4l(Pg + Q —P;)
2/E;Ef (8.1)

(Py, e, D'~cp"b[B, s = 0, P ) = '
ig(Q )e""~ e*„(P,+ Py)~(P; —Py)

2mh~4i(Py + Q —P, ) .

2/E;Ey
(8.2)

(P~, e, D' ~cp"psb[B, s = 0, P ) = '
[f(Q )e""+ a+(Q )(e' . P )(P; + Py)"

2~v~'l(P, + Q —P, )

2/E;Ey

+a (Q )(e* P;)(P; —Pf)"] (8.3)

The corresponding BCCM expressions in the generalized Breit kame (6.5) are

f+ —— (M; + My) I,b
—(M; —My) I,q Zg,

1 I Mg 0 1&y

4MM,
~

f = f+[(M;+Mf) m (—)(M; —My)],

Mf QMfM;
2M, Efl pfl

v'(A =+1)Z

f = /4M;MyA, 's(A =+1)Zg, (8 4)

a+ = ~ (M; —Mf) ~ ~A,'s(A = 0) —A,'s(p =+1)
)

+(M; + Mg) f ~ A,s(A = 0) —A,'~(A = +1) Zg,

a = a~ [(M, + Mf ) e+ (—) (M; —My)].

Here
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I,z —4)r dr r jo(p)[U, U), + V,V),],cb

I ),
—4x dr r j g (p) [U,Vi, —V,Us],E,

Vi(ji = 44) = 4ii J drr (jp(p)U Ui, —[zjo(P) —bi(P)]V Vi)+ ji(P)[U Vi + V Ui]

Ab(A =+4) = 4r f dri jr(P)U Ui—[r j, r(P) —rj (iP) V]Vi + ji(P)(U Vi+ VUi) (8 5)

A,s(A = 0) = I,g,
—

gs (p = 0) = 4)r dr r jo(p)(U. U), —V,V)) + 2[sjo(p) —sj2(p)]V V&+ j~(p)U Vs

c.m.m. corrections have been neglected. For heavy-
light quark combination they are always smaller than 5%%uo

(see Table III). In (8.5) one has introduced the spherical
Bessel functions j~(p) where

V =0, o. =b, c,

US=U =UHgL

p =
E B.alrl,
Mf

f

B,), = [(Mf + M;) —(e, + ~s)]
Mf

(8.6)
Bt, ~0, p-+0, jo(0) =1,

IHL — 4' dr r U = KHgr„
Mf Mf
Ef f

3
IHQL 0

(8 8)

The symbol A labels the polarization of the vector meson
D'. The expressions (8.4) contain also the overlap (free
line) (2.9) of the light spectator quark:

o ). Ex o
VHQL M IHQL & HQL M IHQL &

f f

Zg= 4vr drr jo(p)[U~ + V~],Ef

p = 2ea ]peal

f

(8.7)

Formulas (8.5) are a version of the more general for-
mulas listed in Appendix [(Al)—(A7)] of Ref. [5]. Such
formulas are valid for any BCCM, which includes BBM
[5]

In the HQL (4.6),

With

0 3 0
+HQL 0& +HQL IHQL

lP ]'/M
4M;Mf

(8.9)
Q2

4E;Ef =,'M;+My) 1 —,

one finds
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2/MMy ( Q2

1'=
(M, +M,)' (8.10)

It should be noted that both (8.12) and (8.15) include
explicitly the kinematic factor [1—Q /(M;+My) ]. Fur-
thermore, at the maximum momentum transfer Q
(M; —Mf) one finds [14,41]

(8.16)

++ = 9~

f = 2/M, My(ZgKHcli, ).

Fi ——f+, V = (M;+ Mg)g,

A2 ———(M; + My)a+, (8.11)

1

M+M

Very elegant relations among form factors can be found
by using the form factors from Ref. [18]: i.e.,

Thus in HQL the BCCM-based relations coincide ex-
actly with /CD-based ones, what is only approximately
true for other models [18,29,42].

It might be interesting to compare BCCM prediction
for the Q2 dependence of form factors, including the HQL
limit, with other approaches. The results obtained for the
HO model are shown in Fig. 2 using the same scale as in
corresponding Figs. 1.3 and 5.8 in Ref. [14].

All results presented here can be obtained also in
BCCM based on the MIT bag model [15]. Figure 3 shows
that both versions of BCCM procedure quite similar re-
sults. Model predictions stay close to the HQS limit,
which is, up to factor R, given by Isgur-%ise function
((v . v'). In BCCM one always obtains

As in HQL, M~. = M~ = My, one immediately obtains
the well-known [14] HQS relations

2

V(Q') & A2(Q') -=1-
Mg+Mg) 2 Ag ) I').

Fi(Q ) = V(Q )

= A2(Q')

(M~ + Mg)2)

—1

Ag

2/MMy 1
ZgKHcli, . (8.12)

(M;I+M, )']

dr r U + V, %Hag ——KHgg ——1. 8.13

From (8.12) one easily extracts the Isgur-Wise function
[7,14] which is actually determined by the overlap Zg
(8.7). First one must realize that KHcl& is actually the
HQL of the normalization integral:

This ordering differs from other quark models [14]. It
does agree with /CD sum rule results (Fig. 5.8 in
Ref. [14]). However, quantitative agreement is not so
good. The absolute values of /CD-sum rule form factors
are usually larger than the corresponding BCCM values.

Q2The gaps separating V, [1—
lM +M l, ] Ai, A2, and Fi

curves are also larger. BCCM, as used here, does not take
into account the short distance corrections which are re-
sponsible [14] for 50/0 of the enhancement of V relative
to Fg and Ag.

All BCCM-based conclusions seem to be independent
of the form of central confinement [3,5,15—17]. However,
the precise form of the Q2 dependence might be influ-
enced by the model details. Thus the selection of the
particular version of BCCM could be some kind of 6ne-
tuning.

Then, when (8.12), (8.13), and the definition [14]

((v v') = lim RFi (Q ),
1.4

1.2

fM2+ M' —Q'

2M;Mf
(8.14) 09

0.6

R= 2 /M;Mg
M;+Mf '

0.4
0

!

10 12

Q'(Ge&')

one obtains FIG. 2. Predictions for the weak decay forxn factors in HO
based BCCM. Dot-dashed line corresponds to V, solid line to
As and [1 —Q /(Ms +MD) ] Ai and the dashed line to Fq.
HQS limit coincides with the solid line.
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1.4

08

05

Og
0

I I

l0 12

a'{uev*)

FIG. 3. Predictions for the weak decay form factors in MIT
bag based BCCM. Line identi6cation is the same as in Fig. 2.

able to account for its Goldstone-boson character.
BCCM's can be used to calculate corrections [(7.7),

Figs. 2 and 3] to the extreme HQS results. However,
only those corrections which depend on the valence quark
dynamics are included. Short distance QCD corrections
[14] were not incorporated in BCCM. As the model is
formulated in the quantum filed formalism (2.5), which
can be related to the Furry bound state picture [27,43],
some estimates of QCD efFects might become feasible.

An important characteristic of the class of BCCM's is
that those models describe mesons and baryons within
the same formalism. Here BCCM's were mostly applied
to mesons, but calculations of the electromagnetic [3—5]
(5.4) and of the semileptonic [3] baryon form factors are
equally feasible.

IX. MAIN CHARACTERISTICS APPENDIX

The main aim of this paper was to demonstrate how
one can construct a whole class of quark models which
are heavy quark (b, c) symmetric. Such models are also
Lorentz covariant, as has been shown in Refs. [3] and
[5]. The kinematic factor (8.12), (8.15) that appears in
HQS relations is a typical consequence of the Lorentz
covariance.

The class of HQS models contains models [15—17] in
which each quark is independently centrally confined.
As is well known [25], such models experience spurious
c.m.m. efFects. It is demonstrated here that one can in-
troduce c.m.m. corrections in the manifestly covariant
way. They notably improve p,„,g~, hadron masses, and
other quantities which involve "light" (u, d, s) quarks.
For "heavy-light" combinations c.m.m. corrections di-
minish with the increase of the heavy quark mass (see Ta-
bles II and III. In the derivation of HQS relations (8.12)
they could have been neglected. However, their presence,
as in (7.6), does not spoil HQS character of the model.

A BCCM is based on a static quark model (examples
in Refs. [15—17]) with specified boosts (2.3), hyperplane
projection (2.12), and overlaps (2.9). After BCCM is
forxnulated all calculations depend only on the parame-
ters of the underlaying static model. Basing BCCM on
the MIT bag model one uses the usual bag-model pa-
rameters [15]. With a harmonic oscillator potential as a
starting point one employs only parameters listed in Ta-
ble I. All form factors (7.3), (8.4), HQS relations (7.6),
(8.12), Isgur-Wise function (8.15), etc. are obtained by
a straightforward calculation, without any additional ad
hoc assumptions. The results in Table II, excellent g~
value and responsible p~ (5.9), are not due to any "fine-
tuning. " Playing with parameters one could "improve"
some of those outcoxnes, which would be pointless, as it
does not lead to any new physical insights. Of xnore fun-
damental importance could be the selection of the type
of central confinexnent. It obviously pays to select the
confinement which best mimics the real physics. Some
idea about the confinement dependence can be obtained
by comparison of Figs. 2 and 3.

As is usual with central valence quark models [15—17],
BCCM also fails in the description of pion, by not being

(Ai)

Here

P„l& - P(P l) P
M ' M(E+M) M

280 3
CD ——1 —6c+ 20c — c,

9

4& 20, 140 s)
Cg ——— c ——c2 + c3 R02,3( 3 9 )

(A2)

i6 (, i4,1
C2 ———c ——c R~,27( 3

64
C3 —— c Ro,729

4+ 6p'

The normalization of the proton component (Al) is

M2
d l z 1Pg (l, (ui)1 = 1.

CtP)
(A3)

The explicit expressions for the components P of the
momentum eigenstates can be found by using (3.8), (4.3),
and Table I. For proton (nucleon) one finds
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The meson component is

Iv~(I ~l)l 2(l. p) 3 l —R /2 lg(~) g(2)-'
2(ul (2z) / M

(A4)

(,) ~ C. C, ) 4 C.C,
+ 2 Rt2b 10 R2 R2 R~bg

Oa Ob O~ Ob

(3) &a~b
ab R2 R2oa ob

(A5)

Here, with Havors c, b,

2Ro~ Rob
ab

oe ob

P„L" - P(P I) P
M ' M(8+M) M

The normalization is

a
4+ 6p2

d l 2]yp(l, (ul)l' = 1.
4~~2

(A6)
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