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We present the complete solution to the so-called "Yukawa problem" of the Skyrme model.
This refers to the perceived difBculty of reproducing, purely from soliton physics, the usual
pseudovector pion-nucleon coupling, echoed by pion coupling to the higher-spin/isospin baryons
(I = J = a, z, . . . , N, /2) in a manner flxed by large-N, group theory. The solution involves sur-
prisingly elegant interplay between the classical and quantum properties of a near configuration:
the rotationally improved Shyrmion. This is the near-hedgehog solution obtained by minimizing the
usual Skyrmion mass functional augmented by an all-important (iso)rotational kinetic term. The
numerics are pleasing: a 4 decay width within a few MeV of its measured value, and, furthermore,
the higher-spin baryons (I = J ) -) with widths so large (I' ) 800 MeV) that these undesirable
large-N artifacts effectively drop out of the spectrum, and pose no phenomenological problem. Be-
yond these specific results, we ground the Skyrme model in the Feynman path integral, and set up
a transparent collective coordinate formalism that makes maximal use of the 1/N, expansion. This
approach elucidates the connection between Skyrmions on the one hand, and Feynman diagrams in
an effective field theory on the other.

PACS number(s): 12.39.Dc, 11.15.Pg, 13.30.Eg, 14.20.jn

I. OVERVIEW

Since its reinvention a decade ago by Adkins, Nappi,
and Witten [1],and despite many phenomenological suc-
cesses [2], the Skyrme model [3] has suffered from too
many competing, often conQicting, formalisms. Particu-
lar confusion surrounds those problems that involve in-
teractions between Skyrmions (read: baryons) and the
elementary quanta of the theory (read: mesons). In fact,
the most basic such question one can pose—how does the
Skyrme model generate the correct pion-baryon three-
point coupling? —has not been satisfactorily resolved.

In this paper, we present the complete solution to this
so-called "Yukawa problem, " as it has come to be known
in the literature. Both the problem and the solution are
detailed in this expanded introductory section, which also
sets forth some general principles that we think are im-
portant, and underappreciated.

This is the second in a series of papers intended to
clarify the nature of the meson-Skyrmion interactions, by
grounding the Skyrme model in the Feynman path inte-
gral (FPI). The small parameter of the Skyrme model is
1/N, (N, being the number of colors of the underlying
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gauge theory), which is tied to the loop expansion natural
to the FPI by appearing in the combination h/N, . In Ref.
[4] we focused on a "toy" version of the Skyrme model,
in which space-time is 1+1 dimensional, and the internal
flavor symmetry is U(1) rather than chiral SU(2) x SU(2).
The process we analyzed, while simple, proved illuminat-
ing: the decay of a soliton in its nth excited state, to its
next-lower state, by emission of a single charged meson.
Here we will focus not only on the analogous physical
decay 6 m Nx, but also on virtual processes such as
X ~ Nx and 4 m A~ that are building blocks for more
complicated diagrams, and likewise for all the higher-
spin/isospin baryons (I = J = 2s, 2, etc.) that emerge as
rotational excitations of the hedgehog Skyrmion. %'hile
numerics are not our primary goal at the present, it is
pleasing that the width of the 6 in the Skyrme model
works out to 114 MeV versus 120+ 5 MeV experimen-
tally (a result not original to us, but rather confirming a
large-N, ansatz in Ref. [1]),while the higher-spin baryons
are so broad ()800 MeV) that they would not normally
be classi6ed as "particles" —here again, by their absence
from the spectrum, in agreement with nature.

By virtue of the delicate interplay between its classical
and quantum properties, the Skyrme model will be seen
to be richer and more elegant than the U(l) toy model.
Yet the three main points of Ref. [4], which one might
characterize as a caveat, a prescription, and a more/, hoM

See Sec. VI below for width calculations.
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here as well, and provide useful guideposts for the devel-
opment below. We review them accordingly.

A caveat .Whether in the U(l) model where the el-
ementary boson is the real scalar doublet qb, or in the
Skyrme model w'here it is the pion field m, or in other soli-
ton theories, it is customary to split up the total Geld into
classical and fiuctuating parts, P = P,&+ bP. Here Q,&

is
the classical soliton, whose zero modes are the "baryon
degrees of freedom, " while the fluctuating Beld bP, prop-
erly orthogonalized to these zero modes, is often said
to represent the "meson degrees of freedom. " Unfortu-
nately, this commonly held distinction between "baryon"
and "meson" degrees of freedom is false, and leads to in-
correct results. 2 While it may be convenient mathemat-
ically to split up the field in this way at an intermediate
stage in the calculation (as we ourselves do in Secs. II
and III below), physically meaningful Green's functions g
must be formed from the reconstituted total field, P or n.
The presence, or absence, of asymptotic states contain-
ing n physical mesons with four-momenta qq, . . . , q„can
then be gleaned from the analytic properties of g, as per
the Lehmann-Symanzik-Zimmermann (LSZ) amputation
procedure. Specifically, one looks for simultaneous poles
on the meson mass shell, g [P z(q; —m +it) +
and identifies the residue with the 8 matrix element. As
for the baryons/Skyrmions, the LSZ procedure is even
simpler, since in large N, baryons are very heavy (masses

N, ) and can for present purposes be treated in a non-
relativistic, first-quantized manner. To reiterate, we con-
centrate on these analytic properties, not because we are
infatuated with formalism, but because we want to avoid
wrong answers.

A prescription. As stated above, N, enters into the
problem in the combination N /h. An economical for-
malism should exploit this fact, and map a leading-
order calculation in 1/N, onto a zeroth order expression,
i.e., a saddle-point, in the semiclassical expansion (and
not some "higher order effect" in a naive perturbative

In the particular example of Yukawa couphngs in the
Skyrme model, we Snd ourselves disagreeing with Refs. [5—10],
among many others, who identify as the physical pion only the
Suctusting Seld Ar. Since Ar N, while wt ~ oc f N,
it is no surprise, and has been noted by several of these au-
thors, that the width of the A as may be calculated in these
formslisms is down by (st least) one power of N, from the un-
ambiguous, model-independent leading-order answer derived
from Eq. (1.3) below. Phrased the usual wsy, since the Srst
variation Ar ~ (bS/Ar) ofF the static Skyrmion vanishes by the
deSning equation, the Srst variation oK the stating Skyrmion
(i.e., the nucleon or A) is suppressed in large N, since the
Skyrmion rotates slowly (u,~t N ). The more compli-
cated case of pion-Skyrmion scattering will be discussed in
Sec. VII.

A thorough review of the LSZ procedure is in Chap. 7 of
Ref. [11].The observation that the classical part of the Seld
cannot be ignored, and on the contrary contributes at leading
order to poles in the "meson" channels, dates back to the
early literature on soliton quantization [12,13].

expansion as often appears in the Skyrmion literature
when the author elects to split up the total pion field).
Framed in these terms, the problem is that, for purposes
of LSZ, g,&

is the mrnnq appmximafe saddle point .By
definition, P,&

solves the static Euler-Lagrange equation
O=bM, /bQ where M, [qb, 8 @] is the soliton mass func-
tional (the integrated Hamiltonian). The prescription we
proved in Ref. [4] is to solve, instead, the static equation
0 = b(M, + Pz/2Z)/bQ', where P is the momentum con-
jugate to the soliton's U(1) collective coordinate 8, and
X[/] is the soliton s moment of inertia. Likewise, in the
Skyrme model, we will show that the right semiclassical
starting point is the solution to

(M + 1 gnay 1 g—ra)

g(q) - +
]q[2 + rn2 —Jz/Xz [cg2 + m2

+(nonpole terms) . (1.2)

This makes perfect sense: the first pole correctly de-
scribes Skyrmion decay processes such as 6 m Nm, while

A similarly distorted hedgehog has recently been obtained
by Schroers using difFerent methods [14]. A technical aside:
It is widely believed that when the Skyrmion is not precisely
a hedgehog, one must in principle introduce extra collective
coordinates for isorotations in addition to spatial rotations,
since these are no longer equivalent, and concomitantly, an
additional isorotational kinetic energy term beyond the one
displayed in Eq. (1.1). But for the rotstionslly improved
Skyrmion, our FPI formalism clari6es that this is not the case;
Eq. (1.1) suffices (see Appendix C for s discussiou). In addi-
tion, the FPl approach completely obviates an ongoing dialec-
tic about the relative merits of this or that "gauge" (mesning
how one chooses to orthogonalize the Buctuating modes to
the Skyrmion's zero modes). To emphasize this point, Secs.
II snd III below are framed in the most general (linear) gauge,
and the gauge invariance of our physical results is manifest.

where X is now a tensor. We call such solutions rota-
tionally impmved Skyrmions, and they are no longer pre-
cisely hedgehogs (a key point). 4 Ostensibly, the added
rotational kinetic term is a small perturbation, since
X N, . Nevertheless, its effect on the analytic
structure of the Green's functions is critical, and can-
not be neglected. In the U(l) toy model it contributes
a negative mass-squared, so that rather than falling off
as exp( —m~r) like P,~, the rotationally improved soliton

exp[—(m&z —P /22' )z~~ rz]. In momentum space this
turns (]q]z+ m2~)

' into (]q]z+ m~2 —P2/T ) '. As P/X
can be equated to the meson energy, g(q) now correctly
has a pole on the mass shell, and excited U(l) solitons can
legally decay by meson emission. In the Skyrme model,
the effect of the rotational perturbation is more inter-
esting. Thanks to its deviation away &om the hedgehog
ansatz, the rotationally improved Skyrmion falls off as
a superposition of two distinct exponentials, so that in
momentum space
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the second describes N m Nm, etc.5 In either model,
this pole-shift phenomenon is a variation on the old ex-
ercise of expanding a field theory about the wrong mass,
and treating the mass shift in perturbation theory: an in-
creasing number of two-point insertions must be summed
geometrically [as accomplished implicitly in Eq. (1.1)] to
move the pole in the propagator to the physical mass
shell.

A moru/. The moral of Ref. [4] is equally valid for
the Skyrme model, namely, the order-by-order equiv-
alence of the soliton theory to an effective relativistic
quantum Geld theory with explicit baryon Gelds. 6 The
eventual goal of mapping out this effective theory in full
is well beyond the scope of the present paper. But by
focusing on Skyrmion decay by one-meson emission, we

shed light on the efFective three-point meson-baryon ver-
tex which can, in turn. , be assembled into more compli-
cated Feynman diagrams (e.g. , 7rN scattering, or pion-
exchange contributions to the NN system). In the
U(1) model, the baryon/soliton states ~p) are labeled
by an integer charge. The baryon wave functions are

gz(8) = (8]p) = e'i, and their effective Yukawa cou-
plings to the charged scalars P+ = Pi 6 Pz can be ex-
pressed as gP+(z) f d8 e' ]8)(8]+H.c., or even more com-

pactly as gp+(z)e's+H. c., where 8]8) = 8]8). The pres-
ence of e'8 properly ensures Lp = 1, as the meson car-
ries away one unit of charge. In 3+1 dimensions, with
SU(2) x SU(2) symmetry, the form of the analogous pion-
baryon effective coupling is comp/etely determined a pri-
ori by the twin requirements of the chiral and large-N,
limits, and reads~

""8;~ dAD.",.'(A)]A)(A~+ "
2MN SU(2)

D(',.)(A) =
z Tr~ A~, At . (1.3)

Here (A] stands for the superposition of explicit point-
like baryon fields (the nucleon field, the b, field, and

all higher spins; a better notation might be 4~), any
of which can be projected out using Eq. (5.7) be-
low. The omitted terms, while subleading in 1/N„

Very roughly speaking, the arithmetic works as follows.
The pion energy ~ must equal the difference of the initial and
final Skyrmion energies, namely J;(J~+1)/2Z' —Jy( Jf +1)/2T
When Jy = J; —1, this difFerence is J;/X, whereas when

Jy ——J; it is zero, consistent with the two pole locations
in Eq. (1.2), respectively. The actual analysis of Sec. V is
not quite so simple: operator ordering ambiguities must be
resolved.

SigniScant progress in the reverse direction, from Seld the-
ory to Skyrmions, can be found in Refs. [15] and [16], in
which the Skyrme model (or variants thereof) is conjectured
to emerge as an ultraviolet renormalization group Sxed point
of a class of effective meson-baryon Lagrangian Seld theories.

This coupling, which we review in Appendix D, was Srst
written down in Sec. 5 of Ref. [1],with no explicit input from
or connection to Skyrmion physics.

are needed to form a relativistic invariant, for instance,
(g~~~/2M~)8„n Np"p 7 N when Eq. (1.3) is pro-
jected onto nucleon states (I = J = z).

The most elegant result of our paper —and wholly un-
expected, as this feature of the Skyrme model is not
present in the U(1) toy model —comes from the simple
requirement that Eq. (1.2) be interpretable as a Green's
function in some quantum field theory (as we clarify at
the end of this paragraph) This requirement resolves an
operator ordering ambiguity implicit in the definition of
the pole residues JVi and A/z [the noncommuting opera-
tors being J and D; (A)]. One finds

iD(i) (A)P
N

(1.4)

2 N

Here P~J o is the projection operator that equates the
initial and final Skyrmion spin, while 'P~g —i requires that
they difFer by one unit, so that any given one-pion emis-
sion or absorption process "sees" only one of the two
pole terms. In this manner, the numerators of Eq. (1.2)
are brought into harmony with the LSZ interpretation
of the denominators —an interesting conspiracy between
the quantum and classical properties, respectively, of the
rotationally improved Skyrmion. And the efFective pion
coupling to explicit pointlike baryon fields that is equiva-
lent to Eq. (1.4) is precisely Eq. (1.3). So, this paper gives
a complete solution to the "Yukawa problem" mentioned
at the outset, namely, showing how Eq. (1.3) emerges di-
rectly from Skyrmion physics. In retrospect, had the 7 's

not emerged in the numerators, then any given one-pion
process would have, in addition to a pole in the right
position. , a spurious nearby isolated pole, violating the
basic precepts of the Kallen-Lehmann spectral represen-
tation of a quantum Beld theory [17], and dashing any
possibility of proving such an equivalence.

In related work, by focusing on those contributions to
pion-Skyrmion scattering that can. be interpreted in the
corresponding effective field theory as Compton graphs,
the authors of Refs. [18—20] (a very important precursor
being Ref. [21]) correctly deduce pseudovector coupling

with g~~~ (x g~~~ N, . While we have yet to recon-
cile the operator Hamiltonian formalism of Ref. [20] with
our own more pedestrian FPI approach, it appears that
Refs. [18—20] are a major step towards the complete solu-
tion, presented here, of the "Y»~wa problem. " Another
interesting idea is to extract the efFective Yukawa cou-
plings from the Skyrmion-Skyrmion potential [22]. Ad-
ditional proposed fixes to the Yukawa problem may be
found in Refs. [23—25].

The remainder of this paper is organized as follows. In
Sec. II, the nonlinear o model is formulated as a phase-
space FPI. The baryon-number-unity sector is then se-
lected using a natural extension of the collective coordi-
nate method developed long ago by Gervais, Jevicki, and
Sakita [26]. These authors quantized the translational
mode of a one-dimensional kink, whereas we extend the
methodology to internal symmetries. The upshot of Sec.
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II is SU(2) quantum mechanics coupled to a quantum
field theory. The latter is treated in saddle-point approx-
imation in Sec. III, leading to the formal derivation of
the rotationally improved Euler-Lagrange equation (1.1).
While variations on this equation have been posited by
other authors as a preferred starting point [27—31], it is
reassuring to see it grounded firmly in the FPI. As Sec. III
is a little technical, the reader who is already happy with
Eq. (1.1) is encouraged to skip directly to Secs. IV and V
on a first reading, as these are the heart of our paper. In
Sec. IV we extract the large-distance behavior of the rota-
tionally improved Skyrmion, and con&rm the two distinct
poles of Eq. (1.2), while in Sec. V we describe the oper-
ator ordering solution (1.4) for Afq and J[)t2. In Sec. VI
the width of the 6 and of the higher-spin large-N, I = J
baryons are calculated. The application of rotationally
improved Skyrmions to AN scattering [18—20,32,33], and
some concluding comments, can be found in Sec. VII.

We also include four Appendices. Appendix A revisits
the U(1) toy model of Ref. [4] in a manner that more
closely parallels, in a simpler pedagogical setting, the
development in Secs. II and III. Appendix B contains
a hand-waving justification of the rotationally enhanced
Euler-Lagrange equation (1.1), and might therefore sub-
stitute for Sec. III on a first pass. Appendix C discusses
the effect of the Faddeev-Popov constraints needed in the
approach of Gervais et a/. , while Appendix D reviews the
properties of the efFective large-N, pion-baryon coupling
(1.3).

II. THE SKYRME MODEL AS A CONSTRAINED
PHASE-SPACE PATH INTEGRAL

1

C

(2.4)

which is the convention we adopt &om now on.
We remind the reader that Skyrme's choice of four-

derivative term in (2.1) is the unique four-derivative con-
struction that is at most second order in time derivatives
[3]. This restriction is always invoked to justify an oper-
ator quant»m mechanics approach to the model. For our
present purposes, it is important as it allows us to work in
a phase-space ("Hamiltonian") FPI formalism, following
Ref. [26]. Modulo this important restriction, we gener-
alize the Lagrangian (2.1) to all isospin-invariant models
of the form

8 = 2'z'r'g;, .(zr)z'r' —v(zr, 8;zr) (2 5)

The parameter N, enters the theory implicitly through
the assignments f e 2 N . Likewise, the coeffi-
cients of any desired higher derivative terms should also
scale like N„so that N, /5 efFectively sits outside the
action. This observation justifies not only the specific
saddle-point calculation of Sec. III to follow, but also il-
lustrates the semiclassical picture of the large-N, world
in general [35,21,15,16]. In contrast, the large-N, scal-
ing behavior of m is somewhat arbitrary. %hile meson
masses generically scale like N, , in the special case of the
pion this depends on whether one elects to link the chiral
and large-N, limits. Since, for a reasonable resemblance
to nature, we would like the 4 to be able to decay to Nm
in our theory, and since the N-b, mass difFerence 1/N„
we will need to take the chiral limit re least as fast as the
1/N, limit: m N, with v & 1. For technical reasons
our optimal choice turns out to be

The two-Savor massive Skyrme model is defined by the
I agrangian [3]

which admit a hedgehog soliton. The Hamiltonian is then

(2 1)

2

TrB„Ut—B"U+ Tr([Ut(9„U, UtB„U] )

m2 2

+ T (U —1)
8

,'q g,,'P + V(—w,a—,~),
where we have introduced the conjugate momenta

(' = (9l:/(9z'r' = g,,z'r~ .

(2.6)

(2 7)
with U an SU(2) matrix. The two most popular repre-
sentations of the pion field are

U = exp(2i2. 2r/f„), (2.2)

or alternatively

U = uo+zu 2, zz()+u = 1, u= 2zr/f (2.3)

This is an interesting side story in itself; see Ref. [34j and
references therein.

While these presumably define diHerent quantum theo-
ries at O(Fz2) (an underappreciated possibility ), they are
equivalent for our present purposes, and we will not need
to choose between them. For m g 0 the chiral symme-
tries U + AUBt are broken explicitly to isospin, that is
B = A, or equivalently zr* m D, (A)zr~. .

The phase-space formalism is the logically prior version
of the FPI in which one integrates over both the gener-
alized momenta and the generalized coordinates of the
theory [36]. Accordingly, the transition amplitudes be-
tween initial and final states @;and 4y, at times t = —T
and t = +T, in the presence of an external source &(x),
are expressed as

Ty; [Z] = f 17x17(',4)[x(x, +T)f@;[x(x,—T)]

Tf,[+] is the generating function for n-point Green's
functions in the theory, which are extracted in the usual
way by functionally difFerentiating Eq. (2.8) n times with
respect to the external source +. In the current context,
the advantages of the phase-space FPI are twofold. First,
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it is the aatural &amework in which the FPI makes con-
tact with Hamiltonian quant»m mechanics as per Ad-
kins, Nappi, and Witten [1]. Second, it has the technical
ment that so long as one is careful to make a canoni-
cal change of variables to the collective coordinate basis
[26], then the induced Jacobians cancel identically be-
tween 6eld space and xaomentum space, as veri6ed be-
low. This is because of the volume-preserving property
of canonical traasformations. Anyone familar with the
related topic of perturbation theory in instanton back-
grounds [37], where the phase-space FPI is not helpful,
and where the unavoidable, uncanceled, Jacobians are
best incorporated into the Feyaman rules by means of
discrete ghosts, will appreciate this simpli6cation.

We assume that the static Euler-Lagrange equation

(2.13)

A word on notation: we will &equently abbreviate the
quantity in square brackets as bm, which is the Quc-

tuating 6eld in the body-6xed &arne of the rotating
Skyrmion. Likewise, we will denote the body-6xed to-
tal 6eld as xt „de6ned via

"=D&"(A)( ., +h ) =D„"(A), , (2.14)

and focus exclusively on the three rotational zero modes

h = ~ A,.~sr, &, with k = 1, 2, or 3. For each value of this
index, the orthogoaalization condition reads

(2.9)

admits a hedgehog Skyrmion solution U, ~
= exp[iF(r)r .

r]. Equivalently,

~,'&(x) = F(r)r"' —or z,'x(x) = —"sin F(r)r"' (2.10)

depending on which of the two paraxnetrizations, (2.2) or
(2.3), is chosen. Isospin then generates an SU(2) faxnily

of static solutions D; (A)7r~x. Far away from the center
of the Skyrmion, for any mell-behaved model, m, ~ must be
annihilated by the static Klein-Gordon operator V' —m,
so that

mm 1
F(r) sinF(r) —B

~
+ — e ' . (2.11)'~oop( r r 2

For any particular choice of Skyrmion Lagrangian, the
numerical value of the constaat B is obtained by solving
the nonlinear equation for F(r). Fortunately, up to chiral
corrections, there is a model-independent interpretation
of B in terms of the pion-nucleon coupling constant [1],

BA t detJ'~ b O~ ~ A;m
Ic=1,2,3

(2.15)

The de6nition of the Jacobian matrix J depends on how
one specifies the three coordinates a1, a2, a3 needed to
parametrize SU(2). We will postpone making this choice
explicit for as long as possible, in which case we have,
quite generally,

(2.16)

The additional incorporation of the translational modes,
while straightforward in principle, serves ultimately just
to lorentz contract the Skyrmion [26], which does not
affect the decay widths to leading order in 1/K, . Nev-
ertheless, for a more accurate numerical comparison to
experiment, and because it is obvious how to do so, we
will reinsert Skyrmion recoil "by hand, " in the forxn of a
Lorentz-dilated Skyrxnion mass, in Sec. VI below.

Formally, the three constraints (2.13) are implexnented
by inserting the Faddeev-Popov factor of unity into the
FPI.

ag~NN

4xf MN
' (2.12) where

that we will exploit later on.
From now on, we restrict the FPI (2.8) to configura-

tions that live in the baryon-number-unity sector of the
theory. In order to model physical processes involving
both baryons and mesons, we must allow for Huctua-
tions away from the SU(2) family of Skyrmions, although
still within this topological sector. But unless care is
taken, the resulting perturbation theory in the Buctuat-
ing 6eld will be plagued by in&ared singularities, due to
the Skyrmion's zero modes. Speci6cally, the small Huc-

tuations operator cannot be inverted, so the propagator
is not well defined. The cure is well known [26]: one or-
thogonalizes the Huctuating 6elds to these zero modes by
means of Faddeev-Popov constraints. To minimize clut-
ter, in this paper we will ignore the three translational

For the particular choice of Lagrangian (2.1), these correc-
tions are O(m /ef ), which 1/N by Eq. (2.4).

(2.17)

Observe that nothing in the above expressions requires
that the three constraint functions b~ ~ be, as we orig-
inally took them to be, the Skyrmion's rotational zero
modes. They merely need to have noazero overlap with
the zero modes, for the purpose of removing the in&ared
singularities &om the perturbative expansion. With this
caveat, from now on we will think of the h& ~ as arbitrury
functions, and will verify explicitly that our final physical
result, which cannot depend on the division between m, ~

and bm, as stressed in Sec. I, is indeed independent of
the h~ ~. To emphasize further this "gauge &eedom" we
choose three other constraint functions f& ~ for the mo-
mentum sector, subject only to the techaical requirexaent
that the overlap matrix
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A;- = d xf~'~ -ho~ (2.1S) dsxq. —~ = P"a"+ d'xhg —h~ .
dt dt

(2.21)

be invertible. We denote by P" the momenta conjugate
to the a . The three momentum constraints are then

0 = tptt i[A P x b,'f = 6„,' f dex ft i [bid ](A)(' Ct]

(2.19)

where the numerical prefactor A is inserted for later
convenience, and the "classical momentum" g,&(x; a;, P;)
will be specified in a moment. The corresponding
Faddeev-Popov factor of unity reads

P" = Z,"., d'x (2.22)

then the criterion (2.21) will be met. These two condi-
tions are uniquely satisfied by the choice

Paralleling the U(l) derivation (AS)—(All), one easily
verifies that so long as t,', &

is a linear combination of the
three constraints h("&, and ('t 1 satisfies

1 = 'VP t detJ&~ 0& A, P;m,
k=1,2,3

~ ~

JCg
~(i)

A
—i ds f (i) ~'(e cl= —A, d f (2.20)

We will refer to the quantity in square brackets in Eq.
(2.19) as the body-fixed "fiuctuating momentum" b[,",
and will likewise define the body-fixed total momentum

(i ~ analogously to Eq. (2.14).
The Faddeev-Popov insertions (2.15) and (2.20) ef-

fect a change of variables in the phase-space path in-

tegral (2.8), &om the original lab-frame coordinates

(m(z), g(x)) to the far more useful set (a(t), P(t))
(bm(z), bQ(x)) in which the SU(2) collective coordinates
have been explicitly broken out, and the remaining Buc-
tuating degrees of &eedom are expressed in the rotating
(body fix-ed) frame. io While Eq. (2.20) is an identity for

any choice of Q,i, it is particularly convenient to choose
(',i in such a way that this change of variables is canon-

ica/, meaning that the form of the Legendre term in the
action is preserved:

(2.23)

As a bonus, the prefactor A i in Eq. (2.19) then trivially
ensures that J& ——J so that the two Faddeev-Popov
determinants cancel precisely in the phase-space FPI, as
promised.

Thanks to the factorized form of the Legendre term
(2.21), the FPI (2.8) can be recast as a quantum me-
chanical sum over phase-space histories:

Tt;[Z] = f Tea(t)1tP(t)6e't[A(+T)]%;[A( T)]—
f T

x exp i dt P"a" exp(iS, ir[A, P; Q]) .T-
(2.24)

Here we have anticipated the fact that to leading order
in I/N„ the Skyrmion wave functions will be functions
of the collective coordinates only, with no dependence on
the Buctuating degrees of keedom. For a given quantum
mechanical path, the efFective action S,a[A, P; J'] is, in
turn, expressible as a constrained FPI over the body-fixed
fields:

exp(iS [A, P;+a]) = /'D[ba(a)]'D[&t, '(a)] 6
[

d xtet"t bet [6 [
d xft t ~ bt;

a=i, 2,s 4 J E )

x exp
[ i/6 ab('66 ——('[„.g,, '(xe„) . b", , —V(xe e) +S".Dt't (A)x, , [ (2.25)

and it is to the steepest-descent evaluation of this expression that we now turn our attention.

III- SADDLE-POINT EVALUATION OF THE EFFECTIVE ACTION

Sufficient to leading-order in I/N„our plan is to evaluate the inner FPI (2.25) using saddle-point methods, the

Generically one expects additional O(h, ) terms in the efFective action after this change of variables [341, but these should not
a8ect our leading-order result. Alex Kovner has suggested to us that the preservation of chiral symmetry at the quantum level
might forbid such terms, ss presumably they give a Yukswa-type fallof to E(P), violating Goldstone's theorem when Tpb„= 0.
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goal beingii Eq. (1.1). In order to do so, one exponenti-
ates the b functions in the usual way, and extremizes the
resulting effective Lagrangian

L,x = —M. [ x, ,]+f tt x(g('gx' —~tt;, g,, '(x„,)
+ &(lg)(t)h(k) g + P(k)(t)f()t) gq) (3 1)

The Lagrange multipliers a(") and P(") implement the
constraints (2.13) and (2.19), respectively. For simplicity,
we are neglecting the back reaction of the external source
J'(z) on the saddle point. This is acceptable, since the
efFect of nonzero + can be reintroduced to any desired
order in 5/N, using standard graphical inethods. For
one-pion processes such as 4 -+ ¹rthe simplest such
graph is the one-loop "lollipop" (which is not forbidden
by G parity as the cubic bm' vertex is nonvanishing in the
Skyrmion background). Due to the loop, this is a 1/N,
correction, and can be ignored.

We look for stationary solutions to Eq. (3.1) that are
time independent in the rotating (body-fixed) frame of
the Skyrmion, H' = 0, so the Legendre term f h(", bz'
can be set to zero. Calculating from Eqs. (2.23) and
(2.16) that

This equation is easily solved for gt t, givingis

b
0 =

s (M, [mt,t]+ 2P T „P") .
7rtot

(3.6)

We can do even better, by reexpressing the second term
using the Skyrmion's true moment of inertia,

T „[xt c] = f dgx(a;, x]„)gtt(x„,)(hatt„x[„), (g.g)

which, unlike 2 „,is independent of the collective coordi-
nates. From Eq. (2.17), we obtain 2iP"0& 7 iO&„P',
where 0), = i Tr(rsAtd—A/da ). The reader is then
invited to choose his favorite parametrization of SU(2)
(ours can be found in Sec. V and Appendix 8) and ver-
ify that P"OI, ——J, the angular momentt»» of the
Skyrmion. Thus Eq. (3.6) finally becomes

(tot y&2 Aji+tot~ggtgt

X „[x„,] = f tt x(A;, x]„)gtt(x, t)(Attx[„) . (g.g)

Inserting Eq. (3.5) into Eq. (3.3) and neglecting the a(s)
term for the moment, we derive the pleasingly compact
variational equation

( )
=

~ ( )
= I '"'(-)(J-)~ A s(t.t(y) (3 2) b

(M, [m t,t] + -' J' X „' J"),
+tot

(3.8)

one writes down the opaque (but soon to be simplified)
intermediate expression

bL,g

hbws(y)

bM. [wt.t] —(J-)s A.b('t.t(y)
(A) -Z j

hn t(y

+2 ~. )„~~ s y~, (.'. +d3 i —1 4&&( ) —1 j (it) ()g)

b~t'. t y

(3.3)

Recasting Eq. (3.3) in understandable form requires
that we eliminate all ('t t dependence in favor of mt t.
To do so, we once again stationarize L ~, this time with
respect to the Buctuating momentum:

subject still to the constraints f h(") bw = O.
The results of this section are captured in a nutshell

by the expression

Tt;[+] —= f Ttx(t)ttP(t)gt't[A(+T))tt;[A( T)]—
xexp i dtP a —H t

x exp
~

i d x J' (x)D ', (A(t))zt' t(x; J)
~

(3.9)

where J is the Skyrmion's angular momentum, and H, t
is the rotationally enhanced energy read off from Eq.
(3.8),

bL,g
hb(&

= —((xg., ' —(g-)t.'A,";x].i f g'"t~'~g ~' t"'

+p(&) (t)f (it) (3.4)

(3.1D)

evaluated on the (constrained) saddle-point solution
stot(x; J) that minimizes IIgott that is to say, oa the ro-
tationaQy improved Skyrmion.

Appendix B might well substitute for this rather technical
section on a first reading.

A warning: this conclusion is special to one-pion events.
For two-pion processes such as mN —+ mN, the back reaction
of Q contributes at leading order, and must be taken into
account; see Sec. VII.

' To obtain this result, multiply Eq. (3.4) through by hI")

aad integrate to obtain P " (t)—:0, aad thea, startiag once
again f'rom Eq. (3.4), multiply through by tbt, mt tA(t, and iate-

grate, using Eq. (2.22) to solve for I (t tg t h(t"). Observe that
the saddle-point value of ('t „in contrast with ('„, is "gauge
invariant, " that is, independent of the constraint functions.
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Tf; [+] is a generating functional for (lab-&arne)
Green's functions. In particular, we can extract as a func-
tional derivative the leading-order amplitude for one-pion
emission at the space-time point (t, x) between Skyrmion
states 4; and 4'f sharp in the collective coordinates:

(A(+T)[z~(t, x)[A(—T)) = i — Tf;[&] (~ o .b

(3.11)

Of course, the physical "in" and "out" Skyrmions we are
really interested in are not sharp in A, but rather, sharp
in spin-isospin quant»m numbers. In Sec. VI we will re-
view the simple rules [1] for projecting out nucleons, 6's,
etc. , from ~A(+T)). But already it is clear that Eq. (3.11)
entails evaluating D, (A(t))zt t(x; J) between quantum
states. We must therefore be prepared to answer two
questions. First, what does the rotationally improved
Skyrmion mt t look like? And second, since J is eventu-
ally promoted by the phase-space FPI to a Hamiltonian
operator [1] J, and since J does not commute with the

lh

operator A, how is the ordering ambiguity in the prod-
uct D; (A)z't t(x; J) resolved?~4 These questions are
answered, respectively, in the two sections to follow.

IV. ASYMPTOTICS OF THE ROTATIONALLY
IMPROVED SKYRMION

It would appear that generating a picture of zt «(»; J)
is a complicated computational problem, as the rota-
tional kinetic term in Eq. (3.8) breaks the equivalence
between spatial rotations and isorotations (see Appendix
C). Thus the hedgehog symmetry of the solution is
spoiled, and a purely radial equation for the Skyrmion
profile is no longer available. But since we intend to fo-
cus on the pole location in momentum space, we only
need such a picture at large distances, and here "pure
thought" suffices.

It is helpful to recall some salient results &om the U(l)
model. From Eqs. (A17) and (A18), plus the fact that in
all reasonable massive models the metric g;~(Pt t) ~ hg
exponentially fast at large distances, we observe that
the isorotational kinetic term P2/2T asymptotically con-
tributes a negative mass-squared term P2/X2 to the-
Euler-Lagrange equation:

b I2 y2 bZ
/stot 2g 2~ gusto«

2

&ji&jt&lkg k

Q2
stot

X
(4.1)

The implications of the mass shift were reviewed in Sec.
I.

Henceforth we put hats on quantities to denote quantum
operators.

The situation for SU(2) is more complicated, because
the moment of inertia 2 is now a tensor, and requires a
little more care. We note

JmZ —1 Jn JmZ —1 Z.—1Jn
m~ 2 mk g $ ln

~tot tot

J Cij Ical tot~j nfbnl & (4.2)

adopting the shorthand J" = J Z'
&[mt t]. Far

away Rom the center of the Skyrmion, we again have

gi~(w«Q«) -+ b~„so that

—J Z „J"=Ms,z', Ms, = —J bs, +J J'.
+tot

(4.3)

The mass matrix M is diagonalized by inspection: one
nullvector proportional to J itself, and two eigenstates
with eigenvalue —J2 spanning the plane perpendicular
to J, for which J xr and J x J xr" are a convenient basis.
Accordingly, let us decompose wt, t ——fqJ+f2Jx r+ fsJx
J x r", where the f; are a priori general functions of the
invariants J2, r" J, and r. As we have just noted, these are
constrained by the requirement that at large distances,
fq J must be annihilated by —V2 + m2 [coming from the
first term on the right-hand side of Eq. (3.8)], while the

f2 and fs terms are annihilated by —V2 + (m2 —J2).
A second constraint on the f; is the requirement that
wt t(x; J) smoothly approach the hedgehog configuration

m, ~(x) in the limit in which the classical vector J ~ 0.
While a hedgehog is not itself a mass eigenstate of M,
it can be formed &om a superposition of the fq and fs
terms, since r" = ((J r)J —J x J x r)/J for any J.

Collecting the various thoughts contained in the previ-
ous paragraph, and remembering Eqs. (2.10)—(2.12), we
write down the following asymptotic expression for the
rotationally improved Skyrmion:

~

e --"(J r)J"~~ 8zMwJ2 E " " )
f(~2 —J ) & 11+-

T

(4.4)
The O(J) term includes the entire contribution of the f2
term, as well as higher order pieces from the fq and fs
terms. We reiterate that despite the overall 1/J2, this
expression has a perfectly smooth limit, the hedgehog
m, ), as JmO.

In the above discussion, we have neglected the
Faddeev-Popov field constraints (2.13) that remain as
subsidiary conditions on Eq. (3.8), and, one might fear,
modify mt t(x, J) in some complicated way. Fortunately,
they merely result in a rigid spatial rotation of the
Skyrmion (4.4) through a small angle that vanishes in

the large-N, limit, and hence they have no eEect on the
leading-order widths. These statements are proved in

Appendix C.
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The 1/N, expansion allows a second simplification of
Eq. (4.4), namely, the approximation of X~s[wt~t] by
Z' s[m', i] in the definitionis of J. Since the moment of
inertia tensor evaluated on a hedgehog con6guration col-
lapses to a scalar, X «[n', i]:—X h s, we simply set
J = J/2' in Eq. (4.4). Furthermore 2' oc f2 N„which
implies that the O(J) contributions to mt~i are also irrel-
evant. Implementing these large-N simplifications, and
Fourier transforming the rotationally improved Skyrmion
(4.4) to momentum space for later use, one therefore has

3ig~~iv (J q)J J x J x q
2M~ J2 (P y m2 q2 y ~2 —JQ/P2 )

+(1/N, corrections) + (nonpole terms) .

(4.5)

Strictly speaking, Eqs. (4.4) and (4.5) were derived as-
suming rn2 —J /X2 ) 0, so that both exponentials are
real and decaying. Later, when we calculate the on-shell
decay amplitudes, we will need to extract the LSZ residue
at m2 —Js/X = —q2. It is possible that the rotationally
improved Skyrmion itself has bizarre properties when this
difference goes negative [27—31], such as a divergent mass
at a subleading order in I/Nc; in fact, there is probably
no solution at all in this regime to the defining equa-
tion (3.8). While interesting to contemplate, and poten-
tially useful to understand for other applications, for our
present purposes these pathologies are irrelevant: Eq.
(4.5) will be used to construct a Green's function with
Feynman boundary conditions, and like all such Green's
functions, it is amenable to analytic continuation. is In
sum, our procedure is: fix m2 ) 0 as per Eq. (2.4); then,
since both m2 and J2/X2 N, 2, there is a finite N;
independent radius of convergence in J2 where the anal-
ysis leading to Eq. (4.5) is justified; and finally, analyti-
cally continue to the kinematic regime of interest with the
help of the usual Feynman prescription m ~ m —ie.

A = ao+~a'~ ~0+ (5 1)

in which case

D(;)(A)—:2 TrrtAr;At

= (ap —a )b;+ 2a a, + 2&;sapas . (5 2)

In the ~A) basis used by Adkins, Nappi, and Witten, the
Skyrmion s mutually commuting spin and isospin opera-
tors J and I are represented as derivatives [1]:

1 ( 8 8J = —
i

ag —ap
2 ( Bap Bag

1
Tr(7—i,A—8~).

4

8—cg)mG Ba

(5.3)

and

Such ordering ~ambiguities are not peculiar to the
Skyrme model, or to our particular choice of formalism,
but on the contrary appear to be unavoidable in soliton
quantization. They can always be resolved by appealing
to physics. In the kink model [26], the operator order-
ing is 6xed in an elegant way, by demanding that the
commutation relations obeyed by the generators of one-
dimensional Lorentz transformations be preserved at the
quantum level [39]. In our U(1) toy model, we simply
needed to invoke conservation of energy [4]. In both these
models, the physically relevant solution turned out to be
Weyl ordering, and hence, equivalent to the midpoint dis-
cretization of the phase-space FPI [34,40]. Unfortunately,
the concepts of Weyl ordering and midpoint discretiza-
tion do not readily generalize to SU(2), which is a curved
manifold (unlike these one-dimensional examples). Nev-
ertheless the ordering ambiguities are easily resolved, as
we now explain.

It is helpful to specify an explicit representation of
SU(2), namely,

V. RESOLVING THE OPERATOR ORDERING
AMBIGUITY

i ( 8 8= —
~

—as +ap
2 ( Bap Bag

= —TI'(At'rsB~)
4

8—
equi «8Ba j

(5 4)

In the preceding section, the pole pieces of the rotation-

ally improved Skyrmion were calculated with J treated as

a c nnmber. In order to promote J to a q-number J, one

must settle the ordering question implicit in the expres-

sion D; (A)mt i(x; J), where D(i) is the rotation matrix

&om Eqs. (2.14) and (3.9) that relates the lab-fixed and

body-6xed &ames.

%Phile this hedgehog approximation is valid for X, it is
invalid for the vacation of2 at large r as we have seen, and
would therefore miss entirely the interesting pole structure in
momentum space.

This is not unlike the instanton case [38]. There, too, the
on-shell single-particle pole generated by the con6guration
can only be reached with an analytic continuation away from
the region (Euclidean space) where the conSguration itself is
well de6ned.

where 8~ = 8/Bap + iv~8/Ba~. Note that J2 = I2 =
—&B„B„Theorderin. g issue arises because the compo-

nents of J do not commute with one another, nor with

D, (A). It is easily resolved by appealing to one funda-
mental property of the spectrum of a relativistic quantum
6eld theory, as follows. Consider 4 m N~. As antici-
pated already in Sec. I, the correct mass-shell pole will

be given by the second term on the right-hand side of
Eq. (4.5). As further discussed in Sec. I, the spectral
representation of qu Lntnm 6eld theory rules out the pos-
sibility of an extra nearby isolated pole in the Green's
function in a theory of pions alone. Therefore, the 6rst
term of Eq. (4.5), which contains such a nearby pole,

~ In fact, J, I, and D, precisely generate th. e old SU(4)
spin-Savor algebra [21,41J.
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cannot contribute to 6 decay, nor to any off-diagonal
transition J „q ——J; +1.

We assert that the orderingis Dl,.l(A) J'(J q) for the
n»aerator of the 6rst term has precisely this required
property. This follows instantly fmm the identity

1- 1 A A—=J x J x q = q ——„J(J q),J2 J2 (5.S)

we reduce this ordering problem to the one above, which
implies

D, (A). J' = I- (5.5) D' '(A)
l

q' —=, J*(J q) l

= (1 —'P~&=p)D'". (A)q'

D, (A)J (J. q) = c(J )'Paq pD; (A)q' . (5.6)

The constant c(J2) is fixed by letting both sides act on
a Skyrinion wave function [1,42],

since by definition, J and I do not change the spin and jor
isospin representation of the Skyrmion, but rather act
like the usual SU(2) ladder operators within each repre-
sentation. Ruthermore, we can construct a second oper-
ator that is likewise proportional to I (J q) on any given
representation, but that has the advantage of not con-

A A (~) .
taining I or J explicitly, namely, 'Pr, g pD, (A)q'., where

PQ J—0 is the projection operator that ensures that the
Skyrmion representation is preserved. By the Wigner-
Eckart theorem, these two operators must therefore be
proportional to one another:

= 'PaJ iD—l, l(A.)q' . (5.9)

As the notation suggests, 'Pay i forces the Skyrmion spin
to change by one unit, just as required for this term.

There is one further ordering issue to be resolved, this
one not u~ique to the Skyrme model, but present also
in the U(1) model [4], namely, the meaning of J2/T2 in
the denominator of the second term in Eq. (4.5). This
is the quantity interpreted by LSZ as the squared pion
energy u2. As stated earlier, the solution to this ordering
question is dictated unambiguously by conservation of
energy, which equates u to the difference of Skyrmion
energies:20

J;„(J~.+ 1)) t' J.„,(J.„,+ I) &

(5.10)

(AlI=J) (2J 1)1/ ( )&
—*D( i (At) (5.7) For the two allowed cases J; = Jo„t61, Eq. (5.10) gives

and using the standard formula for the tensor product of
two Wigner D matrices. is One quickly finds c(J2) = J2,
neatly canceling the factor of 1/J~ in front of Eq. (4.5).

By the same logic, the second term in Eq. (4.5) cannot
contribute to the diagonal transitions J;„=J „t. By
rewriting

2 — 1=
2~2 [J;o(J;o + 1) + J~„t(Jo„t + 1)], (5.11)

that is to say, the average of J2/X2 acting on the bra and
on the ket (i.e., an anticommutator).

The various results of this section are assembled as
follows:

(])(Do; (A)~&et(q; J)}properly ordered = 'Pa, z pD (A)q*-
2M~ (q2+ m2

+ 2 2 & &
e %Pal iD; (A)—q'ePS'//2Z' (&) " P3'/2g

+(1/N, corrections) + (nonpole terms) . (5.12)

The P difFerentiation is just a concise bookkeeping device
for the nested anticommutators implied by Eq. (5.11),
and ensures that 8/BP ~ A&2. The efFective pointlike
Geld-theoretic vertex equivalent to this soliton expression
is the full-strength O(N, /

) pseudovector pion-baryon
coupling (1.3), as advertised, resolving the "Yukawa
problem. "

VI. THE SKYRMION DECAY AMPLITUDE

The numerical calculation of the decay widths of the
I = J baryons now follow in short order. For thematic

N.B.: There exist other orderings which, though they ap-
pear distinct, give the same Snal result.

We normalize the volume of SU(2) to unity.

consistency, rather than working from this point forward
with the effective Geld theory directly, we will complete
the calculation in the same way we started it: as a FPI
dominated in saddle-point approximation by the rota-
tionally improved Skyrmion. But the real reason we stick

It is tempting to conjecture that for this case, the unique
ordering for J /2' speciSed by conservation of energy cau
also be arrived at in a completely difFerent +ray, by demanding
that the chiral algebra close at the quantum level, analogous
to Ref. [39]. Note also, the lack of Snal-state Skyrmiou recoil
in this expression for the energy difference is just a harmless
by-product of our decision at the outset, valid to leading order
in 1/N„ to ignore the translational modes.
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with the Skyrmion approach is that it is much easier. In
the perturbative Fock space of the pion, the Skyrmion
decays we are considering look like 0 m 1 transitions in
a nontrivial background Geld, i.e., the Skyrmion itself,
and hence the widths are integrals simply over one-body
phase space. In contrast, the traditional relativistic e8'ec-

tive Lagrangian approach to E decay [43—45], not to men-

tion the higher spin baryons [45], involves the construc-
tion of Rarita-Schwinger spinors, subsidiary spin projec-
tion conditions, and other complications.

Resuming our train of thought with Eq. (3.11), and
recalling the definition (5.7) of the Skyrmion wave func-
tions, we write the cumbersome but conceptually simple
expression

...(,'.='
l~ (~ q)l,', .'. )

SU(2)
T

x dA( —T)(A(—T)l;=, ) 'Da(t)17P(t) exp
sv(2) t

X (A(t) I (Dot (A(t))~tot ('Qi ~) )properly ordered IA(t) )

x 17a(t)17P(t) exp i dt(P"a" —H, ,)
—T T-

dA(T)(,', .=,' IA(T)) dA(t)
SV(2)

(.
i dt(P a —H„,)

(6.1)

f
t2 tr

17a(t)17P(t) exp
I

i dt(P"a" —H, t) I

t1 )

where

J
) ) (A(t2)II=J) r(tr tr)MJ(I=JI —

(A~t))
1 3 i, ,s, =—J2'2'"

(6.2)

Note that the FPI has been divided into two time inter-

vals on either side of the one-point insertion, —T & t ( t
and t & t & T. A technical point: in the path integration
over each of these intervals, the quantum mechanical field

A(t) formally enters, wrongly, as a fixed boundary condi-

tion, and so to lift this unphysical restriction we need an
additional explicit integration over A(t), as we have indi-

cated in Eq. (6.1). The reason for splitting up the FPI in

this way is that in each time segment the Skyrmion prop-
agates freely on the SU(2) manifold. Therefore, one can
exploit the well-known sum-over-states expression for the
propagator for a &ee particle moving on the SU(2) group
manifold, derived in a classic paper by Schulman [42]:

Inserting Eq. (6.2) into Eq. (6.1) and performing the
three independent SU(2) integrations using standard
identities, one extracts the much simpler expression for
the one-point function, &ee of collective coordinates, in-
dependent of the choice of Lagrangian (2.5) and of con-
straints (2.13) and (2.19), and valid for both b,J = 0 and
AJ= 1:

..t(,';.=,' l~ (~ q)I,',=.'. )'-

3g NN iq TM TM
(
')J+J'

2MN q2 + ~2 2
x (Ji,

I
1J'ai', ) (J's', I1Jis, )2mb(MJ —MJ —~)

+(1/N, corrections) + (nonpole terms) . (6.4)

Next, one amputates the pion leg by multiplying by the
inverse pion propagator —i(q2 —m2) and going on mass
shell, killing all nonpole contributions. The amputation
of the nonrelativistic "in" and "out" baryon legs simply
means erasing the two exponential factors, which repre-
sent free Skyrmion propagation. The conventional def-
inition of the T matrix also requires that we cross out
the energy-conserving b function, leaving the product of
Clebsch- Gordan coeKcients:

MJ = M, + J(J+ 1)/2X . (6.3) (—)
+ (Ji I1J'ai')(J's'I1Jis, ) . (6.5)

The boundary conditions are that A(t~) and A(t2) are
held fixed. The fact that only the diagonal component of
X appears follows from the use of the hedgehog wave
functions (5.7), and is justified in large N, .

We now set J' = J —1, integrate the square of this
amplitude over the one-body relativistic phase-space of
the pion, and sum over final states, to obtain the total
Skyrmion decay width:

2

) ((».I1, J —1, a~', ) (J —1, s'. I1»s.))', 2~&(MJ —&. t(q)) . (6.6)
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8+M~2 2J+1 ' (6 7)

where q denotes the value of ~q] which satisfies the b' func-
tion. Alternatively, we can already anticipate an obvious
consequence of quantizing the Skyrmion's translational
as well as rotational zero modes, namely, the Lorentz di-
lation of the Skyrmion mass [26]. This suggests the better
choicezi E~„t, = gq2 + M&2, + gq2 + m2 in which case
the expression (6.7) is multiplied by an extra factor of
gq2 + M&z, /Mg = 1 + O(N, 2). For J =

2 these recoil-
corrected formulas give q = 227 MeV in which case
I'~~N = 114 MeV, against an experimental width of
120+5 MeV, while the cruder estimate (6.7) gives q = 258
MeV and I'~~~ ——212 MeV. In both cases we have used
the experimental values for all the parameters, eliminat-
ing M, and X from Eq. (6.3) in favor of MN and M& as
per Ref. [1] (one of several reasonable prescriptions).

The recoil-corrected expressions also yield I'5/9 3/2
——

803 MeV, I'7/2~5/2 ——2643 MeV, and I'9/2~7/2 ——6437
MeV, the xnasses of these large-N, baryons being 1720,
2404, and 3284 MeV, respectively. Extrapolating to large
J, I'~~g i J while the masses grow only like J . So
these higher-spin "large-N, artifacts, " often considered a
failing of the Skyrme model in particular, and of large-N
phenomenology in general, are so broad that they elec-
tively drop out of the particle spectrum for physical
values of the parameters, and pose no problem whatso-
ever.

Because N, appears implicitly in both the kinematics of
the theory and in the parameters themselves (unlike, say, a.
in +ED), it is impossible in practice to be a "purist" in the
1/N, expansion, refusing to mix orders. Nor is this even desir-
able in principle (a view shared by most workers in the field),
as it would break up Lorentz invariants. Those who would
object nonetheless to our use of the mixed-order expression
gtP + M+2, would also need to explain how, from the experi-
mental values, one might separate the "leading" contribution
to (say) g pp~ from the "subleading" pieces. In our view,
using the recoil-corrected Skyrmion mass-energy is truer to
the spirit of equivalence to relativistic Seld theory that is the
main theme of this paper.

As already noted, a comparable width of the A was Srst
quoted by Adkins, Nappi, and Witten [1],and sinai&ar expres-
sions reappear regularly in the Skyrme-model literature.

Alternatively, an interesting, purely group-theoretic means
of eliminating the I = J & z baryons &om the spectrum,
while preserving unitarity, may be found in Ref. [46].

Spherical symmetry permits (q')2 + sq inside the in-

tegral, in which case the Clebsch-Gordan s»~ decouples,
and gives (2J —1)/(2J + 1). The numerical value of
the integral depends sensitively on how the final-state

energy E t, is defined. With the naive choice E „t, ——

Mz + gq2 + m2 as in Eq. (6.4), we obtain

VII. APPLICATION TO 7rN SCATTERING AND
SOME CONCLUDING THOUGHTS

By grounding the Skyrme model in the FPI, systexn-
atizing the 1/N, expansion, and paying careful atten-
tion to the analytic properties of the rotationally ixn-

proved Skyrmion, we have taken a significant step to-
wards showing how the Skyrmion bootstraps itself into
an effective relativistic quantum field theory with explicit
pointlike fields for the nucleon, 6, etc. In particular, we
have confirmed using soliton quantization [26] the effec-
tive large-N, meson-baryon coupling (1.3), originally put
forward by Adkins, Nappi, and Witten with no explicit
input &om or connection to Skyrmion physics, as these
authors acknowledge (see Sec. 5 of Ref. [1]). By so do-
ing, we have solved completely the so-called "Yukawa
problem, " namely, the emergence of Eq. (1.3) directly
from Skyrmion quantization. (Previous major progress
towards the solution may be found in Refs. [18—20].) Our
approach has the advantages of focusing on the Yukawa
coupling directly (rather than extracting it as the "square
root" of a mN scattering amplitude or NN potential) and
being manifestly "gauge" (i.e. , constraint) independent.
That the model-independent width of the 6 works out
well, and the problematic higher spin baryons are too
broad to be seen, adds credibility to the large-N, pro-
gram. Extensions of our methods to the case of three
aavors, and to the study of pion photoproduction from a
Skyrmion, are currently in progress.

While we have focused narrowly on single-pion poles,
there is obviously more to be learned from the analytic
properties of the rotationally improved Skyrmion. For
example, look again at the asymptotic behavior (2.11) of
the Skyrmion profile F(r), obtained simply by lineariz-
ing the defining equation for F. The next-leading terms,
which we dropped, are O(Fs), and can be treated in
Born approximation. Their iterated contribution to the
Skyrmion falls oK as e "", where the Kallen-Lehmann
spectral parameter p, assumes a continuuxn of values
& 3m . In the language of the corresponding field the-
ory, these are precisely the two-loop vertex corrections to
the bare coupling (1.3) that are responsible for the tbree-
pion cut in the Green's function Q(q ) (the two-pion cut
being forbidden by G parity). Interestingly, the two-
loop O(Fs) level is also where the two alternative defini-
tions of the pion field, Eqs. (2.2) and (2.3), diverge from
one another —and might actually define distinct quantum
theories [34].

Beyond diagrammatics, a profound consequence of an-
alyticity is crossing symmetry. We cannot even speculate
how crossing and large N are reconciled, since the kine-
matic regimes can be so far removed froxn one another;
for instance, 6 ~ Nx with q N, versus the virtual
transition m -+ NL with q~ N2, the latter being a
so-called "forbidden process" (see Sec. 8.3 of Ref. [35])
suppressed beyond any finite order in 1/N, . Whether
an obstruction to such an "ambitious" analytic contin-
uation actually exists, or whether on the contrary it is
completely legitimate, is an open research topic of some
ixnportance, and for which Skyrmions might prove useful.

On a more down-to-earth level, the pion-baryon vertex
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is easily assembled into more complicated diagrams, most
notably mN ~ mN, which one might write somewhat
schematically as

(7.1)

The source of this contribution is obvious: it comes
from hitting the FPI (3.9) with [b/bg (z)][8/bZ (y)] and
pnB~ng down two disconnected copies of the rotationally
improved Skyrmion. This contribution to ~N scatter-
ing has been studied in Refs. [18—20]. The graphs in the
corresponding effective field theory are the "Compton di-
agrams" where one pion is absorbed and another emitted
directly from the baryon line.

However, there is another contribution to pion-
Skyrmion scattering that has also been studied exten-
sively in the literature [19,32,33], which one might abbre-
viate as (&r (z)bz (y)). This is the two-point function
for the Buctuating field bm', propagating in the classical
background of the Skyrmion, and it contributes at the
same order, No, as Eq. (7.1). Yet we argued in Sec. I
that it is dangerous, and contrary to the semiclassical
nature of large N„ to split up the total pion field in this
way, into classical and Buctuating pieces. Is there a way
of generating this important contribution directly from
the rotationally improved Skyrmion, at zeroth order in
the semiclassical expansion?

The answer, naturally, is yes. The propagator con-
tribution arises automatically when the first functional
derivative p~~B~ down the Skyrmion, and the second acts
on the eery same Skyrmion:

b, (
)D."~t.t(z»P]) l~-o

(y)
™ (7.2)
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As the notation suggests, the rotationally improved
Skyrmion is itself a functional of the external source
J'(y). In the case of Skyrmion decay, we were cavalier in
Eq. (3.1) about the back reaction of J' on the Skyrmion,
arguing that it is a one-loop, hence 1/N„correction. But
for mN scattering this back reaction is critical. Indeed,
Taylor-expanding Di, lz't t(z; J; [J']) about J' = 0 we
Bnd a linear term in t', which is precisely the convo-
lution f dz'(bs (z)bshe(z'))gs(z') of the propagator in
the Skyrmion background with the source itself. This is,
of course, a tree diagram, hence leading order, and can-
not be ignored. The associated diagrams in the efFective
field theory are the "exchange-type graphs" in which the
pion and baryon lines exchange an arbitrary number of
quanta. Thus, both contributions, (7.1) and (7.2), can
be viewed in an elegant, unified, semiclassical way —in
terms of the rotationally improved Skyrmion.

APPENDIX A: U(1) REDUX

In this appendix we review some of the results of the
U(l) model discussed in Ref. [4], generalized to include a
Beld-dependent metric g,~ (P) in the kinetic energy term,
so that the analogy to the Skyrme model is closer. The
incorporation of the constraints is also more general than
in Ref. [4]. This appendix should be read in tandem with
Secs. II and III which it parallels closely, in a setting in
which the algebra is more transparent.

Our starting point is the (1+1)-dimensional I a-

grangian

& = -4*g* (4)4 —&(4»& 4) . (A1)

Here P is a real scalar doublet, and 8 is presumed invari-
ant under the U(1) transformation

We assume that the Euler-Lagrange equation admits a
static solution P' and hence a family of U(1) solutions

swept out by M(8) ~ qV . As in Ref. [26], we constrain
the fluctuations away &om these solutions by imposing
the condition

0 = Gg[e;p] = f debts(Mnkr —4'„') . (A3)

The expression in parentheses is the body-fixed Buctu-
ating Beld bP. The constraint function hs need not be
equal to the soliton's U(1) zero mode e&~P'; as long as
they have nonzero overlap, the constraint (A3) will have
the desired efFect of removing the in&ared singularities
&om the perturbative expansion.

Formally, the constraint (A3) is implemented by in-
serting into the path integral the Faddeev-Popov factor
of unity

BHt JgbOy8;

Je —— ——— dz h~ e~i, P&
OOy

88 (A4)

Here the body-fixed field P is defined by

y' = M,„(y„"+by„ ) = Mi.y'„",

There needs to be at least one additional singlet Seld in
order for this to be possible [48], but this technical point is
irrelevant to our general treatment.

and we have used the fact that Mi dMis/d8 = e„i,
Since we intend to use a phase-space FPI, with path

integration over both the canonical fields and their con-

jugate momenta, we introduce the canonical momentum

(; = g,~P~ in terms of which 'R = 2(;g, (~ + V. We also

introduce a quant»m mechanical moment»~ P conjugate
to the U(l) collective coordinate 8. The phase-space ap-

proach [26] requires that the momenta be constrained in

analogy to Eq. (A3); thus,
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(.
' = M)„((.'„"+ b(.'„) = Ml„(„' ' (A7)

in analogy with Eq. (A5). A necessary and sufficient
condition for such a canonical transformation is that the
form of the Legendre term f (sbt)s be preserved; thus,

dh(r, b)r, = Pg+ f dg6(g6dr .
~ ~

(AS)

It is an easy matter to see how the condition (AS) fixes

t,
" for us, giving

("= —h &rr
'

l
P —f dr:6(grrrd)"

l

To verify this claim, expand the left-hand side of (AS) as

dr(gdrr =/dgMgr(( +6()—[Mg(rb +66)[
~

~= 8 Az g Egf ~ + Az

+ dr: (r", bdg f dr: (( brbr. . (Al0)
dt

Comparing the right-hand sides of Eqs. (AS) and (A1.0),
we see that we must have

P = dX' g Eg) (All)

0 = (rg[g P dr '() = A f dx fr(Mr, (r —(; ) . (Ag)

Here A is a normalization constant that we wiH pick con-
veniently later, and the new constraint f can be chosen
independently of h (so long as they have nonzero over-

lap). The "classical momentum" (' is a configuration
that we select to ensure that the constraints (A3) and
(A6) define a canonical transformation of the path inte-
gral variables, from the old variables {6th, g) to the new
variables {8,P) {b63[5,6(') in which the U(1) collective
coordinates have been explicitly separated out. Here the
body-fixed "Buctuating momentum" b'g as well as the
body-fixed "total momentum" g are defined as

This reBects the vob~me-preserving character of canon-
ical transformations.

Vfe are now ready to discuss the saddle-point evalua-
tion of the action. The Lagrangian reads

dz ~ ~ —Q + exponentiated constraints

=Pe+ dx b gb 7,
—2,. g,

V(q—b"', 8.$'") + c (t)h hdt + P(t)f bg) .
(A13)

Here a and P are Lagrange multipliers implementing the
constraints (A3) and (A6), respectively. We look for sta-
tionary solutions that are time independent in the rotat-
ing frame of the soliton, h(t)s = 0, so that the Legendre
term f h(sbbt)s can be set to zero. Calculating from Eqs.
(A9) and (A4) that

bqtgbt(&) bqel(&)
$$'

( )
—= /at'. t( )

= hl (&)Js '«'&l'"(&) (A14)

one has

hl, rf

bbg;(y)

= —
&rr

'()"(g)rr; f d*h, g, '('"

+ d
1 tot —x ~&&&(+) —x totdz
2 " ~~a b &og &rg

+n(t)h;(y) .

hV(x)
h /tot (y)

(A15)

We would like to eliminate the g dependence of this
expression, recasting it purely in terms of P . To do
so, we stationarize L,g with respect to the Buctuating
momentum:

bL

hb(;

= —(!"g,, —6 ' d'rf rd hg,T'("'+(6(r)f, .

(A16)

1= BPt Jyb Qt, H, P;

~J g h. f
BP (A12)

Therefore, if the normalization constant A is equated to

Jh . f, the two Faddeev-Popov Jacobians cancel identi-

cally: JgJJ ——1.

while in addition the expression in square brackets in
(A10) must vanish. Thanks to the constraint (A3), this
latter condition is automatically satisfied if we pick g"
proportional to h, whence Eq. (A9) follows immediately
from the additional requirement (All).

The same choice of (' that makes the Legendre term
(AS) work out elegantly has a second nice property, as
follows. %e insert into the path integral the Faddeev-
Popov factor of »~sty for the moment»m sector:

Th s equation ls e~lly manipulated to glve25

(g" =gs~s~i4f '& 'P

Z[rh"'[ = f dx(r;, dr'r")gr(dr'")(rrrdr'r") . (A17)

b P2

»id'") I '

M, = dTV, (A18)

ssTo obtain this result, multiply Eq. (A16) through by h;
and integrate to find P(t) = 0, and then, returning to Eq.
(A16), multiply through by g;gsgsp6, and integrate, using

the identity (All) to solve for Jh g z ('0

Substituting Eq. (A17) into (A15) yields, finally, the el-

egant expression
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subject still to the field constraiiit jh. bP = 0, the (sub-
leading) effect of which is discussed in Appendix C.

APPENDIX B:A HAND-%AVING
JUSTIFICATION OF THE ROTATIONALLY

ENHANCED EULER-LA&RANCE EQUATION

vr'(z) -+ DI„'~ [A(t)]z;" t(x), (Bl)

The purpose of this appendix is to give an heuristic jus-
tification of our use of Eq. (1.1) as an improved starting
point. The reader seeking a more compelling derivation
should work through Sec. III.

We start &om the generalized Skyrme Lagrangian
(2.5), and make the ansatz

d a(t'(a„a„—1)f1 pd(a„p„)
time
slices

xexp~i dt(4J. j —M, ——J X J ) ~

. (B6)
~ 1 o —1 b

ab

Since d4pb(a„p„) (x dsJ we can perform the Gaussian

J integrals and be left with Eq. (B4) precisely. This
completes the heuristic justi6cation of our phase-space

starting point.

APPENDIX C: EFFECT OF THE FIELD
CONSTRAINTS ON THE ROTATIONALLY

IMPROVED SKYRMION

where mt t is presumed to be time independent. In-
serting this ansatz into the first term of Eq. (2.5) gives
8j T~b[mt~t]j b, where

AtA
4

(B2)

is the c-number analogue of the Skyrmion's spin operator
(5.3), and X b is the moment of inertia tensor (3.7). In
deriving this result we have exploited the fact that the
metric transforms as a two-index tensor:

aij(D 'irtGt) = gab(n'tet)D, ~ Dib(~) . (~) (~) (B3)

)
d ab(a„a„—1) exp

~

i dt(8j Z bj —M, ) ~

slices

(B4)

When 2 g is diagonal the first term in the exponent col-
lapses to XTrAtA which we recognize as the Bee SU(2)
Lagrangian [42].

We will now show that our phase-space FPI construc-
tion, Eqs. (3.9) and (3.10), is formally equivalent to Eq.
(B4). Following Ref. [1], we introduce four momenta p„
conjugate to the a~, so that p„~ i8/Ba„, subject to-
the constraint p~a~ = 0. The SU(2)-invariant momen-
tum integration is then proportional to a product over
time slices of jd4yb'(a„p„). The Legendre term can be
rewritten as a~p~ = 4J .j where, as in Eq. (5.3),

Inserting the ansatz (Bl) into the second term (2.5) just
gives V(mt t) by isospin invariance. The sum of the two
terms implies an action functional that can be inserted
into an ordinary (not phase-space) FPI. A convenient
choice of coordinates is the S3-symmetric set a„given
by Eq. (5.1), in terms of which the SU(2)-invariant path
integration measure is proportional to the product over
time slices of ordinary integrals:

In Sec. IV we examined the rotationally improved
Skyrmion while ignoring the effect of the field constraints
(2.13) that remain as subsidiary conditions on Eq. (3.8).
We justified our cavalier approach with two claims, first,
that the constraints can be implemented trivially by
rigidly rotating the configuration (4.4) in real space, and
second, that the angle of this rotation is vanishingly
small in the large-N, limit, so that the leading-order LSZ
residues are unaffected. Let us prove these two state-
ments.

It is easiest to start with the one-dimensional U(1)
model as reviewed in Appendix A [4]. Let @ (z;P)
be a static solution to Eq. (A18); the configuration we

have been calling P' (z), analogous to the undistorted
hedgehog in the Skyrme model, is then ttt (z;0). The
relevant observation is that for any P, there is a U(1)
manifold of degenerate static solutions, M(8)g' '(z; P).
Since in this model there is only one Geld constraint, Eq.
(A3), generically there will be one point, or at most a
discrete set of points, on this U(1) manifold that satisfy
the constraint. We now show, self-consistently, that we

arrive at one such point by picking a particular relative
angle 8(P) between Q (z; P) and P' (z), and that 8(P)
is in fact small. [The term "relative angle" presupposes
that for 8 = 0, (I|) (z; P) and P' (z) are equivalently ori-
ented in the internal space, for instance to point in the

(0) direction for z + oo.] The effect of a small isorotation
can be Taylor-expanded:

Z

4

The phase-space FPI is then proportional to

+o(8(P)')

The constraint becomes

0= a*I„',' ~;P +e ~.„',"~;S

+O(8(P)') —4b'(z)1

so that

jdzh. [P' '(z; P) —((t"(z)]
8(P) =—— jd*h,.„yt"(z; P)

(C1)
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To the extent that the rotational term P /2Zi'n Eq.
(A18) is a perturbative correction to M, (as it is in the
Skyrme model, where it is down by N, ), this ratio is
obviously small, and our claim is established in a self-
consistent manner.

The Skyrme model is just a little more complicated, be-
cause of the possibility of both spatial and isorotations
in three dimensions; respectively, w(x) m m(D&~l x)
versus w(x) ~ D&~& m'(x). The effect of the perturba-
tion 2J Z' t[wt t]J is to break the SU(2) degeneracy
of the rotationally improved Skyrmion in isospace down
to U(1), namely, isorotations in the plane perpendicular
to J. However, there is still a full SU(2) complement of
degenerate configurations obtained by spatial rotations [a
U(1) subgroup of which is redundant with the remaining
isorotations]. Thus for any J there is a three-parameter
manifold of degenerate rotationally improved Skyrmions,
and since there are now three constraints, we once again
expect a single solution point, or at most a discrete num-
ber of solutions. So in either model the constraints, being
in 1-to-1 correspondence with the zero modes, have done
their job, and eliminated the Bat directions &om the FPI.
The resulting perturbation theory about the rotationally
improved Skyrmion will be free of IR singularities to all
orders in 1/N„and no additional collective coordinates,

APPENDIX D: PION PSEUDOVECTOR
COUPLING TO THE I = J BARYONS

As stated in Sec. I, the pion-baryon vertex (1.3) is
uniquely specified by the twin requirements of the chiral
and large-N, limits. The former implies the derivative
coupling ("Adler's rule" ). The latter augments the usual
such coupling to the nucleon, namely,

(g~NN/2M~)8„x Np"p 7 N ) (Dl)

with coupling to the entire tower of I = J baryons, in
such a way that the following three requirements are sat-
isfied.

(1) The coupling is invariant under isospin and angular
momentum. The field ~A) transforms asks

isospin ang mom

(UIA) and ~A): (AUgt)fA) (D2)

so that

nor extra isorotational kinetic terms in the action, can
be justified. We leave it to the reader to write down the
SU(2) analogues of Eqs. (C2)—(C3), which now involve
matrix inverses, and are not particularly ilb~minating.

dA D s (A) ~UIAUq~) (UIAUq~~

dA D.",'(Ult AU~) ~A) (A~

dAD.",,', (A) ~A)(A~ .

dA D(sl(A) )A)(A) w
sU(2)

SU(2)

(~) t (~) t= D..(Ur)Dss (Uz)
sU(2)

(D3)

Here we have used the group invariance of the SU(2) measure, d(UltAUg) = dA, and the reality of the rotation
matrices. Similarly,

»7I' M By&7I' D n (Ul)Dstrs(UJ) (D4)

Combining these last two equations confirms the invariance.
(2) Equation (1.3) includes the usual pion-nucleon interaction (Dl). Expanding ~A)(A~ into baryon fields with good

spin and isospoin using the wave function (5.7), and performing the resulting integral over three D matrices, gives

"")»~ ) ) (-I)'+'(Jli. o~ J'i'. )(J'ls'. I
~
Js.)[,",., )(,', [ .

a,b J,i„s, J',i', s',

We now pick out the terms with J = J' = 1/2 in this expression. Isospin and angular momentum invariance can be
made more manifest by rewriting this subset of terms as

(g.zv~/2M~) ).).).~;,~.'.,»~ I;;. )(;.'., I

a,b a~,ss a', ,s'
(D6)

which we recognize as the nonrelativistic (or, equivalently, in the present context, large-N, ) limit of Eq. (Dl).
(3) Equation (1.3) correctly implements the "Iq Jt rule" [49] a——nd the "proportionality rule" [21,49,41] governing

meson couplings to the higher-spin field in the I = J tower. A careful reading of Ref. [49] reveals these criteria will be

We remind the reader of the compact notation of Eq. (1.3), whereby (A~ is shorthand for the superposition of explicit
pointlike Selds for the nucleon, 4, and so forth up the I = J tower of baryons, any one of which may be projected out using
Eq. (5.7).
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automatically satisfied due to the diagonality of Eq. (1.3) in the collective coordinate A. It is instructive nevertheless
to see how this comes about explicitly. The bra and ket in Eq. (D5) can be written in terms of fields with good
t-channel (exchange-channel) quantum numbers as

(D7)

where the phases in the above are the usual cost of turning bras into kets in SU(2) [50]: ~jm) ~ (—l)s+ (j, —m[.
Plugging Eq. (D7) into Eq. (D5) and using Clebsch-Gordan orthogonality gives for the pion-baryon coupling:

) clJ, rri'* ) (—1) + [(2J+ l)(2J'+1)] ~
~1',

'
)(q,

'

It, ,Jt, J,J'
(D8)

This expression correctly embodies the two aforemen-
tioned large-N, selection rules: the square-root propor-
tionality factors relating the pion's couplings to the vari-
ous baryon 6elds in the I = J tower illustrate the propor-
tionality rule, while the fact that the exchanged angular
momentum J& ——1 (i.e., P-wave pion emission) is equal
to the isospin Iq ——1 of the pion is a speci6c example
of the more general It ——Jt rule. This latter observa-
tion is not entirely "content-&ee, " as one might initially
suspect. True, for the special case 4 —+ Nx, or for the
speci6c ofF-shell coupling N ~ Nx, the fact that the
pion is emitted in a P-wave follows trivially Rom parity
and angular momentum conservation. But for the higher

members of the I = J tower of baryons there is no ob-
vious conservation law forbidding, or even suppressing,

wave h-ard pion emission when the oIF-shell virtuality
of the pion is order q2 N . The fact that P-wave
emission/absorption nevertheless continues to dominate
in this kinematic regime is a speci6c dynamical prediction
of large X„ lare ady incorporated into the efFective field-
theoretic coupling (1.3), and thanks to the equivalence
exhibited in this paper, also embodied by the Skyrme
model. Unfortunately, as we have also shown that these
higher-spin states do not exist as particles, this particular
piece of phenomenology is somewhat moot.
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