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Decays of l = 1 baryons: Quark model versus large 1V,
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We study hadronic two-body decays of the orbitally excited, SU(6) TO-piet baryons in order to
test the hypothesis that the successes of the nonrelativistic quark model have a natural explanation
in the large-N, limit of /CD. By working in a Hartree approximation, we isolate a specific set of
operators that contribute to the observed s- and d-wave decays in leading order in 1/N, . We fit
our results to the current experimental decay data, and make predictions for a number of allowed
but unobserved modes. Our tentative conclusion is that there is more to the nonrelativistic quark
model of baryons than large N, .

PACS number(s): 13.30.Eg, 11.15.Pg, 12.39.Jh

I. INTRODUCTION

' Electronic address:
Electronic address:

~ Electronic address:
~ Electronic address:

caronehuhepl. harvard. edu
georgihuhepl. harvard. edu
kaplanhuhepl. harvard. edu
morinhuhepl. harvard. edu

In the nonrelativistic quark model (NREM), the
baryon resonances can be classified by their transfor-
mation properties under nonrelativistic SU(6) spin-fiavor
symmetry. The ground-state baryons have completely
symmetric spin-Bavor wave functions, and form the 56-
dimensional representation. The l = 1 orbitally excited
states have spin-Bavor wave functions with mixed sym-
metry that lie in the 70. While the NREM description
of the baryon states has not been derived convincingly
from /CD, it has been incorporated with some success
in many of the previous theoretical attempts to under-
stand the observed baryon masses and decay widths [1].

Recently, Dashen, Jenkins, and Manohar suggested an
interesting igterpretation of the approximate spin-Bavor
symmetry of the NREM [2,3]. Working in the large N, -

limit, where N, is the nn~ber of colors, they showed that
the symmetry structure of the baryonic sector of /CD is
constrained by the condition that pion-baryon scattering
amplitudes remain finite as N, -+ oo, so that unitar-
ity is preserved. Exploiting these large-N consistency
conditions, they were able to classify symmetry-breaking
corrections to the mass and decay relations by their order
in the 1/N expansion. They observed that the approx-
imate NREM spin-Savor structure of the l = 0 baryons
in the SU(6) 58 could be understood as a consequence of
large N„ for baryons with small total spin. The analo-
gous relations involving baryon states with spins of order
N, /2, however, are subject to large corrections.

Attempts to understand large-N, baryon phenomenol-

ogy more directly in terms of quarks and /CD appeared
shortly afterwards in Refs. [6,7]. Reference [6] demon-
strates that the connection to quarks follows kom the
ideas of Witten (see [8]), who showed that large-N,

baryons can be treated in a Hartree approximation. In
this picture, each quark in the baryon experiences an
average potential generated by the other O(N, ) quarks.
In baryons with small total spin, each quark wave func-
tion corresponds to the same s-wave ground state. In
baryons of higher spin, however, the spin-spin and spin-
orbit interactions might significantly deform the quark
wave functions away from the s wave. Reference [6] shows
that this physical picture is consistent with the results of
Dashen, Jenkins, and Manohar. The Hartree potential,
at least in principle, can be computed using the part of
the multiquark Hamiltonian that transforms trivially un-
der spin and spatial rotations acting separately on each
of the quark wave functions. The remaining piece of the
Hamiltonian can then be included perturbatively. In this
formulation of the problem, the spin-Bavor symmetry ap-
pears at lowest order in the 1/N, expansion, and the cor-
rections are suppressed by powers of S/N„where S is the
baryon spin. Again, the approximate spin-Bavor symme-
try can be understood as a consequence of large N„ for
baryons with small total spin.

One of the difBculties with the large-N, picture of
baryons is that the spin and Bavor structure of the large-
N baryons is not simply related to the spin and Bavor
structure of the N, = 3 baryons, because the number
of quarks is not the same. This has caused consider-
able confusion in the literature. Part of the value of the
Hartree picture is that it suggests a calculational scheme
for applying large-N, ideas to the observed baryon reso-
nances with N, = 3 [6]. The first step is to categorize the
relevant multiquark operators by their order in the 1/N
expansion. This is not completely trivial, since an opera-
tor that is summed over the O(N, ) quarks in the baryon
state may have an eHect that is as important as that of
an operator that is formally of lower order, if the terms in
the sum add coherently. Ass»~ing that we have isolated
the correct set of multiquark operators, we can then ap-
ply them to the baryon states, defined with N, = 3. In
this way, we avoid the problem of extracting our predic-
tions &om large-N baryon wave functions, which have
quantum n»~bers that are different &om those of the
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baryons in the real world.
In this paper, we show how to apply these ideas to

hadronic decays of the orbitally excited baryons in the
SU(6) 70-piet [9,10]. In the Hartree language, these are
states with N —1 quarks in the ground state of the
Hartree potential, and one quark in an. orbitally excited
state. In contrast with the early work done on this prob-
lem, our large-N, arg»ments lead us to select a very spe-
cific set of pion-baryon interactions. Furthermore, there
is an important di8'erence between these couplings and
those discussed by Dashea, Jeakins, and Manohar for the
56. In that case, the leading contribution in large N, is
identical to the NREM prediction (this is related to the
fact that the matrix element of the axial vector current
is proportional to N, ). However, the dominant decays
of the 70 involve the coupling of pions between the 70
and the 56. These matrix elements do not grow with
N, . The leading large-N, result then iacludes additional
terms beyond those suggested by the NREM. Thus we

can use our analysis as a test to distinguish between the
NREM and large N, . This was one of the motivations
of the current work. We hoped to see evidence that the
additional terms included in the large-N, analysis were
accessary to get an adequate description of the decays.
This would have beea strong evidence that large N, has
something to do with the success of the NREM. What we

found instead is that the extra terms are not necessary.
This result is inconclusive, in the sense that the coefE-
cients of these terms could be smaD even if the large-N,
counting is correct. But the analysis suggests that there
inay be more to the NREM than large N, .

In the next section, we review the 58 and 70 SU(6)
representations of the baryons, as well as their analogs
for large N, . We identify the crucial fact that leads to
additional terms in the large-N, analysis (the mathemat-
ical details are reserved for Appendix A). In Sec. III, we

discuss our formalism in more detail and present the set
of leading operators. In Sec. IV we describe our best
fit to the l = 1 baryon decays. In Sec. V we present
our conclusions. The technical details of our fits to the
known 8-wave aad d-wave decay widths are preseated in
Appeadix B.In Appendix C, we make predictions for the
decay modes that have not yet been observed and for the
modes that have not beea measured precisely.

II. PRELIMINARIES

In this section, we will review the basic elements f'rom

Ref. [6] that we later use to fit the decays of the l = 1
baryons. A more detailed discussion of these ideas will
appear in the next section.

We assume that we can describe the large-N baryon
states in a tensor product space of the spin-Bavor in-

dices of the N, valence quarks, as in the NREM.
Thus our baryons have the spin-flavor and angular mo-

mentum structure of representations of nonrelativistic

SU(6)xO(3). We emphasize that we are not assuming

SU(6)xO(3). We are not even trying to make sense of
this as a symmetry group. Rather, we believe that the
assumption follows &om a much milder smoothness hy-

pothesis. The arg»ment goes as follows. If the quarks
are very heavy compared to Aq~o, the assumption is
clearly correct, because the NREM description of the
baryons can be derived directly &om /CD. The split-
tings between difkrent spin-Bavor states with the same
spatial wave functions vanish as the quark masses get
large. Thus the states break up into approximately de-

generate multiplets for each spatial wave function. The
different spatial wave functions correspond to diferent
SU(6)xO(3) representations. For example, the ground-
state wave function is the completely symmetric spin-
flavor combination, corresponding to the Young tableaux
shown in Fig. 1, with no orbital angular momentum. The
wave functions describiag the first excited l = I baryons
correspond to the Young tableaux shown in Fig. 2, sym-
metrically combined with one unit of orbital angular mo-

mentum.
The question is, what happeas to these approximately

degenerate multiplets as the quarks become light'? The
thing to notice is that at the bottom of each multiplet
(i.e., for states with small total spin), the splittings be-
tween neighboring states are not only suppressed by pow-
ers of 1/m~, but also by powers of 1/N, Thus. , bar-

ring some phase traasition that leads to a discontinuous
change in the nature of the baryon states, we expect the
bottom of each spia-Bavor multiplet to be well described
in the same tensor product space that works at large m~.
In other words, the NREM states should be appropriate.

This argument breaks down at the top of the spin-
Bavor multiplets, where the baryon spin is of order N,
and the splittings between neighboring spin states are of
order Aggro for small quark mass. Thus we expect a par-
tial spin-Bavor symmetry to survive for small quark mass
in large N, . It is not an approximate symmetry in the
usual sense, because symmetry-breaking eKects caanot
be ignored oa any multiplet. Nevertheless, because the
dimensions of the multiplets go to infiaity as the small pa-
rameter (1/N, ) that characterizes the symmetry breaking
goes to zero, we can derive reliable predictions at one end

(for small spin) of the multiplets even though the sym-

metry is badly broken at the other. In particular, this
argument justifies the use of the NREM tensor product
states to describe the low-spin baryon states for large N, .

While the argument above is theoretically interesting,
it leads to oae of the many ambiguities in applyiag large-

N, arguments to N, = 3. How do we identify states near

the "top" and "bottom" of the multiplets for N, = 37

We will ignore this potential diKculty below and use the

expressions we derive for the entire baryon multiplets.
But we should not be surprised if our results become less

reliable as the baryon spin increases.
NREM uersus large N, . I.et us now review in more

detail the proposal of Ref. [6] for counting powers of N, .
We will do this for matrix elements of operators between

FIG. 1. Young tableaux for the spin-Savor representation

of the ground-state baryons for large¹.
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quarks x

(2.4)

FIG. 2. Young tableaux for the spin-Savor representation
of the first excited l = 1 baryons for large N .

quarks x

(2.1)

This never adds coherently on low spin states, so these
contributions are down by 1/N, .

(3) Flavor terms —these are proportional to

baryon states (the operators could be interpolating fields
for mesons), ignoring Savor symmetry breaking for sim-

plicity. The procedure is simple: (1) In the spin-Savor
space of the NREM for the baryon states of interest, write
down the most general Savor-conserving expression for
the matrix element; (2) assign each term in the expres-
sion a power of N, given by the largest possible power
that can appear on the lou-spin states. This is most
conveniently determined by simply looking at Feynman
diagrams contributing to the matrix element, making ap-
propriate assumptions about the N, dependence of indi-
vidual quark matrix elements.

Among the Feynman graphs that contribute to the ma-
trix element is a sum over all quarks of single-quark ma-
trix elements. This has the spin-Savor structure of the
NREM. In all examples we know of, this gives a contribu-
tion to the leading N, dependence. The reason that the
suggestion above is nontrivial is that while multiquark
diagrams are suppressed by powers of 1/N„ their effects
can be enhanced by coherent contributions from the sum
over the N, quarks. This can give additional contribu-
tions of the same order in N, as the NREM but with a
diferent spin-Bavor structure.

The possible difFerent spin-Savor structures on quark
lines can be divided into four classes.

(1) Constant terms —these always sum coherently over
the quarks, but the result has no spin-Savor structure
and therefore is not interesting.

(2) Spin terms —these are proportional to

This can also add coherently; in fact, we show in Ap-
pendix A that the SU(6) quadratic Casimir operator,

2
1

)

+-) ) o'A
j,a quarks ~

+ —) ~ ) A

Qquarks z
2-

N, [1+O(1/N, )], (2.5)

on any finitely excited large-N, baryon state, where f is
the number of Savors. Thus, generically, some spin-Savor
matrix elements grow like N,

As an example of a one-quark contribution, consider
the couplings of the vector mesons, p and u, to the nu-
cleon states. Both couplings grow with N„but they are
dominated by different contributions. The contribution
to the u matrix element is the Savor coupling (in rela-
tivistic notation),

ur„N ) A p"N, (2.6)

while the leading contribution to the p coupling is the
spin-Savor coupling,

(B„p„—B„p„)N ) o""A N . (2.7)

ur. zoRM&Z, ZSM

The spin-flavor coupling dominates for the p coupling
because the isospin matrix element is small for low-spin
states, and thus the Savor coupling does not grow with
N . This is an example of what, in the Skyrme litera-
ture, is called the Iq ——Jq rule [5,11]. Examples in which
multiquark operators contribute at leading order in N,
will appear in the next section.

5 (2.2)
quarks c

This sometimes adds coherently, for example

)
quarks z

(2.3)

acting on a low-spin state of u and d quarks is N, /~12.
(4) Spin-flavor terms —these are proportional to

We are interested in studying the one-pion decays of
70-piet baryons to baryons in the 56. While there are
also 70 -+ 70 decays, we will not consider them in this
paper. The decays to states in the 56 are generally fa-
vored by the kinematics, and indeed few 70 + 70 modes
have been observed in experiment. In the Hartree lan-
guage, the part of the interaction Hamiltonian that is of
interest to us can be written
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4 (r) m P(r), 4(r) m g(r) = P(r), (3.2)

where r = ~r~. Note that the Hartree potential is a col-
lective phenomenon and to leading order is unaffected
by the excitation of a single quark. This accounts for
the equality shown in (3.2). In the 70 state, the excited

where 0 is the pion coupling to the axial-vector quark
current.

Equation (3.1) requires some explanation. The 4's and
4"s are the individual quark wave functions (the self-

consistent solutions to the Hartree equation) for the 56
and 70 baryons, respectively. The sum over n indicates
that we have broken up the interaction into parts in-

volving different numbers of quark lines; the second sum
accounts for the possible quark interactions with fixed n
that connect the initial to the 6nal baryon state. This
separation allows us to classify interactions by their order
in the 1/N, expansion. By Wit ten's counting arguments,
a general n bod-y interaction is of order 1/N," For. ex-
ample, there is a distinct term in (3.1) for the O(l/N, )
interaction involving three quark lines shown in Fig. 3.
In the 70 state, one of the quarks is orbitally excited,
which we indicate by the asterisk next to the z„" quark
wave function. Notice that each term in (3.1) involves
the wave function 4„regardless of the number of quark
lines involved. This follows because we are only inter-
ested in interactions that contribute to the VO m 56 de-
cays, which necessarily involve the "deexcitation" of the
orbitally excited quark.

While it is much too dificult for us to compute the
Hartree potential in a baryon composed of light quarks,
we still can learn a great deal by studying the symme-
try structure of (3.1). As we argued earlier, it is plausi-
ble to represent the small-spin baryon states made &om
light quarks in the same space, and by the same rep-
resentations, as the baryon states of the naive quark
model. Thus, we work in a (2f)~'-dimensional tensor
product space, where f is the number of quark flavors

(f is taken as 3 in the fits described in the following sec-
tion). The quark wave functions 4 and 4 can be thought
of as 2f x 2f matrices acting on the spin-Havor space
of a single quark; H as a whole can be thought of as a
(2f) ' x (2f) ' matrix acting on the (2f)+'-dimensional
spin-Qavor space in which we represent the baryon states.
The 4' and 4 are the solutions to the zeroth order Hartree
equation, and therefore are spherically symmetric and
spin-Qavor independent.

Thus, we can replace these matrix wave functions by c
numbers

quark has one unit of orbital angular momentum, so we
know the form of its spatial wave function:

~ (r) =f(r)&=,-(e V) = f(r)(r s-) (3.3)

where f (r) is a spin-flavor-independent c number. In
(3.3) we have chosen to express the l = 1 spherical har-
monics in terms of the vectors e, which are given by

, (1)
)

' ~ I O)
(3.4)

Thus, (3.1) is the integral of the operator 0 times the
product of 2N, spherically symmetric functions times r.
&m.

We can formally perform the integrals once we have

specified the symmetry structure of the operator O. In
the more familiar relativistic notation, the pion-quark
coupling is given by

(qp"p A q)cj„7r /f (3 5)

where the A are SU(3) generators. In the Hartree basis,
the piece of the pion-quark coupling that contributes to
baryon decays in the 8-wave has the form

0 A (o r)Dx /f (3 5)

which, after integration, gives us a one-body interaction
that is leading in 1/N, :

aA„(cr, c )0 m /f, (3.7)
where a is an. unknown coefBcient. The asterisk subscript
to the spin and Qavor matrices indicates that each acts
only in the subspace of the orbitally excited quark. Re-
call that a purely one-body interaction must act on the
excited quark line, or there would be no way to change
its orbital angular momentum. The spin-Qavor structure
of the operator in (3.7) is consistent with the predictions
of the NREM. Note that even though one cannot derive
(3.7) from (3.5) directly, we know that the nonrelativis-
tic operator must have this form based on the symmetry
properties of (3.5). In this sense, the form (3.7) indeed
follows from /CD, assuming that the Hartree picture of
the baryon is valid.

We can also write down a number of operators that are
subleading in 1/K, that involve two quark lines. How-
ever, we will only include two of these in our subsequent
numerical analysis:

~b(o. x g ) . ) go~ g&~ /f (3.8)

(3.9)

FIG. 3. Feynman graph for a multiquark operator con-
tributing to the pion-baryon coupling in large N, .

Our motivation for retaining these operators is that the
sum over A o in the case of (3.8) and the sum over A
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in the case of (3.9) can both be coherent on low-spin

states, and thus the matrix elements can be of order 1,
rather than order 1/N . This follows from the argument
in Appendix A. Thus we will take our leading s-wave

operators to be those given in (3.7), (3.8), and (3.9),
which we will call operators A, B, and C, respectively.

Arguments analogous to those that we have used to
arrive at the operators responsible for the s-wave decays
can also be used to determine the operators responsible

for decays through the d wave. (Note that the decay
channels in which the pion has odd orbital angular mo-
mentum are forbidden by parity. ) The leading one-body
operator is given by

dA, (o*,s.~ + o.~e' —sh'~o, '. & ) 8'8 ~ /f'. (3.1&)

We also have two-body operators in the d-wave channel

with the same kind of sum that we encountered in (3.8):

ie) (o x o,)*e' A + (cr x rr, )'e' A —s2(o x cr, ) e A b" 8'cPvr /f

if ) (rr, x e )*o~A + (cr, x e )~o*A, —s2(o, x e ) o A b'~ 8'8~~ /f2.

(3.11)

(3.12)

There is also a third two-body operator involving the
cross product (cr x e ) which is not linearly independent
of the two operators that we show above. Finally, there
is a d-wave operator analogous to (3.9):

g ) A (o', e' + o', e' —2sb" o, e )8'8'm /f2.

(3.13)

Thus, we will retain (3.10), (3.11), (3.12), and (3.13) as
our set of leading operators in considering the d-wave

decays, and refer to them as operators D, E, F, and G.
All that remains is to evaluate our chosen set of op-

erators between the baryon states, constructed in the
(2f) -dimensional spin-flavor space. While the 58 wave
functions can be represented as completely symmetric,
three-index SU(6) tensors, we found it more convenient
to use a six-index notation in which the spin and Bavor
of each quark are labeled separately. To represent the '70

states in the most economical way, we add only two new
indices —one which labels the orbital angular momentum
state of the excited quark, and another which tells us
which quark of the three is orbitally excited. We then
check that these spin-Bavor-orbital angular momentum
representations of the states are eigentensors of J2, J',
I, I', . . . , with the desired eigenvalues. To compute ma-
trix elements, we first act on n quark indices in the initial
baryon state with the desired n-body operator, and sum
over the possible combinations; this is equivalent to sum-
ming over the quark lines. We then compute the inner
product of the result with the tensor representing the
final baryon state. In the next section, we use matrix
elements computed in this way to determine the partial
widths I',. ', used in our fit of the observed s-wave and
d-wave pion decays.

IV. FIT

We must now decide precisely which physical quanti-
ties we will fit, and select the corresponding experimental

data. In addition, we must arrive at estimates of both
the experimental and theoretical uncertainties. The ex-
perimental results we will use are the masses, total decay
widths, and branching fractions given by the 1992 Parti-
cle Data Group (PDG) [12]. We use the experimentally
measured masses, rather than large-N, predictions, in
computing partial decay widths. The masses are affected
by large logarithmic corrections proportional to ms/f 2,

which we would have to include if we were to do the cal-
culation properly. For baryons in the 56, these one-loop
corrections are relatively straightforward to compute, be-
cause we know the mass eigenstates. For baryons in the
70, however, we can determine the mass eigenstates only
after including the one-loop corrections. This makes the
problem of computing the masses nonlinear and thus, far
more difBcult. For this reason, the problem of predict-
ing '?0-piet masses in the Hartree picture is best treated
separately.

A major problem that we encounter in studying the
decay widths is that the errors in the experimentally
determined values of amplitudes at resonance are often
severely underestimated. As a result, one &equently is
presented with two or more mutually inconsistent values
for a given decay channel. The PDG's approach is to
select a few experimental papers that are considered to
be relatively trustworthy, and then to produce an esti-
mated range of values that is consistent with most or all
of these results. A consequence of this approach is that
the uncertainty in the PDG's estimate of a decay width
is generally greater than the error quoted in any of the
experimental papers &om which the estimate is derived.
It seems to us that this procedure is safer than the alter-
native, which is to select one experimental result for each
decay width and then fit our parameters to that number,
ignoring connicting experimental results. Of course, the
large uncertainties found in the experimental data place
a limit on the precision with which we can extract the
underlying parameters.

The values which are generally measured experimen-
tally are the amplitudes at resonance v I';I', jl't t, from
which one can determine the corresponding branching
ratios I';/I't q, provided the elasticity I', /I'q q is known
(I', is the partial decay width to the initial state parti-
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cles used to produce the resonance). Unfortunately, the
PDG usually provides estimates for the branching ratios,
but not for the amplitudes at resonance. Therefore, it is
the branching ratios which we fit in our analysis. Usually
this is not a problem, as the uncertainty in the elasticity
is reasonably small. In a few cases, however, the elas-
ticity is not very well known, and the uncertainty prop-
agates to all of the decay &actions for that initial state
[the Z(1750) resonance is an example]. For consistency,
we do not try to produce estimates of the amplitude in
these situations; instead, we fit the decay &actions just
as we do elsewhere. Finally, we do not attexnpt to 6t
those decay channels for which the PDG does not give
an estimate; however, predictions for these decay modes
do appear in Appendix C.

As far as estimates of experimental error are concerned,
ranges such as 10—20'%%uo are interpreted as 15+ 5%%uo, upper
bounds such as ( 10% are converted into 5 + 5'%%uo, and es-
timates such as = O. l'%%uo are interpreted as 0.1 +O. l%%uo. We
adopt this scheme simply as a convention, and not be-
cause we believe that any of the probability distributions
are actually gaussian, with the associated standard devi-
ations. We have found that the precise choice of scheme
for treating the experimental data does not signi6cantly
affect our results.

In addition to fitting the known decay &actions, we

simultaneously 6t the total width for each resonance for
which at least one decay channel has been measured. In
other words, the quantity we minimize is

(~(pred) Fr(expt) )
2i tot tot

(~r...)s
2

I', ' (expt)~
p(pred) f

tot

(&f')'
(4.1)

The quantities I't t" are free to vary, whereas the partial
widths I'; " are functions of our parameters, namely,
the coefficients of the leading 1/N, operators and the
mixing angles. The alternative to this procedure is to
hold the total width for each resonance constant at some
best value, and to fit partial widths rather than decay
&actions, combining the uncertainties in the total width
and in the decay &action to obtain an uncertainty in the
partial width. The former approach is preferred because
any uncertainty in a total width I't't is only included
once, no matter how many decay channels are measured
for that resonance. As for the data on total widths, we
again use the PDG. Just as for the decay &actions, the
PDG's estimates for total widths are quoted as ranges.
Again, we use the midpoint of the range as our best value,
and use half the size of the range as our estimate of the
uncertainty.

Another issue to be considered is uncertainty in the
masses of some of the '70-piet states. For example, the
N(1700) mass range is quoted as 1650—1750 MeV. These
uncertainties are more important for d-wave decays than
for 8-wave decays, because the d-wave kinematic factor
is more sensitive to the initial state mass. In either case,
decays which occur near threshold are more afFected by
the precise value of the mass than those which occur far
from threshold. For the purpose of fitting the data, we
ignore this uncertainty, and simply use the "best" esti-
mate of the mass quoted by the PDG. However, as we
will see in Appendix C, this possible source of error must
be taken into account in our decay predictions.

Theoretical errors also have to be considered. Sources
of these errors include subleading operators in the 1/N,
expansion, which we have ignored, as well as Savor SU(3)
breaking operators. [The only explicit SU(3) breaking ef-
fect that we include is the difference between f and fit-
We do not consider any operators that distinguish the 8
quark &om the u and d quarks in the baryon. Doing so

would increase the number of &ee parameters in the fit,
and we believe it would not alter the main conclusion of
this paper, namely, the suppression of two-body opera-
tors. For similar reasons, we treat the g meson as pure
octet, neglecting the expected 20 degree mixing with the
t)'.] As a rough estimate, we have assumed a 20% theo-
retical uncertainty for each partial width prediction, and
have combined this uncertainty in quadrature with the
experimental uncertainty. The primary efFect of this ad-
dition is that the fit is not completely dominated by a
few decays which have been measured extremely well ex-
perimentally, in particular, the A(1520) d-wave decays.
For the vast majority of decays, the theoretical error is
not very important, but for consistency we have used the
same value throughout. The choice of a precise value
for the theoretical error does not substantially afFect the
final results.

Note that the estimates for the difFerent decay fractions
of a given resonance are not really independent of each
other, even though we treat them as such for the purpose
of the fit. At the end, we must check that our predicted
values for both measured and unmeasured decay widths,
together with measured non 58-pion decay widths, add
up to the full width to within the allowed uncertainties.
In cases where the non-58-pion decays are poorly known,
we must at least ascertain that the predicted 56-pion
decay &actions s»m to a number less than unity. Further
details are discussed in Appendices B and C.

In Table I ere show the best 6t for the measured decays
that go entirely through one partial wave. Other 6ts, in-
volving different mixing angles but very similar values of
the parameters a, 5, c, d, e, f, and g, are discussed in
Appendix B. The definitions of the mixing angles also
appear in Appendix B. The quality of the fits is reason-
able (the pure s-wave fit has a y2 = 4.5 for 4 degrees of
&eedom, while the pure d-wave 6t has a y2 = 36.0 for 15
degrees of keedom). With a few exceptions [notable ones
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TABLE I. Predicted branching &actions, corresponding
to the parameter set a = 0.536, b = —0.028, c = 0.101,
d = 0.203, e = —0.015, f = —0.029, g = —0.002, and the mix-
ing angles Hwy ——0.61, H~g ——3.04, Hyped ——1.78, Hgyg ——2.79,
H+$3 = 1 531 H&3& 0 321 H&3& 0 141 H&33 2 63'
Hpqq ——2.00, Hyped ——1.16, Hp3$ —2.14) Hg32 —0.48.

Decay
N(1520) -+ Nrr

-+ Ng
N(1535) + Nm

-+ Ng
m Avr

N(1650) -+Nn.
wNg
wAK

N(1675) m Nw
-+ Ng
-+ AK
-+ Avr

N(1700) -+ Nn
wAK

E(1620) m Nw

b.(1700) -+ Nm

A(1520) -+ NK
-+ Zm

A(1670) -+ NK
m Zvr

-+ Ag
A(1690) -+ NK

mZm
A(1600) ~ NK
A(1S30) + NK

m Zm

Z(1670) m NK
m Am
—+ Z~

Z(1750) m NK
mZ~
m Zg

Z(1775) ~ NK
mA~
m Z~

-+ Z'~

52.6
30.0

78.4
0.9
3.2

18.7

20.2
40.2
25.1

32.6

28.1
4.2
6.5

d wave

65.5
0.07

0.4

9.0
38.3
2.1

0.005
53.7
13.2
0.09

41.8
12.0
17.9
41.5

21.7
30.3

1.3
83.2
4.0
11.6
44.4

17.3
25.6
3.4
6.7

fexpt
55.0 6 12.1
0.1 + 0.1

45.0 6 13.4
40.0 6 12.8
5.0 6 5.0

70.0 + 17.2
1.0 6 1.0
7.0 6 7.0
5.0 6 5.0

45.0 6 10.3
1.0 6 1.0
0.1 6 0.1

55.0 6 12.1
10.0 6 5.4
0.2 6 0.1
25.0 6 7.1

50.0 + 14.1
15.0 + 5.8
45.0 + 9.1
42.0 + 8.5
20.0 + 6.4

40.0 + 21.5
25.0 + 11.2
25.0 6 7.1

30.0 + 11.7
32.5 + 9.9
6.5 + 3.7

55.0 + 22.8
10.0 + 3.6
10.0 + 6.4

45.0 + 1?.5
25.0 + 15.8
4.0 + 4.0

35.0 + 21.2
40.0 + 8.5
17.0 + 4.5
3.5 + 1.7
10.0+ 2.8

being the A(1520) ~ NK and Z(1775) + NK decaysj,
the predictions are within the range of uncertainty given

by the combined experimental and theoretical errors.
The most interesting feature of the fit presented in Ta-

ble I is the smallness of parameters b and c relative to
a and of parameters e, f, and g relative to d. When
we perform a fit to the same data, omitting the coher-
ent two-body operators, we obtain a somewhat larger g,
but qualitatively the fit is quite similar. For example, the
best y for the 8-wave fit with only the one-body A oper-
ator is 7.9, which is an increase of 3.4 associated with an
increase of 2 in the number of degrees of &eedom. The
situation is similar for the d-wave fit. Thus, the coeffi-
cients of the two-body operators are statistically signifi-

cant, but only marginally so. The unexpected smallness

of these coeKcients will be discussed further in the fol-
lowing section.

V. CONCLUSIONS
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APPENDIX A: N, DEPENDENCE OF
SPIN-FLAVOR GENERATORS

In this section we derive (2.5). The Casimir operator
can be written

(A1)

where the T are the SU(2f) generators, normalized so
that

trT Tp ——b p (A2)

We have shown how to compute the leading one-
pion decay amplitudes for the orbitally excited, 70-piet
baryons in the large-N, limit. By working in a Hartree
approximation, we arrived at a specific set of operators
that are responsible for decays through the 8-wave and d-

wave channels. While the fits we obtained to the current
experimental data were not necessarily better than those
obtained by others using diferent methods, our results
have the advantage of following more directly &om the
underlying physics in a well-defined limit of /CD.

A striking feature of our results is the suppression
of the two-body operators B, C, E, F, and G. Since
these operators are one higher order in the 1/N, expan-
sion than A and D, we expected a relative suppression
in their coefficients, compensated by an enhancement in
the matrix elements. The interesting point is that this
suppression was generally much greater than a factor of
N, = 3. The two-body operators that we retained all
involved a sum over quark lines which we argued should
lead to an enhancement of order N, . However, the val-

ues of b, c, e, f, and g that we obtained in the fits were so
small that the matrix elements of the two-body operators
are suppressed even when the sums over quark lines are
coherent.

One possible conclusion &om this result is that there is
something more to the success of the NREM for baryons
than large N . Perhaps somehow, in spite of the fact that
the quarks are not really heavy, they act in the process
of E = 1 baryon decay as if they were.
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in the defining, 2f-dimensional representation. Rather
than computing the Casimir operator directly in other
representations, B, it is easier to compute the quantity
T(R), defined by

length of order N„a feature shared by all the finitely
excited large-N baryon states. More precisely, note that
(A9) implies

trRT Tp = T(R)b p.
Then C2 can be obtained as

(A3) C, ({N.—l j) = N.'+ O(N. )
2f —1

(A10)

T(R)
C2 = (4f 1)

D(R)
(A4)

for any fixed l as N —+ oo. Note further that we can
determine T(R) for any finitely excited baryon state by
starting with the representations, (N, —l), and using the
recursion relations

where D(R) is the dimension of the representation R.
Thus, for example, in the de6ning representation, the
Casimir operator is

T(r 3 R) = D(r)T(R) + D(R)T(r),
T(r IRR) = T(r)+T(R). (A11)

4f2 —12=
2

(A5)

~2f—1 = 1

9'2f (2f —1)

(10
0 1 ~ ~ ~ 0

00 1 —2f)
(A6)

Then we can compute the trace by noting that in (N, },
there are

The crucial step in obtaining (2.5) is to calculate T(R)
for the completely symmetric representation of Fig. 1.
I et us call this representation (N, ). We will calculate
the trace of the square of a generator that is the analog
of As for SU(2f):

T(r (N, —lj) D(r)T((N —l)) + D((N —l))T(r)
D(r 8 (N, —l)) D(r) D((N —I))

T((N. —l))
D((N, —l))

(A12)

for any 6xed r. Then the standard rules of Clebsch-
Gordan decomposition can be used to establish (2.5) for
any representation obtained from (N, —l) by adding a
6nite number of boxes.

APPENDIX B:FITS OF KNOWN DECAY DATA

The point is that the Clebsch-Gordon decomposition in
(All) does not change C2 to leading order in N, because
T(jN, —l)) is higher order inN, than D((N, —I)). Thus

F N. +2f —k —2 l
N, —k (A7)

1. s-wave decays

states with k indices having value 2f, on each of which
the value of T2f i is

2f(2f —1)
[k(1 —2f) + (N. —k)]',

thus

We 6rst consider decay channels that are pure 8 wave,
that is, where both the 'FO and 56 baryon states have
spin-2. Thirteen such decays have been measured, asso-
ciated with six 'FO-piet resonances. The data is presented
in Tables II—IV. The A(1405) ~ Zm decay has been

T(~N ~) = tr()v )T&f—i

1 ) [k(2f —1) —(N, —k)]
2f(2f —1) „
xi

& N, +2f —k —2 l
N, —k )

&N. +2f )
N —1 )

This gives

(A8)

A(1620)

N(1635)
r,'.*,"' (Mev)

175 + 75

f(expt)

45.0 + 13.4
40.0 + 12.8

r(pred) (MeV)
186.5

f(pred) ((y )
52.6
30.0

TABLE II. 8-wave decays for 4 and N initial states.

r'""' (Mev) r,".,""(Mev)
150 + 30 134.2

f(expt)
(%%u )

f(pre )(I/1)
-+ N7I. 25.0 6 7.1 18.7

C, ((N.)) = N. (N. + 2f), (A9)

in agreement with (2.5).
The reason that (2.5) is correct for any finitely excited

baryon state is that the order N term comes &om the
horizontal string of boxes in the Young tableaux with

N(1660)

r'*"' (Mev)
167.5 + 22.5

f(expt) p )
70.0 + 17.2
1.0 + 1.0
7.0 + 7.1

r'"" (Mev)
173.1

f(pred) pr )
78.4
Or9

3.2
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TABLE III. s-wave decays for A initial states.

A(1670)

—+NK
m Zm.

m Ag

r'""' (MeV)
37.5 6 12.5
f(expt) p )
20.0 + 6.4
40.0 + 21.5
25.0 + 11.2

Fit No. 1 6

38.1

20.2
40.2
25.1

19.9
39.3
26.1

20.1
37.1
19.2

Fit No. 2,4 Fit No. 3,5r'" ) (MeV)
38.0 32.3

f(pred)

Fit No. 7,8

31.5

19.1
40.1
20.1

A(1800)

—+NK

r'"") (MeV)
300 + 100

f(expt) p )
32.5 6 9.9

300.7

32.6
f(pred)

(I// )
32.432.6

I' "
(MeV)

300.6 299.0 299.7

omitted &om the fit because it is questionable whether
the A(1405) can be described in the SU(6) model. In par-
ticular, one suspects that the A(1405) may consist largely
of an unstable NK bound state [13]. Our prediction for
the A(1405) -+ Zn decay rate, 0—10 MeV, based on the
assumption that the A(1405) is an SU(6) state orthogo-
nal to A(1670) and A(1800), is in fact much smaller than
the measured value, 50 MeV.

Our conventions for the mixing angles are as follows.
One angle (8)vl) is needed to specify the spin-2 nucleon

I

states:

N(1535) cos(8)vl) sin(8)vl) Nll
N(1650) —sin(8)vl) cos(8)vl) N31

where our convention for the pure SU(6) states on the
right-hand side is that the first subscript is twice the total
quark spin of the baryon state, and the second is twice
the total angular momentum. Three angles (Hpl;, i
1, . . . , 3) are used for the A mixing matrix:

A(1670)
A(1800)
A(1405)

Cg11CP12 8~11CP12 Sg12—S&11C&13—C&118&138&12 C&11C&13 —8&118&138&12 8&13C&12
8+118+13 CA11CP138+12 —C&118+13 —8&11C&138+].2 C+13C&12

~11
~31

Singlet11
(B2)

where we use the abbreviation chill
——cos(HA11), etc. Fi-

nally, because we have decay data for only one of the
three spin-2 Z states, only two mixing angles (He'll and
Hg12) are needed:

~11
&(1750) = [cnllcE12 sEllcZ12 sZ12] +31 ~ (B3)

~11

Our conventions for all of the mixing matrices and an-
gles are such that if the PDG assignments of the 70-piet
states in the quark model were correct, all the mixing
matrices would be diagonal and all of the angles would
equal 0 (in our fit, we have in fact chosen all of the angles
to lie in the interval [0,n)).

As discussed in Sec. III, we expect three operators A,
B, and C to contribute to s-wave decays at leading or-
der in the 1/N, expansion. Thus, we must fit a total
of nine parameters (the three coefficients a, b, and c in
addition to the six mixing angles) to thirteen decay frac-
tions, leaving us with four degrees of &eedome The best
fit produces a y of 4.47. However, there are a n»mber
of minima with y close to its minim»m value, which all
have roughly the same values for the parameters a, b, and
c, but have diHerent values for the various mixing angles.
We found only one solution for the nucleon mixing an-
gle 8~1, eight possible solutions for the A mixing matrix,
and four solutions for the Z ~ixing matrix. All of the

TABLE IV. s-wave decays for Z initial states.

Z(1750)
I', '", (MeV)

110+ 50
f(expt) (Or )
25.0 + 15.8
4.0 + 4.1

35.0 + 21.2

Fit No. 1,2 Fit No. 3,4
r,".,""(MeV}

109.7 110.1
f(pred)

(%%u )
28.1
4.2
6.5

27.3
3.8
2.7

solutions are tabulated in Table V. The quantity Ly2
associated with each solution is computed relative to our
best solution, which has y2 = 4.47. For example, if we
choose fit No. 3 for the A angles and fit No. 4 for the Z
angles, we obtain a total y2 of 5.22. Table V also lists the
uncertainties in all of the parameters, as obtained &om
the covariance matrix. The calculated values of the decay
&actions corresponding to each of the solutions are listed
in Tables II—IV for comparison with experimental data.
We present in Tables VI—VIII the spin-& N, A, and Z
mixing matrices corresponding to the various solutions,
along with associated uncertainties.

We note &om Table V that the coeKcient b is strongly
suppressed relative to a, more than one might expect
from naive 1/N, power counting, with N, = 3. Because
of the uncertainty in the value of c obtained &om the fit,
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Parameter

TABLE V. Parameters from 8-wave St.
Value

0.536 + 0.071
—0.028 + 0.022
0.101 + 0.059
0.61 + 0.09

6A11

~hi3
&x'

Fit No. 1
1.78 + 0.15
2.79 + 0.10
1.53 + 0.20

0.00

Fit No. 2

1.33 + 0.19
2.19 6 0.15
1.70 6 0.19

0.01

Fit No. 3
0.99 + 0.18
2.41 + 0.15
1.96 + 0.20

0.25

Fit No. 4
1.33 + 0.19
2.19 + 0.15
2.71 6 0.22

0.01

~All

~A&3

&x'

Fit No. 5
0.99 6 0.18
2.41 6 0.15
2.97 + 0.21

0.25

Fit No. 6
1.78 + 0.15
2.79 6 0.10
2.54 6 0.22

0.00

Fit No. 7
1.46 + 0.15
2.88 6 0.10
2.64 6 0.21

0.27

Fit No. 8
1.46 + 0.15
2.88 6 0.10
1.63 6 0.20

0.27

~zix
~zx~
&x'

Fit No. 1
2.00 6 0.29
1.16 + 0.47

0.00

Fit No. 2

2.18 6 0.10
3.01 + 0.47

0.00

Fit No. 3
0.77 + 0.91
1.29 6 0.12

0.50

Fit No. 4
1.97 + 0.14
2.65 6 0.31

0.50

it is not as clear that c is strongly suppressed. However,
consideration of 8+ d-wave decays in Appendix C leads
us to believe that c is in fact near the lower end of the
range presented in Table V. For the fitted value of ONi,
we see that there is significant mixing between the Nii
and N3i states. It is somewhat difficult to draw conclu-
sions about the mixing of the A and Z resonances, due
to the presence of multiple solutions. For example, fits
No. 1 and No. 8 for the A angles predict little mixing, but
with assignments for the three states different &om those
given by the PDG. Fits No. 6 and No. 7 also predict a
limited amount of mixing, but with the identification of
A(1800) and A(1405) reversed. Fits Nos. 3—5 all predict
a substantial amount of mixing. As far as the Z states,
it is not possible to say definitively whether the E(1750)
consists mostly of Z3$ or of Zyy.

In Table III, we see that the most obvious difference
between fits Nos. 1, 2, 4, 6 and fits Nos. 3, 5, 7, 8 is that
the latter predict a smaller partial width for A(1670) ~
Ag. In Table IV, we notice that the main problem with
Z(1750) decays is to obtain a reasonable value for the Zg
channel.

2. d-wave decays

N(1520)
N(1700)

cos(t3~3)»n(&Ns) +13
—sin(e~s) cos(&~s) Nss

(84)

—0.14 + 0.12 —0.56 6 0.11 0.81 + 0.09
Mhi

' —— —0.07 + 0.20 —0.81 6 0.08 —0.58 6 0.12
0.99 6 0.03 —0.13 + 0.20 0.07 + 0.12

—0.41 + 0.14 —0.62 6 0.09 0.67 + 0.11
MAi

': 0 02 + 0 18 0 72 + 0 10 0 69 6 0 11
0.91 6 0.06 —0.30 + 0.19 0.28 + 0.14

—0.14 6 0.12 —0.56 + 0.11 0.81 6 0.09
MAi

' 0 80 + 0 09 0 55 6 0 12 0 24 + 0 11
0.58 + 0.13 0.62 6 0.10 0.53 + 0.14

—0.41 + 0.14 —0.62 + 0.09 0.67 + 0.11
0 76 + 0 08 0 64 6 0 09 0 13 + 0 15
0.50 + 0.14 0.46 + 0.12 0.73 + 0.11

For the A states,

TABLE VII. Spin-z A mixiag matrices.

0.19 6 0.14 —0.92 + 0.04 0.34 6 0.09
MA

' —— 0.03 6 0.19 —0.35 + 0.11 —0.94 6 0.04
0.98 6 0.03 0.19 6 0.16 —0.04 6 0.19

The same procedure is followed as for the 8-wave decay
rates. Here, we only fit those decays which are pure d-
wave, that is, we omit spin-2 to spin-2 decays (these will
be discussed in Appendix C). Our conventions for the
mixing angles of the spin-2 states are analogous to those
for the spin-& states. For the nucleons,

TABLE VI. Spin-~ nucleon mixiag matrix.

0.82 + 0.05 0.57 + 0.07
—0.57 + 0.07 0.82 + 0.05

0.19 + 0.14 —0.92 + 0.04 0.34 + 0.09
Mhi

' 0 85 + 0 11 0 02 + 0 14 0 53 + 0 17
0.49 + 0.16 0.40 + 0.09 0.77 + 0.13

—0.11+ 0.14 —0.96 + 0.03 0.26 + 0.10
0 86 + 0 09 0 22 + 0 11 0 46 + 0 18
0.50 + 0.17 0.17+0.10 0.85 + 0.11

—0.11 + 0.14 —0.96 + 0.03 0.26 + 0.10
M = 0.03 + 0.19 —0.26 + 0.10 —0.96 + 0.03

1.00 + 0.02 —0.10 + 0.14 0.06 6 0.19
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A(1690)
A(??)

A(1520)

Cg3iCii SA3$ C+32 Sa32
—8~3$C+33 C+3$8+338+32 C+3$C+33 8+3$8+338+32 8+33C+32
SA3$ 8+33 C+3g C+338+32 CA3$ 8+33 SA3$ C+338+32 CA33C+32

Ag3

A33
Singlet~3

(B5)

Here A(??) is the unidentified spin-2 70-piet A state, or-
thogonal to A(1690) and A(1520). Although the physical
state has not been identified, we can make predictions
for its decay widths into the allowed 56-pion channels,
provided that we make a reasonable guess at its mass.
Finally, only one of the spin-2 Z states has been identi-
fied, and we parametrize it as follows:

~i3
Z(1775) = [czslcz32 Bzslcgs2 Bgs2] Zss . (B6)

~3
For the spin-2l nucleon pure d-wave decays (for which
only upper bounds are known), we use the mixing angle
obtained by fitting the 8-wave decays, namely, H~q ——

0.61.
The coefficients of the operators D, E, F, and G, to-

gether with the six new mixing angles, combine to give
us ten parameters. With 25 decay &actions to be fit-
ted, there are 15 degrees of &eedom. The best fit has

= 36.0. As with the 8-wave decays, although the co-
efficients d, e, f, and g are reasonably constrained by
the fitting procedure, there are several solutions for the
mixing angles, all of which have a value of y2 close to
the minim»m value. We obtain two solutions for the
spin-2 nucleon mixing matrix, four solutions for spin-

A mixing, and two solutions for the Z(1775) state.
The calculated decay &actions for each set of parameters
are presented in Tables IX—XII, together with the cor-
responding experimental data. .All the solutions for the
three coefficients and the six mixing angles are tabulated
in Table XIII. The corresponding spin-2 mixing matrices
are found in Tables XIV—XVI.

We see from Table XIII that the coefficients e, f, and

g are strongly suppressed relative to d, which is consis-
tent with what we found for the 8-wave decays. Com-
paring predicted and experimental branching fractions,
we see that a large part of the total g2 comes &om
the A(1520) -+ NK decay. Z(1775) + NK also seems
strongly enhanced relative to our predictions.

APPENDIX C: DECAY PREDICTIONS

TABLE IX. d-wave decays with no spin- ~ mixing.

E(1620)

mba

r'""' (MeV)
150 + 30

f(expt)
(%%u )

50.0 6 14.1

I' "
(MeV)

138.8

f(pred)
(%%u )

41.8

A(1700)

w Nor

r('*"' (MeV)
300 6 100

f(expt)
(%%u )

15.0 + 5.8

r,"""(Mev)
259.7

f(pred)
(%%u )

12.0

N(1535)
r,'""' (MeV)

175 6 75

f(expt)
(%%u )

5.0 6 5.1

I'tet(pred) (MeV)
186.5

f(pred)
(%%u )

0.4

N(1650)

-+ Ex

r'""' (Mev)
167.5 + 22.5

f(expt)
(%%u )

5.0 + 5.1

r,'""(MeV)
173.1

f(pred)
(%%u )

9.0

N(1675)

AN+
-+ Ng
~AK
mAx

r '" '
(MeV)

160 + 20

f (expt)
(%%u )

45.0 + 10.3
1.0 6 1.0
0.1 6 0.1

55.0 112.1

r,'"' ' (MeV)
158.0

f(pred)

38.3
2.1

0.005
53.7

In this appendix we predict the partial widths for all
of the remaining kinematically allowed one-pion decays.
We display a difFerent set of predictions corresponding to
each of the fits presented in Appendix B.

While it was more convenient for us to work with
branching &actions in the preceding section, here we

TABLE VIII. Spin- ~ Z mixing matrices.

M~t ——[—0.17 + 0;27 0.36 + 0.35 0.92 + 0.19]

M~t = [0.57 + 0.07 —0.81 + 0.09 0.13 + 0.46]

M~t ——[0.20 + 0.15 0.19 + 0.23 0.96 + 0.03]

M~i ——[0.34 + 0.11 —0.81 + 0.16 0.47 + 0.27]

A(1830)

Z(1775)

INK
—+ A~
m Ear
mZ ~

r '" '
(MeV)

85 +25
f(expt)

(%%u )
6.5 + 3.7

55.0 + 22.8

r,'.",") (MeV)
120 + 15

f(expt)
(%%u )

40.0 + 8.5
17.0 + 4.5
3.5 + 1.7
10.0 + 2.8

I' "
(MeV)

108.2

f(pred)
(%%u)

1.3
83.2

r',""(MeV)
124.5

f(pre d)

17.3
25.6
3.4
6.7
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TABLE X. d-wave decays for spin- —nucleon initial states. TABLE XI. d-wave decays for spin-2 A initial states.

N(1520)

r'""' (MeV)
122.5 + 12.5
f(expt) p )
55.0 + 12.1
0.1 + 0.1

65.5
0.07

65.4
0.08

Fit No. 1 Fit No. 2
r~ " i (MeV)

128.0 128.0
f(pred) (Oy)

A(1690)
I,'.","' (MeV)

60+ 10

f(expt)

25.0 + 7.1
30.0 + 11.7

Fit No. 1,3 Fit No. 2,4r'"" (MeV)
57.6 55.2

f(pred) ((y )
21.7 20.9
30.3 24.9

N(1700)

I''" '
(M v)

100 + 50
~(expi) (pr )
10.0 + 5.4
0.2 + 0.1

r'"" (MeV)
101.3 107.3

f(pred) (0/ )
13.2 11.9
0.09 0.03

A(152O)
rI,'",P ' (MeV)

15.6 + 1.0
f(expt) (y )
45.0 6 9.1
42.0 6 8.5

17.9
41.5

14.4
36.3

r~P" (MeV)
15.2 15.1

f(pred) ((y )

present our results directly in terms of partial widths.
The errors we present for these predictions are a com-
bination of the uncertainties in the parameters given in
Tables V and XIII, and the uncertainties in the masses
of the initial states. The latter have a large effect on
our predictions for the decays that are near threshold,
due to the momentum dependence of the squared am-
plitudes. For decays very near threshold, we are able to
obtain only an upper bound for the partial width. In
Tables XVII—XXII we list the decay predictions, the to-
tal decay widths I't ~" given in Appendix B, and the

experimentally measured total widths 1',~",

Among our predictions are six decays that can proceed
through both the s- and d-wave channels. (We will re-
fer to these as s + d-wave decays. ) Three of these have
been measured reasonably well, while the others are ei-
ther poorly known or unobserved. We have chosen not
to include the former three in our 6ts in Appendix B, to
simplify our analysis. In principle, a proper treatment
would require 6tting the pure s-wave, the pure d-wave,
and the s + d-wave decays simultaneously. Instead we

simply check in this section that the predictions for the
three measured s+d-wave decays are in reasonable agree-
ment with the experimental results.

2. Nucleon decays

All the kinematically allowed spin-& N decays have
been included in Appendix B. Predictions for the spin-&
nucleons are shown in Table XVIII. The N(1520) ~ b, vr

is another of the three known s+ d-wave decays. The
PDG's value (0.22+0.08) x (122613) MeV for its partial
width strongly favors 6t No. 1. Furthermore, the PDG's
partial wave analysis of this decay is consistent with 6t
No. 1, but incompatible with 6t No. 2. Therefore we
conclude that fit No. 1 has the correct mixing angle.

The N(1700) -+ b,m is the third of the known s + d-
wave decays. Our fit No. 1 prediction of 180+ 74 MeV is
large compared to the PDG's value of (0.38+0.32)(100+
50) MeV. However, if we adopt a value of the N(1700) full
width that is just within the PDG's upper limit, while
also using the smallest prediction for the N(1700) ~ b,m

width consistent with our range of error, we obtain a
branching &action that is in reasonable agreement with
experiment. This increase in the total decay width still
allows good fits for the N(1700) -+ Nx and N(1700) +

AK decay fractions (see Table X). If we had included
the N(1700) + b,n decay in the fits in Appendix B, the
only substantial change would have been an increase in
the N(1700) predicted full width.

1. Decays involving no mixing angles 3. A decays

We 6rst consider predictions of the partial decay
widths that do not involve mixing angles. The un-

mixed initial states are the spin- — b, (1620), the spin-2
b, (1700), and the spin-2 N(1675), A(1830), and Z(1775).
The kinematically allowed decays that we have not al-
ready considered in Appendix 8 are listed in Table XVII.
The b, (1700) m b7t is one of the s + d-wave decays
that have been adequately measured. Our prediction of
271 + 126 MeV is compatible with the PDG's value of
(0.45+0.1) x (300+100) MeV if we take the partial width
to lie at the lower end of the predicted range. Analysis of
the dependence of our prediction on the various param-
eters suggests that the c parameter should take its value
at the bottom of the range given in Table V.

TABLE XII. d-wave decays for spin- —Z initial states.

z(1070)
r,'.","' (MeV)

60+ 20
~(expt) p )
10.0 + 3.6
10.0 + 6.4

45.0+ 17.5

Fit No. 1 Fit No. 2

r,".,""(Me V)
49.5 7.3

f(pred) (0/ )
4.0
11.6
44 4

8.4
10.8
43.5

There are four allowed spin-2 A decays, listed in Ta-
ble XIX. The one measurement &om the PDG for the
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Parameter

TABLE XIII. Parameters &om d-wave fit.

Value

0.203 + 0.011
—0.015 + 0.004
—0.029 + 0.008
—0.002 + 0.005

Fit No. 1
3.04 + 0.15

0.00

Fit No. 2

2.60 6 0.16
1.27

~~3i
~A32

~A33
&x'

Fit No. 1
0.32 6 0.25
0.14 + 0.08
2.63 + 0.17

0.00

Fit No. 2

1.04 6 0.18
2.61 6 0.10
0.45 6 0.15

3.55

Fit No. 3
2.20 6 0.25
2.93 + 0.07
0.42 + 0.17

0.00

Fit No. 4
1.45 + 0.18
0.42 6 0.10
2.72 6 0.15

3.55

OZ3i

~Z32
&x'

Fit No. 1
2.14 + 0.37
0.48 6 0.22

0.00

Fit No. 2

1.00 6 0.11
0.76 + 0.34

4.03

M(fit No. 2)
N3

—0.85 6 0.08 0.52 + 0.14
—0.52 + 0.14 —0.85 + 0.08

TABLE XIV. Spin-2 nucleon mixing matrices.

M(fit No. z) —0.99+ 0.02 0.10 + 0.15
—0.10 6 0.15 —0.99 6 0.02 a(1700)

s wave
d wave

mZK

TABLE XVII. Predictions involving no mixing angles.

r~ ""~ (MeV) r,".,"'& (MeV)
300 + 100 260

r&'"& (MeV)
271 6 126
241 6 117
30+18
& 0.25

TABLE XV. Spin-2 A mixing matrices.

0.94 6 0.07 0.31 6 0.24 0.14 6 0.08
MA3

—— 0.20 6 0.24 —0.85 6 0.10 0.48 6 0.15
0.27 6 0.09 —0.43 + 0.15 —0.86 6 0.08

—0.44 + 0.15 —0.74 6 0.08 0.51 6 0.09
MA3

' —— —0.89 6 0.07 0.27 + 0.18 —0.37 + 0.13
0.14 + 0.16 —0.61 + 0.06 —0.78 + 0.06

A(1830)

Z(1775)

r'""' (MeV)
85+25

r'""& (MeV)
120 6 15

I' "'
(MeV)

108
r!'"'~ (MeV)

4.9 6 1.0
& 0.01

r',"' (MeV)
125

rI " ~ (M v)
0.12 6 0.04
0.85 6 0.23

0.58 6 0.19 —0.79 + 0.15 0.21 + 0.07
MA3 —— —0.69 6 0.15 —0.61 + 0.19 —0.40 + 0.16

0.44 6 0.12 0.09 6 0.14 —0.89 + 0.06

0.11 + 0.16 0.91 + 0.05 0.41 6 0.09
MA —— 0.89 + 0.08 —0.28 + 0.18 0.37 + 0.13

0.45 + 0.14 0.32 + 0.11 —0.83 + 0.05

N(1520)

8 wave
d wave

r~'* (MeV)
122.5 + 12.5

Fit No. 1
I (pred)

tot
128.0

p(pred)

18.0 + 4.4
10.6 + 3.4
7.5 6 2.5

Fit No. 2

(MeV)
128.0

(MeV)
9.8 + 1.9

0.03 + 0.01
9.8 + 1.9

TABLE XVIII. Predictions for decays of spin-2 N initial

states.

TABLE XVI. Spin-2 Z mixing matrices.

M~~ ——[
—0.48 + 0.27 0.75 + 0.22 0.46 6 0.19]

M~3 ——[0.39 + 0.10 0.61 + 0.23 0.69 + 0.24]

N(1700)

8 wave
d wave

AN@
wZK

r,'.*,"' (MeV)
100 + 50

tot
101.3

~(pred)

180 + 74
151 + 61
29+27
1.5 + 1.2

& 0.03

(MeV)
107.3

(MeV)
189 + 76
188 + 76

&5
& 0.2

& 0.004
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TABLE XIX. Predictions for decays of spin- ~ A initial states.

A(1670)
I', '",P' (MeV)

37.5 + 12.5

Fit No. 1

38.1

0.72 + 0.36

Fit No. 2 Fit No. 3
r!~«~) (Mev)

38.0 32.3
r!'""(M v)

0.034 + 0.017 & 0.03

Fit No. 4

38.0

0.034 + 0.017

A(1670)

Fit No. 5

32.3

& 0.03

Fit No. 6 Fit No. 7
r,".,""(MeV)

38.1 31.5
I', " (MeV)

0.72 6 0.36 0.23 + 0.11

Fit No. 8

31.5

0.23 6 0.12

A(1800)

I' '"
(MeV)

300 6 100

Fit No. 1

300.7

187 k 116
0.53 6 0.44

18+14

Fit No. 2
~(pred)

tot
300.6

~(pred)
't

170 6 101
1.5 + 1.2

& 0.25

Fit No. 3
(MeV)

299.0
(MeV)

1916 109
1.5 + 1.2

&4

Fit No. 4

300.6

148 + 59
15+12
15+9

A(1800)

Fit No. 5

299.0

130 + 59
15+12
24+13

Fit No. 6
~(pred)

tot
300.7

p(pred)

125 + 57
9.3 6 7.8

& 2

Fit No. 7

(MeV)
299.7

(MeV)
14S 6 61
12+ 10

& 4

Fit No. 8

299.7

175 6 122
0.33 + 0.28

23+ 15

TABLE XX. Predictions for decays of spin- ~ A initial states.

A(1600)

s wave
d wave

r'""' (MeV)
60+ 10

Fit No. 1

57.6

& 0.01
32+10

28.5 + 9.1
3.9 6 3.1

Fit No. 2

I (pred)
tot

55.2
~(pred)

t
& 0.1

36+ 12
36+12

& 0.4

Fit No. 3

(MeV)
57.6

(MeV)
& 0.001

15.8 + 2.9
6.3 6 2.0
9.5 6 2.1

Fit No. 4

55.2

& 0.04
36+ 11
33+11

2.1 + 1.8

A(77)

INK
-+ Zm

m Ag
-+ Z'vr
s wave
d wave

Unknown.

I' '"
(MeV)

& 3
105 + 69
2.6 6 3.3
97+46
55+22
42+32

r,".,""(MeV)

& 3
105 + 69

& 2.5
120 + 49
116+ 47

&15

r,"""(MeV)
38+ 29
140 + 65

& 0.4
85+43

9.3 + 3.7
75 +41

38+ 29
139 6 65

& 0.4
85 +43

8.6 + 3.5
76+41

TABLE XXI. Predictions for decays of spin- z Z initial states.

Z(1750)
rI:","' (MeV)

110+ 50

Fit No. 1

109.7

& 7
25+17

& 1.4

Fit No. 2
I'(P'

tot
109.7

~(pred)

43 + 22
& 0.7
& 0.9

Fit No. 3

(MeV)
110.1

(MeV)
& 20

22+15
& 2.5

Fit No. 4

110.1

49+ 12
2.1 + 1.6

& 1.7
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TABLE XXII. Predictions for decays of spin-2 Z initial

states.

Z(1670)

s wave
d wave

r& ""' (M.V)
60+ 20

Fit No. 1

tot
49.5

~(pred)

15.8 + 4.8
15.5 + 4.6
0.27 + 0.35

Fit No. 2

(MeV)

(MeV)
41 +12
40+ 12

0.57 + 0.61

A(1670) ~ Z'm width, 6 + 3 MeV, is somewhat larger
than our predictions, and favors fits No. 1 and No. 6.
Of the six spin-2 A decays shown in Table XX, four in-
volve the unobserved A state which is orthogonal to the
A(1520) and A(1690). To compute the decay widths of
the unobserved state, we made a reasonable guess at its
mass based on the nucleon-A splitting found in other mul-
tiplets. The mass we adopted was 1850 6 50 MeV. The

four widths involving the unobserved state have large er-
rors in part because there are no known decays to fit the
mixing angles more accurately, and in part because there
is a large uncertainty in the mass.

4. Z decays

Three spin-& Z decays are listed in Table XXI, and

one spin-2 Z decay in Table XXII. Since we know only
two out of the three Og mixing angles for both the spin-

~& and spin-2 Z's (see Tables VIII and XVI), we know
the orientation in the three-dimensional mixing space for
only one spin-2 Z [the Z(1750)] and only one spin-2sZ
[the Z(1670)]. We therefore cannot make any predictions
concerning the spin-2 Z(1620), or the three unobserved
Z states.

In Table XXII, fit No. 2 for the spin-2 Z does not
appear to be acceptable; the Z(1670) ~ Z'x branching
&action, combined with the branching &actions in Table
XII, yields a sum greater than unity. Fit No. 1, however,
is consistent with the data available &om the PDG.
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