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The mass equations of the Higgs boson P, and the gauge bosons Wand Z are expounded in a dynami-
cal symmetry-breaking model of Nambu-Jona-Lasinio type with three quark-lepton generations and a
heavier degenerate fourth U-fermion generation. The equation of m o with an explicit momentum cutoff'

dependence and derived approximate formula of m o are numerically solved and a more stringent mass

constraint m U+ m, & m o
~ 2m U is proven. The results show that the determination of the Higgs boson

S

mass will be the most important experimental test of the model with heavy U fermions. The mass of the
8'boson is argued to be independent of the momentum cutoff and almost independent of the masses of
the heavy t quarks and U fermions. Its equation could take the form in the standard model and is dom-
inated by light fermions. The mass of the Z boson, in addition to having the same feature as m~, will be
affected by the weak isospin breaking caused by the mass difference I,—mb. Such an effect makes not
only the mass equation of the boson but also the P function responsible for the running of the gauge cou-
pling constants g &

and g& in the mass equation deviate from the respective standard forms. It is also ar-
gued that if the electroweak gauge bosons were replaced by composites of fermions then the possibility
of the existence of heavy U fermions would be removed.

PACS number(s): 12.60.Rc, 11.15.Bt, 11.15.Ex, 14.80.8n

I. INTRODUCTION

The top-quark condensate scheme [1,2] of electroweak
symmetry breaking may be generalized so as to include n

generations of fermions. Different limiting cases of such
a generalization were discussed by some authors [2—5]
and the general realization of the minimal version has
been recently proven [6—8].

In this version, the basic relation to define the vacuum
expectation value v responsible for spontaneous symme-
try breaking becomes [8]

GF

&2 8f (0) 2U

where GF is the Fermi constant and
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a= l, . . . , n (generation number)

being assigned in anomaly-free SUI (2) XU&(1) represen-
tations and in the representations R of the color gauge

group 6, with dimensions d0 (R). These fermions Qa
have the dynamical masses m& which are assumed to be

much less than the momentum cutoff A so that
m& «A . It has been shown [7] that, from the require-

a
ment to saturate relation (1) with A and rn&, it is possi-

a
ble that, when one or two generations of the heavier fer-
mions than the top quarks are added in the model, the ac-
ceptable momentum cutoff A could be lowered down to
the region of 10 -5 X 10 GeV and this will greatly allevi-
ate the fine-tuning problem of the coupling constants.
Certainly, the number and masses of these heavy fer-
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mions depend on the selection of the momentum cutoff
A; hence, the model must be A dependent. On the other
hand, we have derived the mass equations of the Higgs
boson P, and the W and Z bosons in the model with n

generations of fermions [8]. Therefore, several interest-
ing questions deserve to be raised. How and to what ex-
tent do the masses m o, m~, and mz depend on the

S

momentum cutoff A and the heavy fermion masses'7 Is
there any relation independent of Eq. (1) here which
could be drawn out to give a further limit to the values of
A or the heavy fermion masses' In addition, among the n

generations of fermions, the light fermions will be bound
to appear in the mass equations; then what kind of role
will they play in determining the masses of those bosons,
especially ones of the 8'and Z bosons7 In this paper we
will answer the above questions by analyzing the equa-
tions of m 0, m~, and mz. For the sake of de6niteness,

S

in any concrete discussions, we will illustrate with a mod-
el which contains three generations of ordinary quarks
and leptons and one extra heavy degenerate fourth gen-
eration of quark-lepton-like fermions. The fourth genera-
tion will be generally called U fermions except when it is
necessary for them to be distinguished into the quarklike
doublet (U, D) and the leptonlike one (N, E), and their
degenerate masses will be denoted by mU.

In Sec. II we will discuss the mass equation of the
Higgs boson P, and an approximate mass formula de-
rived from the equation, then obtain their numerical solu-
tions and a more stringent constraint on m 0. In Sec. III

S

the equation of m~ will be analyzed so as to examine the
dependence of m ~ upon the momentum cutoff A and the
masses of both heavy and light fermions. In Sec. IV a
similar analysis to one conducted in Sec. III will be made
for the mass equation of the Z boson but emphasis will be
put on the effect of the weak isospin breaking induced by
the large mass difference m, —mb. Throughout Secs.
II—IV, we will also indicate the different form and/or
different results between the mass equations for the mod-
els of Nambu —Jona-l. asinio type [9] with gauge and com-
posite electroweak bosons. Finally, in Sec. V we will
come to our conclusions.

II. MASS OF HIGGS BOSON

depends on A both explicitly through lnA and implicitly
through the masses of the heavier fermions than the top
quarks in the sums.

However, m o is not sensitive to its explicit A depen-

dence. Considering the fact that m 0 must be smaller
S

than and near the double mass of the heaviest fermions

[8], we can make the approximation

1 A A
dx ln =ln

m ~ —m ~ox(1 —x) m 2,
Q yo

(6)

Obviously, the higher is A, the better is the approxima-
tion (6). Substituting Eq. (6) into (4) we will obtain the
mass formula of P, ,

m&0
= g 4m&d&(R) g m&d&(R),

Q Q

(7)

in which the explicit dependence on A has disappeared.
Equation (7) is a good approximation of the mass equa-
tion (4). In fact, it is just the tree formula of m, in the

low-energy effective Lagrangian approach of the model
with n generations of fermions. Formula (7) first emerged
from a model of Nambu-Jona-Lasinio type with both
composite Higgs and composite gauge bosons [3] and its
specific expression also appeared in Ref. [4]. Actually, it
results from only the assumption that the Higgs boson is
viewed as composites of many generations of fermions.
As will be shown in Secs. III and IV, in the formula of
Ref. [3] no heavier fermions than the top quarks are al-
lowed to exist due to the supposition of composite gauge
bosons. However, such heavy fermions could be included
in Eq. (7) when the electroweak bosons are fundamental
gauge ones.

Let us consider the model with three quark-lepton gen-
erations and a degenerate heavy U-fermion generation.
In view of the fact that each term in the numerator and
denominator of Eq. (4) is proportional to m& and m&, re-
spectively, it is certainly a good approximation to sup-
pose the masses of all the lighter fermions than the U fer-
mions and the top quarks to be zero and to keep only the
masses mU and m, in Eq. (4). Then it was deduced from
Eq. (4) [7] that m 0 must obey the general constraint

S

In the fermion condensate scheme with n generations
of fermions, the mass m 0 of the composite Higgs boson

S

P, is determined by the equation [8]
2m, m o 2mU.

S
(8)

m ~0 = +4mgKg(p~) g mgKg(p ) ~,
Q Q

where

(4)
However, when Eq. (4) contains only the two different
fermion masses IU and m„we may actually have further
constraint on m 0..

S

dg(R)
K(r(p )=— I dx ln —1

8m. 0 m&
—p x(1—x)

and the Q in the sums runs over all of the (light and
heavy) fermions. It is seen from Eqs. (4) and (5) that m 0

Ptl U+ Nt) Nl O 2P?l U
S

i.e., the lower bound of m 0 may be raised up to the ar-

ithmetic mean value of 2mU and 2m, . In order to prove
Eq. (9), let us rewrite Eq. (4) in the form that
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m20=4[2mUKU(p }+m,K((p )]/[2mUKU(p )+m, K, (p )]~, =(mU+m, )
S p —I p

+(mU —m, )[(3mU+m, )2mUKU(p ) —(mU+3m, )m, K, (p )]/[2mUKU(p )+m, K, (p }]~ ~
P —/72 p

Since m U & m„ the condition of m o
& (m U+m, ) will be that

S

(mp'~ m' 3m +m

~KU(m 0)( m, mU+3m(

Noting that the expression (5) for K&(p ) and the result that 0~ x(1—x) ~
—,
' for 0 ~ x ~ 1, we may obtain the following

sequence of inequalities:

[K,(m', , ) ( JK,(m',.) f

S S

IK,(m,'. ) IK„(0}l
d, (R)
dU(R)

ink, —J dx in[1 —x(1—x)/z]
0

A
ln —1

2Pl U

d((R ) mU 3m U+m((2 ~2(2 if mU&m, , dU(R)&d, (R), (12)

where we have used the facts that both the quantities

2

Pl t

Pl
and z=

Pl
~p

(13)

A
ln +1+V'1—4z ln —1

P72 f
2z

A v'4' —1
ln + 1 —&4az —1 arctan

m 2
U

2A,z —1

2dU(R)A, (4A,z —1)

3(1—4z)

have the order of magnitude of unity and the assumption
that A »mU as well. This shows that condition (11) is

surely satisfied and the mass constraint (9) is valid indeed.
The mass constraint (9) could also be proven from the
mass formula (7) by the same method.

In order to obtain the numerical values of m p in the
S

model, we may integrate out x in the integral of K&(m o )
S

and reduce Eq. (4) to the form

We will take m, = 160 GeV, dU(R) =3+1 and the corre-
sponding values of A and mU from Table I in Ref. [7],
but the values of A will be limited to the acceptable re-
gion 10 -5X10 GeV. In Table I we list the numerical
results of m o obtained by Eqs. (14}and (7},respectively.

S

It is seen from Table I that m p varies as A and m U
S

rapidly. %hen A is high, for instance, A& 10 GeV, the
values of m, given by the exact equation (14) and those

S

by the approximate formula (7) are almost identical.
Only at the lower values of A do some small discrepan-
cies between both results appear and gradually enlarge as
A descends. They indicate the approximate precision of
formula (7). In the last line of Table I we also list the
values of mU+ I,. By comparing them with the results
of m p, we may not only verify the correctness of the

S

mass constraint (9) but also find that the bigger m U is, the
smaller is the ratio (2m U

—m, )/(m U
—m, ). This fact

S

clearly displays the tendency that m p more and m.ore ap-
S

proaches 2mU as mU increases. The full results above
show that the determination of the Higgs boson mass will
be the most important experimental test of the model
which contains the heavy U fermions.

(GeV) 10 10' 10' 5X10'

mU
m p by Eq. (14)

m 0 by Eq. (7)
S

mU+m

(GeV) 163 205 294
(GeV) 324.42 395.23 569.0

353
688.66

(GeV) 324.42 394.82 566.94 685.64

(GeV) 323 365 454

TABLE I. The numerical results of the Higgs boson mass
m p for acceptable momentum cutoff' A and corresponding

S

heavy fermion mass mU. m, =160 GeV and dU(R)=4 are
taken.

III. MASS EQUATION OF &BOSON

The mass equation of the W boson has been obtained
[8] by setting the inverse propagator of the W-boson in-

cluding the insertion of the composite charged Goldstone
bosons in the vacuum polarizations to be equal to zero
and has the form

m~=f (p )g~(p')I

where
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n dg (R)
f (p )= g f dx[mv (1—x)+mD x] ln

16 0 ~ ~ MvD(p)

dg (R) A
z 2

= z+g 2 f dxx(l —x) ln
2

—1

g2(p } g2 a=1 8m. M, .D (p )

Mv D (p )=mv (1—x)+mD x —p x(1—x) .
a

(16)

(17)

(18)

The squared classical SUL (2) gauge coupling constant g2 in Eq. (17) may be replaced by some boundary value of the
running coupling gz(p ), e.g., at p =0 through the relation

1 1
" g ~ A'f dx x(1—x) ln

g2(0) ~ ~
8~' o Mv D (0}

thus 1/g 2 ( m s ) may be reexpressed by

dg (R) 1 —(1—yv )x
+ g ' f dx x(1—x)ln

g2(~~2) g2(0) &
8~ 0 1 —(1 yv +av )x +av x

(19)

(20)

with the denotations

2m~
aU =

m U

2
mD

Rnd yU m2
U

(21)

It is seen from Eq. (20} that I/gz(m~) does not depend explicitly upon the momentum cutoff A which has been elim-
inated by the subtraction procedure. After integrating out x, the general expressions for f (ms ) and I/g2(ma ) be-
come

dg (R)
f (ms )= g mv (1+yv ) ln +1 +2' a a m 2 a.—yU 1nyU-

2a U
a

(1—yv )'

aU a

1+
aU a

1+y
(1—y )

aU a

arctan+B ~
—1 if B & 1,

X
I.(B.)+V'I-B'.

I

a

(22)

1

g2(mph')

dg (R)
5 2yv+g, —+,+

g2(0) ~ ) 48m 6 (1—yv )~

2(1+yv )

aUa

2(1—yv )

2
aU a

where

(3 rv. }r'v.—
+

(1—yv )'

+ 1+yU +aU—

3(1—y ) (1—y )

2aU aU
2 3

a a

2(1—r v. }' Q+g.
X

aU aUa a

——1ny U

T

arctan+B —1 if B & 1

Ie(B.)++I—B'.
I

a

(23)

2y 1/2

b~=4av —(1—yv +av ), B
1+yU —aUa a

B
and e(B ) —

I a
(24)



582 BANG-RONG ZHOU

It seems by expressions (22) and (23) that m~ will depend upon A not only implicitly through the heavy fermion mass

m U(A) but also explicitly through ln(A /m U ) in f (m ~~). However, we will show that m ~ contains no explicit depen-

dence upon A completely and its dependence upon the heavy fermion masses only appears in nonleading contributions
to I/g2(m~) as well.

Let us still take the model with three quark-lepton generations and the fourth U-fermion generation. Since each term
in f (m~) is proportional to the corresponding squared fermion mass, we can neglect all fermion masses except mt,
and m, in Eq. (22) and obtain that

Af (m~)= 2dU(R)mU ln
32m2 mU

A 1—1+U(aU) +d, (R)m, ln ——+T(a, )
m,

where

1 QaU(4 —aU)
U(a U ) =2— Qa U(4 —a U )arctan

aU 2 —aU

2m pr
aU

mU

(1—a )' m
T(a, )=———— ln(1 —a, ), a, = (27}

2 a, a2 mr

For the allowed values of m U and m, [7] and the experimental value of m s, [10]we give the estimations of the orders of
magnitude of U(a U }and T(a, ) in Table II.

The results in Table II indicate that, in the whole region 10 —S X 10 GeV of the acceptable momentum cutoff A, we

always have

U(aU)
A

ln
2

—1 «1 and T(a )
mU

A
ln

2
mt

1
&&1 .

2

f (ms, }=

Therefore, it is a very good approximation to neglect U(a U ) and T(a, ) from formula (25) and to write f (m s, ) as

A'
2dU(R)mU ln —1 +d&(R}m, ln —— =f (0);A 1

32m mU
2 2

i.e., f (ma, ) can be safely replaced by f (0). Then by
means of the basic relation (1), the mass equation (15)
may be expressed through the classical vacuum expecta-
tion value v as

2

m~ — gp(m~) (30)

which exactly has the form consistent with the standard
electroweak model. Therefore, the squared 8' boson
mass, as g2(ma, ) indicated above, does not explicitly rely
on the momentum cutoff A as well.

The U /4 in Eq. (30), or say f (0)=f (m a ) by Eqs. (1)
and (29), is mainly contributed by the heavy U fermions
and t quarks and the contributions from the lighter fer-
mions are always negligible. Physically this means that
only the condensates of these heavy fermions dominate
the spontaneous symmetry breaking. Conversely, to the
sum in I/gz(m~) in Eq. (30) we will show that the con-
tributions from the heavy fermions could be omitted but

I

the light fermions, e.g., ordinary light quarks and leptons,
will give the leading contributions. The reason is that the
sum in 1/g&(ma ) merely comes from pure fermion loops
without the insertions of the composite Goldstone modes
in the vacuum polarizations [8]. Since the light fermions
including massless neutrinos should not be ignored in

I/gz(ma ), the fermion condensate scheme in which only
the heavy U fermions and/or the (t, b) doublets are in-
cluded cannot be regarded as a theoretically complete
and consistent one. In order to make a comparison be-
tween the contributions to 1/gz(m~) from the light and
the heavy fermions, we notice that

mU, m, &mz,

ma, ))m& for Q =u, d, s, c,b, e,p, w,

mg=0 for Q=v„v„,v, .

Then it may be obtained from Eq. (23) that

TABLE II. Estimations of order of magnitude of U(aU) and T(a, ) for an acceptable momentum

cutoff A. Taking m, = 160 GeV, m~ to be the values satisfying Eq. (1},and ms =80.6 GeV by experi-

rnents.

A (GeV)

mz (GeV)
U(aU}/[ln(A /mU) —1]
T(a, ) /[in(A jm,'}—1/2]

10

163
2.5X10
5.3X10 '

205
2.3X10
7.3X 10

104

294
2. 1X10
1.2X 10

5X10

353
2.0X 10
1.4X 10
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2
1 1 1 e~p~& 5 m gr

2
+ d U(R)P(a U )+d, (R)N(a, )+ g d&(R ) ——ln

g'(ma, ) g'(0) 48 &=„, 6 m&

+ y dU (R)H(y U )
U =uc

(32)

where

5 4P(aU)= —+
3 aU

2+aU gaU(4 —aU)
z QaU(4 —aU)arctan

aU 2 aU
(33)

2(l —a, }
N(a, )=——

a,'

2XU
H(yU )= 2+

(1—
yU )

(1—a, } (a, +2)
ln(1 —a, ),

a

(3—
yU )y'U

a a
1

(1—y )'

(34)

(35)

If we take mU=163 GeV (A=10 GeV}, m, =160 GeV, ma =80.6 GeV, and

m„=4.2X10 GeV, m, =1.2 GeV, m, =0.5X10 GeV, m„=0.106 GeV, m, =1.781 GeV, (36)

dU (R)H(y U )
U =u, c

=0.20:0.41:7.50:—129.24:4.71 . (37)

then the ratios between the difFerent terms in the square brackets of Eq. (32) can be calculated and turn out to be that

m
dU(R)P(aU):d, (R)N(a, ): g d&(R):—— g d&(R)ln 2

Q=u, c Q=uc mQ

with g(0}=const,

mar m~

t

with f (0)=const; (39)

hence, the strong suppression of the heavy fermion terms
is only due to the general principle of decoupling.

After appropriately redefining the boundary value

gz(p ) at some low energy scale p by absorbing the con-
stant terms and the small terms in Eq. (32) we will find
that the running coupling gz(ms ) is consistent with the
contributions of two generation light quark doublets and
three generation lepton doublets to the usual P functions.
The conventional renormalization-group evolution of g2
at the scale p -m~ possesses the form [11]

1 1

g2(~w)

8~@~T m~2+ —22 — g d&(R }——ln
16m 3 g=„, 2 p

(40)

They show that the leading terms are those proportional
to ln(ma, /m&) (Q =u, c, e,p, r) and come from only the
light fermions. On the other hand, the heavy fermion
terms dU(R)P(aU) and d, (R)N(a, ) are almost negligible.
We note that P (aU }and N(a, ) may have the expressions

2 2
mar m pr

P(aU)= g (38)
mU mU

A A

mph'

ln =ln +ln
MU D (m~) m~ MU D (ms, )

A=ln
2

mar
(41)

and then reduce the mass equation (15) to the mass-sum
formula

m~=3 g dg(R)mg/g dg(R)
Q Q

(42)

The coefficient before lnm~/16m in Eq. (32) is obviously
the same as the fermion loop contributions to the P func-
tion in Eq. (40). Therefore, when determining the
gz(ma, ) in the mass equation (30) of the W boson we can
use the conventional renormalization-group evolution of
g2 ~

A few more remarks should be made upon the original
mass equation (15}. It is noted that the 1/g2 term in Eq.
(17) comes from the tree contribution to inverse propaga-
tor of the 8' boson and is non-negligible in a gauged
SUL (2) XUr(1) model. However, if the gauge bosons are
considered as composites of fermions, as was made in
Ref. [3], then the W boson would have no kinetic terms,
or equivalently, g2~00,' thus, the tree contribution to
Eq. (17) would disappear. Considering that
m~/MU D (m~) has the order of magnitude of unity,

a a
we can take the approximation that
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which coincides with the formula (3.12) in Ref. [3]. In
the A~Do limit Eq. (42) is valid rigorously. Equation
(42) is quite siinilar to the basic relation (1), but there is
an important difference between them. Equation (1) al-
lows the existence of the heavier fermions than the top
quarks for the limited values of A; however, Eq. (42) does
not tolerate the similar result. In fact, by inputting into
Eq. (42) the experimental value of mii, , it is not difficult
to find that when we take I,—130—150 GeV no heavier
fermions than the top quarks, even only a single heavier
lepton doublet, are allowed to exist, though Eq. (42)
could predict the t-quark mass of 131.6 GeV [12] for the
model with only the three generations of quarks and lep-
tons. Such a fact maybe represents an essential difference

between the gauged and the composite electroweak boson
models.

mz =f'(p')[g i (p')+g', (p') ] I, 2

where

(43)

IV. MASS EQUATION OF Z BOSON

The mass equation of the Z boson comes from the con-
dition in which the inverse propagator of the Z boson, in-
cluding insertions of the composite neutral pseudoscalar
Goldstone boson in the vacuum polarizations, is equal to
zero and takes the form [8]

f (p )=
z gdg(R)mgIg(p )+ gdg(R)Yg 5gIzg(p ),

q
+

~ g dg(R)( Yg + —,
'

Yg 5g+ —,
' )I2g(p )

g
2

(p 2) g
2 48~2

1 1+ gdg(R)(Yg + —,
'

Yg 5g+ —,')J2 (p ),
g (0) 48m

2

(45a)

(45b)

+ gdg(R)(Yg 5g+1)I2g(p )
2( 2) 2 96 2

1 1+ g dg(R)( Yg5g+1)J2g(p ),
g ~ (0) 96m. g

A'
Igi(p }=f dx ln —1

o Mg(p )

A
IP(p )=6f dx x(1—x) ln

2
—1

o Mg(p )

Jg(p )=Ig(p ) Ig(0), —

Mg(p )=mg —p x(1—x),

(46a)

(46b)

(47)

(48a)

(48b)

(49)

and Yg is the Ur(1) charge of the left-handed Q fer-

mions and the sign function

1 for Q=U
5g= '

1 f Q D (0=1&. . . &il)
a

(50)

mz f (mz)

where

—1(mz ), (51)
g', (mz)+g2(mz)

f (mz) = g dg(R)mg'Igi(mz2)
3 2' Q

(52)

In Eqs. (45b) and (46b) we have replaced the classical
gauge couplings 1/g, and 1/gz by the boundary values
1/g i (0) and 1/g&(0) of respective running couplings.

The mass equation (43) may be rewritten by means of
Eqs. (44)—(46) as

1
mzi}= g dg(R) Yg 5gI2g(mz }

96m Q
L,

In the limit of rigorous weak isospin symmetry we will

have

1(m,')=0,

f'(mz')=f2(mz'), if mU =mt,

where f (mz ) can be obtained by Eq. (16).
In the same approximation as Eq. (29) (it remains to be

valid when mii, is replaced by mz), we may reduce Eq.
(43) to the standard form

2

mz = [g i (mz2 )+g~&(mz2 }] . (55)

Ho~ever, spontaneous symmetry breaking will lead to
mU AmD; hence, Eqs. (54) and (55) are not valid

Q a
rigorously. Here, among other things, 1(mz) represents
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an explicit weak isospin-breaking term. Its nonzero value
is mainly contributed by the mass difference between the
U and D when either or both of them are heavy fer-
mions (the mass difference between the light U and the
light D is completely negligible for the scale
mz ))mU, mD ).

a a

For the sake of discussing the weak isospin breaking
effects involved in Eq. (51), i.e., in I (mz}, 1(mz),
g&(mz), and g2(mz), we integrate out x and give the
algebraic expressions for IP(mz) Ig (mz), and J2 (mz)2 Q 2 Q 2

as

AIP(mz)=in z
+1T '

mQ ag —Qag(ag —4)
1 —4/agin —1, aQ&4,

Qag(4 —ag )
+4/ag —1 arctan, ag &4,

2 QQ

(56)

A
I2g(mz) =ln

z
—1+Jz (mz)

mz
(57)

J2g(mz }= +5 4

aQ

Qag(4 —ag )
Q4/ag —1 arctan

2+QQ 2 QQ
aQ (4,

ag —Qag(ag —4}+1—4/agin —1, ag & 4,
2

(58)

where we have used the denotation

ag ——mz/mg .2 2
(59)

f '(mz ) =f (0)+, [2dU(R }mUJ i (mz }

For the considered model with the four generations of
fermions, similar to f (m~} in Eq. (25} we can keep in

7 (mz) only the U-fermion and the t-quark terms and
then express it by

Jg)(mz ) =Ig)(mz ) —Ig)(0)

4 —1
Qag(4 —ag )

arctan
2 QQ

Q =U, t . (61)

It is easy to verify that J, (mz) and J', (mz) are so small
as to be negligible for the terms containing lnA in f (0).
In fact, when we take m, =160 GeV, mU=163 GeV
( A = 10 GeV) [7], and the experimental value
mz =91.161 GeV [10],it follows that

where

+d, (R)m, J', (mz)], (60) J, (mz)=0. 054 and JI(mz)=0. 056 .

As a result we can make the approximation

(62)

Af (mz)=f (0)=f (0)= 2dU(R)mU ln
2

A—1 +d (R)m, ln —1
m

(63)

f (0)—f (0)= d, (R)m,
1

64~
(64)

represents the effect of the weak isospin breaking caused
by m, Amb, as indicated in Refs. [2,13]. In fact, if
m, = mb, then it may be seen by comparing Eq. (16) with
Eq. (44} that f (0) and f (0) will be identical in the ap-
proximation of keeping only the U and t fermions. Here
the U fermions do not lead to the weak isospin breaking
just owing to the assumption that their masses are degen-

However, f (0) does not coincide with f (0) in Eq. (29)
which is used to define the vacuum expectation value v;
the difference

crate in the bubble approximation.
The isospin breaking term l(mz) will not only make

the mass equation (51) deviate from the standard form,
but also bring about an extra change of the P function
determining the running gauge couplings g, (mz} and
g2(mz ), since it is also contained in Eqs. (45) and (46). In
order to show this effect, we need to deal with the heavy
and the light fermions separately once again. Consider-
ing the fact that

mz~ &&1 for Q =u, d, s, c,b, e,p, r

&1 for Q=U, t (65
mQ

we obtain from Eqs. (57) and (58) that
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Izg(mz)= '

A
ln

mz

A
ln

mg

2+— for Q =u, d, s, c, b, e,p, r, v„v„,v,
3

—1+P(ag } for Q = U, t

and

mz2——ln for Q =u, d, s, c,b, e, lJ. , ~,
gg(m2)= 3 mg

P(ag) for Q=U, t,

(67a)

where the function P(ag) has the same form as the one given by Eq. (33). Substituting Eqs. (66) and (67) into Eqs.
(45b), (46b), and (53) we may obtain that

1

g2i(mz~ )

1 N, E, t

+ g dg(R)(Yg + —,'Yg 5g+ —,')P(ag)
gi(0) 48

g = u, d~s, c, b

2
2 3

mz
dg(R)( Yg + ,'Yg 5—g+ —,') ——ln

m g
(68)

and

1 1 N, E, t

+ g dg(R) —,'( Yg 5g+1)P(ag )+
g2(mz) g2(0) 48ng=U 'D

dg(R) —,'( Yg 5g+1)
g=u, d, s, c, b

2
5 mz

X ——ln
2

mg
(69)

2

1(mz }= ln
mz

96m m

5——+P(a )t

where (U, D) and (N, E), respectively, denote the quark
and lepton doublets of the fourth generation of fermions.
It is noted that no contribution from the massless neutri-
nos appears in Eqs. (68}and (69) owing to the fact that

(1) In Eqs. (68) and (69) there are contributions coming
from the fermions with the mass mg) mz. They are
represented by

Yg +-,'Yg 5g+-,'= Yg 5g+1=0

for Q =v„v„,v, , (71)

2
'

2mz mz
2g 2

mg mg
(Q =U, t)

with g(0}=const . (72)
This makes us avoid the unpleasant mass singularities.
The weak isospin breaking term l (mz ) now contains only
the contribution from the (t, b) doublets with the large
Inass difference m, —mb. The U fermions with the degen-
erate masses and all the other lighter fermions than the b
quarks in the approximation (66a) will not give a nonzero
contribution to l (mz ).

Let us compare the running couplings 1/g, (mz) and
I/gz(mz ) represented, respectively, by Eqs. (68) and (69)
with their conventional renormalization-group evolu-
tions. The main differences between both may be stated
as follows.

However, as in the case of I/gz(m~), because of the
decoupling they only have very small values and may be
omitted from these equations.

(2) The leading contributions to Eqs. (68) and (69) come
from the light fermions and are proportional to lnmz.
Does the coefficient before Inmz/16& coincide with the
fermion loop contributions to the usual P functions re-
sponsible for the renormalization-group evolutions of g&

and g2? In order to answer this question, 6rst let us con-
sider 1/g i (mz ). The coefficient before lnmz /16+ in Eq.
(68) may be written as
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Q=u, d, s,c,b
dg(R)(Yg +—', Yg 5g+ —,')

1

3

3

g dg (R)(YU +Yn +1}
a=1

—d, (R)( Y, +—,'Y, +—')

where the relations [8]

=Ua,
YQ

= Y& +1 for '~
a

=P~)+ ,'d, (R—)Y, =P~)+ ,'d~(R—)Yq (73)

(74)

paid special attention only because the mass difference

m, —mb has to do with the heavy t quarks and it is so

large that such an effect seems not to be negligible. On
the other hand, when one is determining g f (p ) for

p &4m, , the corresponding Pf, sector would have no
difference from the one in the conventional
renormalization-group evolution of g„even though there
still exists m, Amb in this case.

Next let us discuss I/gz(mz}. The coefficient before

lnmz /16& in Eq. (69) may be written by
8,P~ 7

p2f= —— g dg(R)( Yg 5g+1)
Q=u, d, s, c,b

1
2dg (R)—d, (R)(Y, +1) . (78)

aa=1
I

have been used and the denotation

—d, (R)(Y, + Y, ) (75)

1pf= —— g dg (R)(YU +YU +YD +Yn )
a=1

We note, by comparing Eq. (78} with the corresponding
factor in Eq. (40) for 1/gz(mn ), that we have increased
the b-quark loop contribution in Eq. (78) and this is
necessary for the determination of 1/g2(mz }.

Let Pf2 represent the loop contributions of the three
generations of quark leptons except the t quarks to the
conventional Pz function in 1/g2(mz); we will have

represents the loop contributions of the three generations
of quark leptons except the t quarks below the scale mz
to the usual P, function in the renormalization-group
evolution:

3

pf2= —— g 2dg (R)—d, (R)
a=1

We may obtain from Eqs. (78) and (79) that

ayf =Pf Pf=—,'d„(R-)Y„eo .

(79)

(80)

1 1 4 mz
21n

g f(mz) gzt(p ) 16m p
(76)

We note that

hpf~=p~) 13~)= ,'dI, (R—) Y~ %—0 (77)

and it effectively makes a 3/5 reduction in the contribu-
tion of the b quarks to the usual Pf, . This discrepancy be-
tween Pf& and P& is due to the mass splitting between the
members in the same (t, b) doublet with the feature that
m, & mz & mb. As a result, P& contains only the contribu-f
tion from the b quarks but none from the t quarks and
the sum ggdg(R }Yg 5g will no longer be equal to zero.

L

It is simply nonzero of this sum that brings about PfAP~.
In fact, such an efFect leading to an extra change of the P
function may appear in the whole energy region with
4m, )p & 4mb or generally in the energy regions with

4(mg ),„&p &4(mg );„(a=1,. . . , n) Here it. is
a CZ

I

It eff'ectively makes a 1/3 reduction in the contribution of
the b quarks to the usual Pf. Such a change of the P2
function in 1/g2(mz) has the same origin as the change
of the P, function in 1/g, (mz). In addition, a similar
change of P2 function in I/gz(p ) should be considered
in the whole energy region with 4m, )p )4mb, if one
intends to make more precise calculations.

The above discussions indicate that, in the mass equa-
tion (43} of the Z boson, in addition to considering the
other weak isospin breaking efFects induced by m, Arnb,
we should express the fermion-loop contributions to the P
functions in g, (mz) and gz(rnz ) by Pf~ in Eq. (73) and Pfz

in Eq. (78) instead of the usual Pf, in Eq. (75) and g in Eq.
(79), respectively. Such replacements should be main-
tained even after the complete gauge interactions and the
Higgs dynamics are taken into account. However, we
may point out that it is unnecessary to consider such
modification for the usual running electric charge
e (mz). In fact, by Eqs. (45), (46), and (67), e (mz) can
be expressed by

+ = + g dg(R)egP(ag )+2

e (mz} gf(mz) gz(mz) e (0) 12m. g=U~

2
e)fM) 7 mz

dg (R )eg ——ln
Q=u, d, s, c,b mQ

(81)

where we have used the relation

eg= —,'(Yg +5g) .

The coefficient before lnmz/16m in Eq. (81),

(82)

d (R)e = —4TrQ
4 8,P~T

Q Q T
Q=u, d, s, c,b

(83)

is obviously coincident with the fermion loop contribu-
tions below the scale mz to the P function in convention-
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al renormalization group running of e. No efFect of the
weak isospin breaking induced by m, —

m& exists here.
We should also mention a distinction between the

SUL (2) running couplings gz(p ) in Eq. (17) and gz(p )

in Eq. (46a). From Eq. (18) and Eqs. (48a) and (49) it is
easy to see that

gz(p )=gz(p ) only if mU =mD

or p ))mU, mD (a=1, . . . , n) (84)
a a

which means that only if the efFect of the weak isospin
breaking is absent or it is negligible for very high momen-
tum p, could g2(p ) and gz(p ) just be considered the
same one.

Finally we point out a mass sum formula similar to Eq.
(42). If all of the electroweak gauge bosons are regarded
as composites of the fermions, then they will not have the
kinetic terms and the tree contributions 1/g, and 1/g2 in

Eqs. (45a) and (45b) could be ignored. Under the approx-
imation

A A mz
ln

2 2
=1n + ln

2 2
——ln

mz' ~~(mz') mz'

the mass equation (43) can be reduced to the mass sum
formula

mz =3 g d&(R)m& g d&(R)4e&
Q Q

g dg(R)(4eg —1) g dg(R) (86)

where e& is defined by Eq. (82). In view of the relation

1
l1

g d&(R )(4e& —
—,
' ) =—g tr 9 (87)

Q a=l

where trf' is the trace of the squared Ur(1) operator
over the ath generation of fermions, it is easy to verify
that formula (86) could be transformed into the form of
Eq. (3.13) in Ref. [3]. Similar to Eq. (42), formula (86)
will also remove out the possible existence of the heavier
fermions than the top quarks.

V. CONCLUSIONS

We have expounded the mass equations of the Higgs
boson, F- and Z-gauge bosons in a model of
Nambu-Jona-Lasinio type with the three generations of
quark leptons and a heavier degenerate fourth generation
of U fermions. In the bubble approximation, it has been
shown that the mass m 0 of the composite Higgs boson

S

P, is dominated by the heavy fermion masses m U and m,
and further refined by its explicit momentum cutoff
dependence. A new mass restriction m U+ m, m 0

S

~2mU has been proven. The results indicate that the
mass of the Higgs boson could provide the most impor-
tant experimental test of such a kind of model with heavy
U fermions. Contrary to m 0, the 8'-boson mass m~

S

contains no explicit dependence on A and scarcely relies
on the heavy fermion masses, since the factor f (rn~) in
the mass equation dominated by the heavy fermion
masses and explicit A dependence can be replaced by the
vacuum expectation value U which is simply associated
with the Fermi constant Gz, and the other heavy fermion
terms appearing in the running coupling g2(m~) will be
greatly suppressed by the decoupling effect as well. The
mass mz of the Z boson has the same feature as m~.
Therefore, neither the equation of m ~ nor mz can be re-
garded as another independent relation of Eq. (1) between
the heavy fermion masses and the momentum cutoff A.
On the other hand, in the equation of m~, all of the light
fermions with the masses m& & m ~/2 except the b
quarks can never be neglected in g2(mii, ) and their loops
exactly give the usual fermion contributions to the P

f

function in the renormalization-group evolution of g2.
Similarly, in the equation of mz, we can never ignore the
light fermions with the masses m& & mz /2 in the running
couplings g, (mz) and gz(mz}. However in this case
there exist the weak isospin breaking efFects induced by
the large mass difFerence m, —mb (assuming the U fer-
mions to be mass degenerate}. They will lead to that not
only f (0)Af (0) and l (mz)%0 to make the mass equa-
tion deviate the standard form but also the change of the

P functions; i.e., the fermion contributions to the P func-
tions responsible for g, (mz) and gz(mz) in the equation
of mz will have small difFerences from the ones to the
usual P functions responsible for the renormalization-
group evolution of g, and g2. In fact, such deviations of
the P functions will appear in the whole energy region
with 4m, )p )4mb2 including p2=mz. Only for the
running couplings g, (p ) and gz(p ) with p )4m, , will

the above eFect to alter the P functions disappear. There-
fore, it is necessary for accurate calculations to take this
efFect into account for 4m, )p )4mb in both g i (p ) and

gz(p ). Such a consideration will be useful for the pre-
cise determination of the masses of the heavy U fermions,
the top quarks and the Higgs boson by the calculations of
the complete dynamics of these particles where the renor-
malization group evolutions of g, and g2 in the standard
model will be used as a starting point of the discussions.

The research on the mass equations also brings us to
the conclusion that an important, probably essential,
difference between the models of Nambu-Jona-Lasinio
type with gauge and composite electroweak bosons lies in
the fact that the former will allow but the latter will re-
move the possible existence of heavier fermions than the
top quarks.
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