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We present a consistent analysis of Snal state interactions in K -+ 3m decays in the &amevrork of
chiral perturbation theory. The result is that the kinematical dependence of the rescattering phases
cannot be neglected. The possibility of extracting the phase shifts from future Kp-Kl. interference
experiments is also analyzed.

PACS number(s): 13.25.Es, 11.30.Er, 14.40.Aq

I. INTRODUCTION

Unitarity requires that final state strong interactions
should be active in kaon nonleptonic decays. As is well
known, they contribute imaginary parts (or phase fac-
tors) to the decay amplitudes that, otherwise, could be
chosen as purely real. Clearly, such eHects directly reBect
the properties of low-energy meson interactions. There-
fore, they could signi6cantly test theoretical approaches
to meson dynamics, in particular the framework of chiral
perturbation theory (ChPT) and the related amplitude
expansions in meson momenta, which incorporate general
features of long-distance /CD [1,2].

Final state interactions in K + 2x decays have been
extensively discussed, e.g., in Refs. [3] and [4]. In this
channel, the s'-n' phase shifts at +s = m1t are found to
have a sizable efFect on the amplitudes for the various
decay modes. In K m 3m decays, final state strong inter-
actions operate at substantially lower energy due to the
limited phase space, and the corresponding phases are
expected to be small. In current fits to Dalitz plot dis-
tributions and partial rates [5,6], to extract the values of
K -+ 3x amplitudes the assumption of negligible phases
had to be adopted in order to limit the number of &ee
parameters. Indeed, this assumption is consistent with
the experimental information available at present.

Nevertheless, attempts to extract K -+ 3m strong
phases &om improved, future experiments should still
be pursued, in view of the theoretical interest that such
information would have. For example, in the approxi-
mation of considering only two-body strong interactions,
thus neglecting the irreducible 3~ rescattering diagrams
which should be suppressed by phase space, K + 3' 6-
nal state interactions can provide a complementary way
to study ~-m phase shifts near threshold. Indeed, this is
the region where these phase shifts can be most reliably

predicted in the framework of ChPT. Therefore, such an
analysis should add a significant test of this theoretical
approach, to be combined with, e.g. , those &om K~4 de-
cays [7], also relevant to the x-n low-energy region.

As another important point of interest, we should re-
call that the knowledge of rescattering is crucial in order
to estimate direct CP-violating asymmetries in K -+ 3x
[8—11]. Manifestations of such asymmetries would allow
one to determine the existence of direct CP violation
in a channel alternative to K ~ 2m, and to improve our
knowledge of this phenomenon, which is predicted by the
standard model but is not clearly established yet.

With these motivations, in what follows we shall dis-
cuss in detail the possibility, suggested in [12] and [13],
that a convenient access to 6nal state interactions in
K + 3x could be provided by KL,-Kg interference in vac-
uum as a function of time, to be studied at "interferome-
try" machines such as the CERN Low Energy Antiproton
Ring (LEAR) [14]and the P factory DAONE [15,16]. The
typical interference term has the form

Re [(3~[Z,)'(3~)Z, ) exp (iamt)] exp ~—6 r, +r, l

where Am = mL, —mg is the KL,-Kg mass difference.
Studies of the time dependence of Eq. (1) should lead to
a determination of both the real part and the (expected
small) imaginary part of the amplitudes originating from
6nal state interactions. The advantage of this kind of
measurement should be that, in Eq. (1), the strong
phases appear linearly, whereas they appear quadrati-
cally in Dalitz plot distributions and partial rates.

To obtain an order of magnitude estimate of the ef-
fect of the interference term, limited to the case of the
P factory, momentn~-independent strong phases, with
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II. K m 3m FORMALISM

In the lixnit of CP conservation, there are five different
channels for K -+ 3' decays:

K+ -+ ~+~+~+
K+ -+ ~+~o~'
KL -+ vr+m+vr

KL-+sr x x
Ks

(I = 1, 2),
(I = 1, 2),
(I = 1)
(I = 1),
(I = 2).

(2)

Here in parentheses we indicate the isospin values rele-
vant to the final (3s ) states, assuming only b,I = 1/2, 3/2

the values predicted by ChPT at the center of the Dalitz
plot, were assumed in Ref. [12]. Actually, in the case of
K —+ 3m, it is not quite appropriate to use the notion of
constant phase shifts because (i) there are two indepen-
dent I = 1 final states which can be connected by strong
interactions, so that one should introduce a 2 x 2 mixing
(or rescattering) matrix, and (ii) in general the rescatter-
ing matrix elements are functions of pion momenta.

Phenornenologically, K + 3m' transition amplitudes for
the various modes are expanded in powers of the kine-
matical variables with constant coefBcients, so that the
momentum dependence of rescattering should be taken
into account for a consistent expansion. This is partic-
ularly desirable also in connection with momentum ex-
pansions predicted by ChPT. Previous theoretical esti-
mates of momentum-dependent K m 3' strong rescat-
tering were performed in the nonrelativistic approxima-
tion in Ref. [17), and in leading order ChPT for charged
kaons in Refs. [8] and [9]. The complete calculation of
all K m 27r and K —+ 3m amplitudes to one loop in
ChPT was performed in Ref. [6]. In particular, as far
as the efFects of interest here are concerned, in Ref. [6]
are reported the numerical results (but not the explicit
expressions) of the imaginary parts of the K m 3ir am-
plitudes, expanded up to quadratic terms. In fact, the
explicit kinematical dependence is needed in order to un-

ambiguously reconstruct the rescattering matrix, which
will be central to our treatment.

Thus, we shall first review the general symmetry
and unitarity constraints on K ~ 3' amplitudes, and
then we will construct a convenient, model-independent
parametrization of the strong rescattering matrix which
is unique for all decay modes. We shall finally write the
analytical expression of the rescattering matrix in the
framework of leading order ChPT. The results can be ap-
plied to make more reliable predictions for the K ~ 3'
time correlations of Eq. (1). In addition, our analysis
will allow us to clarify some delicate questions regarding
direct CP violation in K+ ~ (3')+.

Specifically, the plan of the paper is as follows: in Sec.
II we set the formalism to expand K —+ 3x amplitudes;
in Sec. III we define the rescattering matrix and evaluate
it in lowest order ChPT; in Sec. IV we discuss some con-
sequences for the Dalitz plot analysis and CP violation;
in Sec. V we present the expectations for the interference
term; finally, Sec. VI contains some concluding remarks.

transitions. In principle, the Kg decay to the I = 0
state is not forbidden, but due to Bose symmetry it is

strongly suppressed by a high angular momentum bar-
rier [18] and we neglect it. The first four modes are dom-

inated by b,I = 1/2 transitions, while the last one is
a pure AI = 3/2 transition and only recently has be-
come accessible through time-dependent interference ex-
periments [19].

For K(p) i mi(p, )~2(p2)~3(ps) decays we introduce
the familiar kinematical invariants

8; = (ps&
—p').

2 ao = —g 8~ —3m~+ fA )

(3)

where the index i = 3 refers to the "odd" charge pion.
Neglecting isospin-breaking effects and following, e.g. ,

Refs. [18,20], we can decompose the decay amplitudes
in the general form

A++
A+oo

L
A+

Aooo
S

A+

2Ac(81, 82, 83) + B.(si, 82, 83) + B2(si, 82, 83),

Ac(81) S2) 83) B (8c1) 82) 83) + B2(S1( 82) S3) )

An(81) S2) 83) Bn(81& S2& S3)s (4)

3An(S1, 82) 83),

B2(811)82~ 83) ~

Here, due to Bose symmetry and the assumed CP con-
servation, all amplitudes A~. and B~ (j = e, n, 2) are sym-
metric under exchange (1 ~ 2). Furthermore, the ampli-
tudes A~ are completely symmetric for any permutation
of the indices 1, 2, and 3. Conversely, the amplitudes Bz
do not have this symmetry, and. under permutations of
indices only obey the relation

B~ (si, s2, s3) + Bz (83) 82, 81) + Bj (81) s31) 82) = 0. (5)

Finally, the amplitude B2 is antisymrnetric for the ex-
change (1 ~ 2). It is not independent from the other
ones, and can be expressed in terms of B2 as

B2(81)821) 83) 3 [B2(831)821& 81) B2(81)831) 82)] (6)

(/2 1i
(1 —1) '

which in the I = 1 sector transforxn the symmetric
and nonsymmetric amplitudes into the physical ones for
charged and neutral kaons, respectively. Thus,

Concerning isotopic spin, the amplitudes A~ and (B„B„)
correspond to AI = 1/2 and b,I = 3/2 transitions to the
I = 1 final three-pion state, while B2 is associated with
the AI = 3/2 transition to I = 2.

From the decomposition above we note that there are
two amplitudes leading to I = 1 final states, which dif-
fer by the pion exchange symmetry properties, namely,
the A's are fully symmetric whereas the B's have mixed
symmetry. Accordingly, it is convenient to introduce the
two matrices
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( (i)
A++ T I& A~(s;) II

(B-(*)) '
The unitarity conditions are obtained by imposing con-

servation of probability: namely,

I(A++ )~l'+ l(A+oo)RI'

A+op ~ ( Aooo ) ( B~( ~) &

Defining the dimensionless Dalitz plot variables
de A+&'+~ '+ A+~",p ', i4

S3 —Sp

mx2
and

S2

m.' dC' l(A+-o) ~l' + I(Aooo) RI'

and taking into account the symmetry properties of A' s
and B's, we can expand the five independent amplitudes
in Eq. (5) in powers of X and Y up to quadratic terms:

A,. = a, + c,.(Ys + Xs/3),
B =bY+d(Y —X/3). (10)

Substituting Eq. (10) in Eq. (5), we obtain

This decomposition can be easily related to the one in-
troduced in Re&. [5,6].

III. Sm FINAL STATE INTERACTION

Since strong interactions are expected to mix the two
I = 1 final states, we must introduce a strong interac-
tion rescattering matrix which mixes the corresponding
decay amplitudes. Projecting the final state (3x)l—i by
means of the matrices T, and T in the symmetric-
nonsymmetric basis, we can define the scattering matrix
R, common to charged and neutral channels, as

(i) (i)
++ =TRI '

I

=TRT ' ++

~
A(i)

~

~
I B.~

~ ~

~
A(i)

(12)

A~+ ——2a, + (b, + b2) Y + 2c,(Y + X /3)
+(d. + d, ) (Y' —X'/3),

A+pp ——a, —(b, —bg)Y+ c,(Y + X /3)
—(d, —d2)(Y —X /3),

A;, = a. —b„Y+.„(Y'+X'/3) —d„(Y'-X'/3),
(11)

Aopp = 3a + 3~(Y' + X /3)
A+ p ——~b2X —3d2XY.

d4 A+ p + Appp, 15

where d4 represents the phase space element.
We can now perform the calculation of R using ChPT.

At the lowest order p2, there are no quadratic terms and
the coefficients az, b~ in (10) are real if CP is conserved.
At order p4 loops and counterterms will appear, gen-
erating real parts with higher powers of X and Y and
also imaginary parts proportional to the O(p ) constants
a~ and b~. These imaginary parts define the rescatter-
ing matrix relevant to the constant and linear terms. In
principle, imaginary parts of quadratic terms can occur
similarly, but since these appear at the higher order p
we neglect them, as is also justified by the smallness of
the experimental values of quadratic slopes. In this ap-
proximation, we replace A.,„andB,

„
in (12) and (13)

by a „andb, „Y,respectively. The unitarity conditions
resulting from (14) and (15) are equivalent, and take the
form

d@II&»l'+ 51&iI'I = f&o

doII&nl'+ (l&nl'1&* = J ~@~',

(16)

d4 [5RiiRi2 + 2R2iR22] Y = 0. (18)

As anticipated, at O(p2) there are only tree diagrams
that can be easily computed with the leading order chiral
weak Lagrangian [21], and there is no final state inter-
action so that R = I (trivial case). At order p loop
diagrams (Fig. 1) generate imaginary parts, correspond-
ing to on-shell propagators in internal lines, so that we
can write

+i'
I

=TRI "I=TRT 'I +i' I- (13)
opp )R &») "

E Aooo )
Here the subscript R means that in the decay amplitude
rescattering has been included. The matrix R defined
above has diagonal elements which preserve the sym-
metry properties under pion exchanges, as well as ofF-

diagonal elements which connect symmetric amplitudes
to nonsymmetric ones and vice versa.

FIG. 1. Loop diagrams relevant to K —+ 3vr rescattering.
The symbols ~ and & indicate the weak and the strong vertices,
respectively.
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I+; ~&
a(s') p'(s')

&~+' ~a'(s') p(s') q
(19)

Using the strong O(p ) chiral Lagrangian

l:& —— tr B~ZO"Z + M(Z + Zt)],s 4
(20)

where Z = exp(ig/~2F ), P is the octect matrix of the
pseudoscalar fields, F is the pion decay constant (F
93 MeV), and M = diag(m2, m2, 2m'. —m ), one finds

a'(s, ) =

3

, ) —,'v, (2s;+ m'),
i—1

2

) s v;(s; —m ) —vs(ss —m„)j, (22)
t=1

(21)

p(s*) =
3

1 1

32.F 3?-"'("-'--)
i—1

2

+) m 2 V3 83 —8p —Vi Si —Sp

i=1 S3 —8p
(23)

1 .2 (s; —m )(so —s, )
3 2

si Vi
327cF~ . ss —Bo

(25)

This condition is exactly verified by the functions in Eqs.
1

where v, are the "velocities:" v; = (1 —4m2/s;)~~2. At
this order, only the unitarity condition (18) is nontrivial
and implies

(22) and (24), as expected since ChPT is an effective
field theory where unitarity is perturbatively satisfied.
Final state interactions operate in a quite similar way in
K —+ 3' and in g m 3' decays. Therefore, analogous
results were obtained in Ref. [22], where the ChPT lead-

ing order amplitudes for g m 3' were unitarized and the
partial decay rates were determined. In fact, our purpose
here somewhat difi'ers from [22], as our main interest is
the possibility of measuring K —+ 3' strong phases froxn
interference experiments, not available to g decay, while
the calculation in ChPT is simply a means to assess the
size of the rescattering effects (and the corresponding re-
quired sensitivity) on the basis of a well-founded theo-
retical model. In this regard, we should remark that
the rescattering matrix B could have been directly eval-
uated by just integrating the vr-7r scattering amplitude
over the phase space of intermediate particles. Actually,
once the matrix R has been defined, one could improve
the lowest order Eqs. (21)—(24) by including all higher or-
ders in strong interactions, or even by replacing them by
any other available phenomenological information on vr-m

scattering. Analogously, for the weak amplitudes a„b
and a„,b„onecould use either the ChPT predictions or
the available experimental determinations.

For the decay into the I = 2 final states there is only
one amplitude, with definite symmetry under pion ex-
change which must be preserved by strong interactions.
Thus, we can write

(B2)R = b2Y [1 + ib(s, )],

(B2)R = 2sb2X[l + ib(s, )], (26)

where the two functions b and b are again not indepen-
dent because (B2)~ and (B2)~ must satisfy Eq. (6). At
the lowest nontrivial order in ChPT one finds

b(s;) =
3

—) v;(s; —4m )
a=1

Regarding three-body resca
at two loops, we would expe
functions a, n', P, P', and b to be rather small, as being
suppressed by phase space, assuming that the three-body
coupling is not anomalously large. This is indeed the
case for the leading order Lagrangian (20). Concerning
higher orders in ChPT, O(p4) contributions to R might
be relevant, similar to the case of m-vr phase shifts where
the scattering lengths turn out to be affected at the 20%—
30%%uo level [4]. We can take these figures as an indication

I

IV. CONSEQUENCES FOR DALITZ PLOT
ANALYSIS AND CP VIOLATION

As expected &om the smallness of the available phase
space, the functions Q, a', P, P', and b are smaller than
unity over the whole Dalitz plot. Indeed, by expanding
in powers of X and Y up to quadratic terms, we obtain

+-1 .v, (s; —so)(2s; —5m )
—vs(ss —so)(2ss —5m ) (27)

=1
[

ttering, which will appear for the accuracy of the subsequent applications of Eqs.
ct its contribution to the (21)—(27).

a(X, Y)
Q'(X, Y)
P(X, Y)
P'(X, Y)
b(X, Y)
b(X, Y)

ao + n, (Y2 + X2/3)
aoY+ a', (Y2 —X2/3)
Po + Pg(Y2 —X2/3)/Y
P,'(Y' + X'/3)/Y
bo + bg(Y2 —X2/3)/Y'
bP —2b1K

o.p 0.13,
cx() —0.12,
Po 0.047,
po = ao/5]
bo = Po, —

Qg —29x10 ]
n~ 3.4x 10 ]
Pg 4.7 x 10 s]

bg ——0.020]

(28)

Jf measured ~ ~ 3m rescattering phases would determine the q ~ 3' ones, and in this sense our discussion should be

relevant to the q decay also.
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Using Eqs. (12), (13), (26), and (28) we can expand both
real and imaginary parts of all K + 3m amplitudes up to
linear terms.

As a first application of the formalism we can discuss
the role of rescattering in CP-odd charge asymmetries
in K+ -+ 3m. Contrary to K ~ 2m, where direct CP
violation is suppressed by the smallness of the EI = 3/2
amplitude, in K -+ 3m an observable eKect can poten-
tially arise also from the interference of the two b,I = 1/2
amplitudes. For a nonvanishing eEect it is crucial that
the relevant amplitudes have difFerent electroweak phases
(which can be the case only at order p4 in the framework
of ChPT) as well as difFerent rescattering phases.

Let us consider, for example, the amplitudes for K+ -+
(7r+m+x )r—q. From the preceding relations we easily
obtain

h = —(3.361.1) x 10 (34)

but is substantially smaller than the p contribution the-
oretically estimated in Ref. [25].

V. MEASUREMENTS OF THE RESCATTERING
MATRIX IN INTERFEROMETRY MACHINES

h" '=2ao
I
a~+ —"po

I

=+1.4x
a )

This number turns out to be of the same order of the
experimental value of h [24],

Re(A++ ) = 2a~+ b~Y,

Im(A++ ) = 2a,ao+a, aoY+b PoY

(= 2a,ao+ b,Y
I Po+ —ao

I

.
b. )

(29)

(30)

IAoool = (ReAooo) + (™Aooo)
oc 1+h(Y' + X'/3) + ". (31)

In Eq. (30) the contribution of ao is multiplied by the siz-
able factor Ia /b, l

3.5—4.0, and dominates over the one
of Po by almost one order of magnitude. Nevertheless,
such a large imaginary contribution to the term linear
in Y does not help in generating the large CP-violating
interference between the two I = 1 amplitudes suggested
in Ref. [23]. Indeed, of the two Y-dependent terms in Eq.
(30), the one proportional to a, has the same weak phase
as the constant term and consequently, as already noticed
in Re&. [9,10], the CP-violating interference between the
two amplitudes to I = 1 states must be proportional to
the small difFerence (ao —Po). This example shows that
the full kinematical dependence of the rescattering func-
tions is relevant in constructing the imaginary parts of
the amplitudes.

In principle, the rescattering phases should be included
in the analysis of CP-conserving Dalitz plot parameters.
Their contribution could afFect the determination of the
linear and the quadratic slopes. However, since in this
case the imaginary parts appear quadratically, their ef-
fect is of order p in ChPT and thus for completeness
also the other contributions of the same order should be
included. As a curiosity, we estimate the contribution
of ImAppp to the quadratic slope h, in the Dalitz plot of
KL, ~ 3m, defined by

As pointed out in Sec. I, measurements of KL,-Kg
interference as a function of time should represent a con-
venient means to determine the (3s) rescattering ma-
trix elements, because this observable depends linearly
on Irn[(As+ o)'A~+ o]. To this PurPose, "interferometry
machines" such as DA@NE and LEAR should have the
advantage that interference naturally occurs in vacu»m
there. It is possible to measure KL,-Kg interference terms
also in fixed-target experiments where statistics can be
higher; however, in this case an accurate knowledge of
the regeneration amplitude is required.

Recent LEAR data [19]give a preliminary indication of
the term proportional to cos(b,mt) in Eq. (1) and suggest
the possibility of measuring in the near future also the
sin(b, mt) component. Consequently, it is worthwhile to
improve the order of magnitude estimates of Ref. [12]
and, using the ChPT results of Secs. III and IV, to derive
predictions based on that de6~~te theoretical model.

Choosing IK ) = CPIKo), the CP-even and CP-odd
eigenstates are IKq s) = (IKo) + IK ))/v 2 and, with the
Wu- Yang phase convention, the mass eigenstates are (as-
suroing CPT invariance)

IKs.) = „IKo)+,IKo) -=I ")"I ")
v'1 + I&l'

The proper time evolution of initial K or K states is

IK (t)) = /1+I I' ( I'st-
IKs) exp

I

—imst

)-r,t
+IK&) exp

I

—imL, &
I

Using Eqs. (13) and (28), we find

ImAooo ——3a ao + 3(b Po + a~aq)(Y + X /3), (32)

which gives the following contribution to h:
(36)

IKo(t)) = v 1+ lsl' & I'st—
I s) exp

I

—imst
I~2 (1 —s)

( I'r,t——IKL, ) exp
I

—imL, t
I)2

This numerical result is obtained with the value of b /a
resulting from the fit of Ref. [6].

At LEAR, tagged K and K are produced, and the
simplest means to observe interference is represented by
the asymmetry
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f d4 f(X, Y) lA(Ko -+ sr+a mo)l2 —lA(Ko -+ ~+sr n.o)l2
A+ '(t) =

f de lA(K -+ 7r+7r 7r )l + lA(K -+ 7r+7r —7ro)]2
{37)

where f(X, Y) is an odd-X function chosen in order to
disentangle the different kinematical dependences. Up to
first order in e, the decay amplitude squared as a function
of time is given by

lA(K'(K') ~ ~+«0) l'

f d4 f (X,Y) I(l+~~ v, sr+ vr vr 0; t)

f d4 I(l+vr+v, 7r+vr ~(]; t)

Indeed, for t ) 0 we have

I(l+~+v, ~+~ n; t & 0)

= —,'(1+ 2Re e)( exp (—I'st) ]As l'+ exp (—I'L t) lAL l'

+ 2 exp (—I't) [Re (AL, As) cos (b,mt)

+ Im (Ar, As) sin (bmt)]), (38)

+ o 2e ' f d4 f(X, Y) ReAL, ReAsA+'t =
f d@ [e ""IAsl'+ "'IAL I']

x cos (b,mt) + by sin(b, mt) + O(by), (39)

where

where Am = mI, —ms, I" = (I'L, + I's)/2, and

As L,
= A+' o. Then Eq. (37) can be rewritten asS,L

I'r, (l+7r~v)
2I' exp (—I st) lAI, l

+ exp (—r, t) IAsl'

+ 2 exp (—I' t) [Re (AL, As) cos (b,mt)

—Im (Ar Ai) sin(Amt)] ),

and therefore

2e r' f d4 f(X, Y') ReAL, ReAs
R t&0 =6

f d4[e ~ lAsl +e "&'lAL,
l ]

x [cos (Emt) —b y sin (b,mt)], {44)

f d4 f(X, Y) [ImAL, ReAs —ImAs ReAL, ]
f f d4' f(X, Y) ReAr, ReAs

40
where by is the same as defined in Eq. (40) and terms of
order by have been neglected. For t & 0 the analogue of
Eq. (44) is

At the planned DA@NE machine, a Kg-KI. coher-
ent state will be produced and the interference term of
Eq. (1) can be studied by looking at the final state
(l+ir+v, vr+7r 7re) [12]. Following Ref. [26], we define for
a generic decay Ks L, KL, s ~ fi(ti) f2(t2) an intensity

2e I&I f d4 f (X, Y ) ReAL, ReAsR+ t&0
f d@ e —r~l~llAsl'+ e-rL IiI

x [cos (b,mltl) + by sin (Amltl)] . (45)

OO

I(fi f2 t) = — dTI(fi(ti)f2(t2)li) I

l~l

(41)

where t = ti t2 and T =—ti + t2. Choosing fi ——l+7r+v
and f2 ~+a. n. , we can define an asymmetry similar
to Ay+ (t): namely,

However, due to the exchange I I. m I'g, the denominator
in Eq. (45) quickly becomes much larger than in Eq.
(44), and suppresses the interference efFect.

Considering for bf the 6rst nonvanishing order in
ChPT, which is O(p ) in the numerator and O(p ) in
the denominator, we obtain

f d4 f(X, Y) a„(n—n' —b)X —b„(P—P' —b)XY'

f d4' f (X, Y) [a„X—b„XY]
(46)

If we use as weight function f (X, Y) = sgn(X), we obtain
numerically the result

bx ——0.18 + 0.01.

This result is about a factor of 4 larger than the value
bxy. 0.07 obtained in Ref. [12], where the momentum
dependence of strong phases has been neglected. Indeed,
by expanding the rescattering functions, in the present
calculation we have

Essentially, this turns out to be bx = o.p —bp, and is
practically independent of the theoretical uncertainties
on the small ratio b /a For this re. ason the result (47)
is in good agreement with the prediction of Ref. [12].

On the other hand, choosing f(X,Y) = sgn(YX) we

obtain numerically

6xY—
(Po —bo)+ b (no —2bi)

1—

e

d4 lXlsgn(Y)
a

d4 lXYl

(49)

bxY = 0.30+ 0.0 (48) Equation (49) shows that also in the case of bury. the Y-
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FIG. 2. The asymmetry Ax+ of Eq. (39) vs t. The full,
dashed, and dotted lines correspond to b~ = 0, 0.2, and 0.4,
respectively.

FIG. 3. The asymmetry R»+ of Eq. (44) for positive and
negative t. The full, dashed, and dotted lines correspond to
bz ——0, 0.2, and 0.4, respectively.

dependent terms give a sizable contribution, since they
are multiplied by the large factor (a„/b„).The error
in Eq. (48) accounts for the theoretical uncertainty on
(a„/b„),for which either the experimental value or the
O(p2) ChPT prediction can be used. s

VI. CONCLUDING REMARKS

In the previous sections we have introduced a general
formalism to consistently account for final state interac-
tions in K m 3' amplitudes, and have used leading order
chiral perturbation theory to evaluate the rescattering
matrix.

We have considered some potentially observable effects
of rescattering on Dalitz plot variables. The results in-
dicate that the off-diagonal elements of the rescattering
matrix in the I = 1 sector induce sizable imaginary parts
in the X- and Y-dependent amplitudes. However, these
large imaginary parts are not easily detected from Dalitz
plot analyses, in agreement with previous analyses [5,6],
and unfortunately cancel in direct CP-violating asym-
metries.

Planned experiments at "interferometry machines" can
have direct access to the rescattering matrix elements
via appropriately defined time-dependent asymmetries,
which we have estimated in leading order ChPT. As ex-
amples of the typical effects expected in this framework,
Fig. 2 shows the asymmetry A+» (t) of Eq. (39) relevant
to LEAR. The solid line represents the asymmetry with

no rescattering (b» = 0), the dashed line corresponds
to the leading ChPT estimate of Eq. (47), and finally
the dotted line would result by doubling the value of b».
To obtain Fig. 2, for the real parts of the amplitudes
A+ o and A+ o we have used the expansion (11) with
the values of the parameters obtained in the fit of Ref.
[6]. As one can see, the curves in this figure have sim-
ilar shapes, but possibly could be distinguished in high
precision experiments.

In Fig. 3 we report the asymmetry R+»(t) of Eq. (44)
relevant to DA@NE, and the three curves refer to the
same cases considered in Fig. 2. Here we note that
rescattering afFects the shape of the curves more signif-
icantly, especially for t ) 0 where the asymmetry can
become quite large. However, this occurs for the values
of t where the number of events becomes smaller. As an
indication, the total expected number of events at t ) 0,
with the planned DA@NE luminosity 5 x 10 cm sec
is of the order of 10s/yr.

In conclusion, the previous analysis shows the interest
of experimental efforts to accurately measure the kind of
asymmetries proposed here. The ultimate goal would be
the determination of the K ~ 3' rescattering matrix ele-
ments testing ChPT in the strong sector, but in any case
even a reasonable upper bound would represent impor-
tant information in this regard. Furthermore, the direct
measurement of the CP-conserving Kg ~ 3m amplitude
is by itself an important achievement, extremely useful
in order to test chiral symmetry in nonleptonic weak in-
teractions.
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