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Independent multiple scattering (“Landshoff”’) contributions to proton-proton elastic scattering
at wide angles are calculated in the quark-diquark model. Results confirm previous observations on
the magnitude of these contributions. The use of the quark-diquark model extends the applicability
of perturbative QCD calculations down to lower values of momentum transfer substantially.
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I. INTRODUCTION

Despite tiny cross sections and corresponding difficul-
ties for experimentalists, exclusive processes are the natu-
ral approach to study the composite character of hadrons.
For large momentum transfer the wave functions deeply
penetrate each other without producing a torrent of sec-
ondary particles in the final state. Thus compositeness
is probed without destroying the observed configuration.

Perturbative quantum chromodynamics (PQCD) in
the framework of the hard scattering picture (HSP) [1-3]
is the generally accepted theory to describe exclusive pro-
cesses at large momentum transfer. Factorization of long-
and short-range physics, the basic assumption of the
HSP, is reflected in the fact that exclusive quantities are
expressed as convolutions of process-independent distri-
bution amplitudes (DA’s) with a perturbative, hard am-
plitude for the scattering of nearly collinear constituents.

The applicability of PQCD at intermediate momen-
tum transfer of a few GeV, where experimental data
are available, is a matter of passionate controversy [4,5].
The overall momentum transfer in the process has to be
shared among the constituents in order to align them
suitably for subsequent hadronization into the final state.
Consequently, the corresponding strong coupling in parts
of the process may become too large for reasonable use
of perturbative methods. In particular, this is the case
when the momentum of a hadron is unequally shared
among its constituents.

Hard elastic proton-proton scattering will certainly be
a cornerstone of investigations on the hadronic structure.
Unfortunately, the relative complexity of the scattering
of composite objects off each other, even if one only takes
into account the valence quark Fock states and diagrams
on the Born level, has prevented the complete cross sec-
tions from being calculated up to now. The complexity is
revealed in the huge number of diagrams to be calculated
(=~ in the order of 100000), as well as in the occurrence
of pinch singularities, which are closely related to the ex-
istence of independent, multiple scattering (“Landshoff”
[6]) contributions.

In a novel treatment of the Landshoff mechanism in
elastic proton-proton scattering Botts and Sterman [7,8]
pointed out the need for taking into account transverse
momenta in the HSP, which have been neglected before.
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The role of transverse momenta in the Landshoff mech-
anism is manifold: The energy dependence of the cross
section is understandable when one takes into consid-
eration the scaling behavior of momentum components
transverse to the scattering plane. Also, as has been
shown in [7], the way transverse momenta are dealt with
is decisive in deriving a factorized formula for the scatter-
ing amplitude. Soft, gluonic (“Sudakov” [9]) corrections
have been resummed by the use of renormalization group
techniques. Here, the transverse separation between con-
stituents (i.e., the conjugate variable of the transverse
momentum) acts as an infrared cutoff and provides the
fimteness of the results of loop integrations. The result-
ing Sudakov factor leads to a suppression of the scat-
tering amplitude and, thus, affects the probability for a
proton to contribute to elastic scattering, depending on
the transverse separation between the constituents of the
proton.

The work of Botts and Sterman [7] on the Landshoff
mechanism initiated an approach [10,11] which is ad-
dressed to refuting the above-mentioned criticism [4,5]
of the applicability of perturbative methods by modify-
ing and improving on the HSP. The basic idea, which has
been demonstrated for the calculation of electromagnetic
form factors in [10,11], is to take into account transverse
momentum flow through the hard scattering amplitude.
Dangerous soft integration regions, where the validity of
perturbative formulas becomes doubtful, are damped by
the Sudakov corrections. Thus, self-consistency of the
perturbative calculation is achieved in the modified HSP
even for momentum transfers as low as a few GeV. Here,
self-consistency is meant in the sense that the bulk of
the results is derived with reasonably small values for
the strong coupling. Additionally, the nonperturbative,
intrinsic transverse structure turns out to be imiportant,
as it strengthens the suppression of soft regions. On the
other hand, it provides a substantially smaller pertuba-
tive result [12,13].

In the course of these developments the role of trans-
verse momenta in hard scattering processes, and corre-
spondingly the transverse structure of hadrons, has re-
ceived a lot of attention [7,8,10,11,14-17]. In particular,
Sotiropoulos and Sterman [18] have discussed the proton-
proton elastic scattering near the forward direction in two
recent articles.
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In the present paper the Landshoff contributions of
proton-proton elastic scattering at wide angles are cal-
culated within a model in which the proton is consid-
ered as a quark-diquark system. The treatment of two
correlated quarks as an effective diquark is a possibil-
ity to cope with nonperturbative effects still present in
the kinematic range of interest. A systematic study
of photon-proton reactions has been carried out in the
quark-diquark model: form factors in the spacelike and
timelike region, real and virtual Compton scattering,
two-photon annihilations into proton-antiproton pairs, as
well as the photoproduction of mesons [19-21].

The motivation for the present investigation in the
quark-diquark model is the hope for an improvement of
the applicability of the HSP down to lower energies, com-
pared to observations made by Botts [8] in the pure quark
picture. On the other hand, the reduction of complex-
ity (two constituents instead of three to deal with in the
valence Fock states) results in a technical simplification,
which, though not dramatic for the Landshoff contribu-
tions, might become decisive for future attempts to calcu-
late all HSP diagrams (several 100s of diagrams instead
of several 100 000s).

The paper is organized as follows. In Sec. II the
elements of the quark-diquark model necessary for the
present calculation are briefly introduced. The mecha-
nism of independent scatterings is envisaged in Sec. III,
where gluonic Sudakov corrections in the context of the
quark-diquark model are discussed and a factorized for-
mula for helicity amplitudes for the Landshoff contribu-
tion to elastic proton-proton scattering at wide angles
is given. Section IV contains a discussion of numerical
results. Conclusions are given in Sec. V.

II. THE QUARK-DIQUARK MODEL

The basic assumption of the diquark model is the clus-
tering of two of the three valence quarks in a baryon
on an intermediate energy scale, which allows us to de-
scribe these two quarks, including correlation effects, as
an effective particle, the diquark. Hence some nonper-
turbative effects still present on this intermediate scale
are taken into account. The.coupling of spin-1/2 and fla-
vor (isospin-1/2) wave functions of two quarks leads to
scalar and vector diquark wave functions. The symmetry
of proton wave functions requires the spin and the flavor
parts of the diquark wave functions to have the same sym-
metry. In this paper only the scalar sector of the model
is considered, which is known to give rise to the bulk of
numerical results. The vector sector is esssential for spin
effects, but may be negligible for cross section results.
The quark-scalar diquark (S) Fock state contribution to
the proton state as a function of the usual longitudinal
momentum fraction ¢ and transverse momentum k; of
the quark with respect to the proton’s momentum P is

drd?k,
P Asg= | — % Wg(z,k
1P N)sq /mws\/ﬁ s(@k.)
x|S(a', k) ua(z, k1)) , (1)
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where ' = 1 — z is the longitudinal momentum fraction
of the diquark and k', its transverse momentum.

The dynamical content of the model is invoked by
treating the diquark as an elementary particle with cor-
responding Feynman rules for the propagator of a scalar
diquark and the gluon diquark vertex as

)

S propagator: —————
propag p? —mg? +ie

17
(2)

SgS vertex : ig,t® (p1 +P2)u

respectively, where g, = \/4ma, is the QCD coupling, i, j
are color indices, and t* = A*/2 are the Gell-Mann color
matrices. Diquarks are in an antitriplet color state, as
is necessary to form a color neutral baryon out of a di-
quark and a single colored quark. The composite nature
of the diquarks is taken into account by the introduc-
tion of phenomenological vertex functions which may be
parametrized by

Fs(Q?) = bs (__95_)
Qs?+@Q2?)’

1 for Q2 < Q%,
s = (3)
as(Q%)/as(Q%) for Q%> Q%,

where Q2 is the modulus of the squared momentum of the
gluon entering the vertex. This form is chosen to ensure
that the diquark model evolves into the pure quark HSP
in the limit Q% — oo.

III. LANDSHOFF CONTRIBUTIONS TO pp
ELASTIC SCATTERING

A. The Landshoff mechanism

Independent scatterings in exclusive processes occur
when pairs of constituents accidently scatter by the same
angle. In this case the momentum transfer has not to be
distributed in the hadrons any further in order to guar-
antee nearly collinear outgoing constituents, which are
able to hadronize again; the outgoing constituents are
already suitably aligned by chance in this special kine-
matical situation. This results in a lower minimal num-
ber of gluons to be exchanged as compared to the min-
imal number of gluons necessary in a general HSP dia-
gram. Consequently, with increasing energy Landshoff
contributions do not decrease according to “dimensional
counting” rules [22], but a bit slower.

This so-called Landshoff effect may be explained by
the observation that components of momenta transverse
to the scattering plane exhibit a different scale depen-
dence as compared to the other components. The reason
for this behavior is that independent scatterings can be
spatially separated in the direction transverse to the scat-
tering plane. On the contrary, with respect to directions
in the scattering plane the independent hard scatterings
are restricted to take place in a small region, the exten-
sion of which is inversely proportional to the center of
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mass energy, i.e., proportional to 1/Q.

The scaling behavior may be illustrated by consider-
ing the kinematics of a Landshoff process. In the quark-
diquark model two types of diagrams contribute as in-
dicated in Fig. 1. Figure 1(a) corresponds to an in-
dependent quark-quark and diquark-diquark scattering,
whereas Fig. 1(b) shows two independent quark-diquark
scatterings. The kinematics of Fig. 1(a) will be dis-
cussed in the following; the kinematics of Fig. 1(b) can
be inferred from the former by substitutions. Neglect-

J

p1=z:1P1 +k
p2 = z2P2 + ks
ps = z3P3 + kj
Ps1=z4P4 + ky

The internal momenta of the diquarks, p}, have an analo-
gous form. In the energy components extra terms, o;/Q,
are included to allow for “on-shellness” of the quarks.
Assuming all transverse momenta (and, therefore, all o;
induced in the energy components by the transverse mo-
menta) to be small compared to Q, the four-momentum
conservation for the quark-quark scattering reads

6@ (p1 + p2 — p3 — pa)
~ 8 (x1 — z3) 6 (z2 — T4) 6 (z1 — 2)

2@Q3siné
X6 (kiy + kay — kay — kay) - (6)

All longitudinal momentum fractions x; involved in
the quark-quark scattering are constrained to be equal.
This is characteristic for the special kinematic situa-
tion in the Landshoff mechanism. The usual, hadronic
Mandelstam variables take the values s = 4Q2? and
t = —2Q2%(1 — cosf). Their partonic counterparts are
approximated by § ~ x2s;f ~ x2t;3 ~ z'2s;t' ~ z'%t.
Hence, both partonic scattering angles are equal to the
scattering angle of the hadronic process and, therefore,
aligned constituents remain aligned during the scattering
process. The power of Q in the denominator of Eq. (6) is
determined by the scaling behavior of the energy compo-
nent and the two momentum components in the scatter-

b)

FIG. 1. Types of diagrams contributing to elastic pro-
ton-proton scattering at wide angles via the Landshoff mecha-
nism. Protons are considered as quark-diquark systems; dou-
ble lines indicate the diquarks.
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ing masses and choosing the scattering plane to be the
(z-z) plane, the momenta in the hadronic center of mass
system are given by

Pl = (Q)OvaQ)3 P2 = (Q!0707 —Q)1
P; =(Q,Qsinb,0,Q cosb), (4)
Py =(Q,—Qsinh,0,—Qcosh) .

The internal quark momenta [see Fig. 1(a)] may be
parametrized as

= p1 = (21Q + 01/Q, k12, b1y, 21Q),

= p2 = (22Q + 02/Q, kaz, k2y, —72Q),

= p3 = (z3Q + 03/Q, z3Qsin b + k3., kay,z3Q cos 0 + k3.),

= ps = (24Q + 04/Q, —24Qsinb + kyz, kay, —T4Q cos 0 + ky;) . (5)

—

ing plane. The momentum conservation in the direction
transverse to the scattering plane (here in the y direc-
tion) is independent of the Q scale, as can be seen from
Egq. (6).

The energy dependence of the hadronic scattering am-
plitude for the Landshoff process may now be summed
up as

My ~ Q™ FA(Q?) (modulo logs) . (7)

The factor Q3 originates from the momentum conser-
vation for the quark-quark scattering, Eq. (6). The mo-
mentum conservation for the diquark-diquark scattering
has not to be considered separately, because it is au-
tomatically implied due to the overall (hadronic) mo-
mentum conservation, if that for the quark-quark scat-
tering holds. The second factor, FZ(Q?), stems from
the diquark-diquark scattering, whereas the quark-quark
scattering only depends on the scattering angle. The
hadronic wave functions depend only logarithmically on
the energy scale. Consequently, the Landshoff contribu-
tions to the differential cross section for elastic proton-
proton scattering in the quark-diquark description be-
have as

do

= 1(s/t) - 5% - FA(QY) — f(s/t) - 5°

for s —>o00. (8)

This has to be compared with the predictions from
the dimensional counting rules: Inserting one additional
hard gluon in a Landshoff diagram converts it into a HSP
diagram. Then, there are no longer two separate momen-
tum conservations, and the Q—3 dependence caused by
the § function is dropped. But instead, the additional
elements of the Feynman diagram give rise to a factor
Q~*. (The insertion of a virtual gluon between two quark
lines, for example, introduces two quark propagators, two
quark-gluon vertices, and the gluon propagator, behaving
asymptotically like {Q71}2, {Q°}?, and {Q 2}, respec-
tively.) Thus, the amplitude for a general HSP diagram
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behaves as Q~* FZ(Q?), which asymptotically leads to
an s~ 10 behavior for the differential cross section.

B. Sudakov corrections

The leading radiative corrections to elastic proton-
proton scattering are similar in form to vertex loop cor-
rections. For the case of QED Sudakov [9] has shown
that the coincidence of “soft” and “collinear” divergences
in vertex corrections typically leads to double logarith-
mic terms. Infrared divergencies are regularized in these
calculations by allowing for small virtualities of external
fermion lines. A similar form has been derived for QCD
vertex corrections [23], where the non-Abelian character
of QCD is reflected in the appearance of In[ln(q2/m?)]
terms. Higher order of loop corrections may be taken
into account by exponentiating single-loop results [24].

In the quark-diquark picture, Sudakov corrections to
proton-proton scattering are very similar to the correc-
tions in the pion-pion case, due to the fact that diquarks
carry the same color as antiquarks. In Fig. 2 two types
of gluonic corrections are indicated. In axial gauge lead-
ing logarithms are given by corrections of type I, which
may be factorized into the wave functions. Corrections of
type II, which are nonfactorizable, result in nonleading
logarithms.

A single-loop calculation in leading logarithm approxi-
mation has been carried out for gluonic corrections to the
proton wave function in the quark-diquark model. Expo-
nentiating the result to account for higher loops (but not
for nonleading logarithms) leads to a suppression factor

exp [—S(:I:,b, Q)] = exp [-'-S(.’B, b7 Q) - s(l —z,b, Q)] (9)

with
_Cr zv2Q In (zv/2Q/Aqcp)
s(z,b,Q) = 33, {ln (AQCD ) In ~n (bAqop)
—In (z\/——zQ) —ln(bAQCD)} ; (10)
Aqcp

where Cr = 4/3 is the color factor and £, = (11 —

a)l. a)IL

FIG. 2. One-loop gluonic corrections to the diagrams of
Fig. 1. Type I corrections may be factorized into the wave
functions. Type II corrections are nonfactorizable.
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2/3ng)/4. Throughout this paper ny = 3 and Aqcp =
200 MeV is used. The result in Eq. (9) and Eq. (10)
is equal to the correction for a pion wave function and,
hence, confirms that Sudakov corrections depend on color
and not on spin.

An essential point in Eq. (10) is the appearance of
the “impact parameter” b, which acts as an infrared cut-
off. The physically intuitive picture is that the proton
is viewed as a color dipole, formed by a quark and a
diquark. Therefore the momentum range of soft glu-
ons contributing to the corrections is limited: The upper
limit is given by the large component of the quark (di-
quark) momentum, i.e., £v/2Q or z'\/2Q, respectively.
Harder gluons are considered as higher order corrections
to the hard scatterings and not as a part of the soft Su-
dakov corrections. The lower limit is induced by the in-
verse of the transverse separation of the color charges,
1/b. Gluons with wavelengths larger than the dipole pa-
rameter b effectively experience a color neutral object and
decouple from the proton. The larger the range of mo-
menta between these two limits for a given configuration,
the stronger is the suppression by the Sudakov factor.
For a very small transverse separation the infrared limit
1/b is close to the upper limit; there is no suppression.
A larger value of b results in a strong suppression. In
Fig. 3 the Sudakov factor Eq. (9) is displayed for a given
value of z = 0.5 and different values of Q. Clearly the
suppression tends to force b to zero for increasing Q.

Although the tendency of the Sudakov corrections to
keep colored constituents together is somehow similar to
the effect of confinement, it should be emphasized that
Eq. (9) and Eq. (10) are entirely perturbative. The Su-
dakov factor describes the fact that the probability for
a scattering process to take place in the exclusive chan-
nel is decreasing with increasing spatial separation. It
should not be mixed up with the nonperturbative effect

o S0 f T ! ' ' ]
— — In(s/s)=2.0
Tk SRS - -~ In(s/s)=4.0 ]
:\\ \ N ~ ~ —-— In(s/s )= 6.0
AN S N —-— In(s/s)=8.0
0.8 ":'\\.‘\ \ N \\ —--= In(s/s)=10.0 ]
06 |\
04
0.2 F
oL
0

b[GeV]

FIG. 3. Sudakov factor of Eq. (9) for z = 0.5 and
different values of In(s/se) with so = 1GeV? (dashed
and dashed-dotted lines). For comparison the Gaussian
exp (—b2 /4 ﬁz) caused by the intrinsic transverse momentum
dependence is also shown (solid line).
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of confinement.

Resummation techniques based on renormalization
group equations have been developed to take into ac-
count leading as well as nonleading logarithms to all or-
ders [25,26,7]. Working in a phenomenological model like
the quark-diquark model, it seems reasonable to take a
pragmatic point of view: Only the exponentiated, lead-
ing logarithmic corrections of Eq. (9) and Eq. (10) are
considered in the present calculations. Tacitly it is as-
sumed that the neglect of nonleading corrections is an
acceptable approximation, as is indicated by the results
of resummations in the pure quark picture.

Mueller [27] and Botts and Sterman [7] have shown,
for the cases of pion-pion and proton-proton scattering
in the pure quark picture, that gluonic Sudakov correc-
tions to the Landshoff contributions shift the power of the
asymptotic behavior near to the dimensional counting ex-
pectation. Their arguments can readily be transferred to
the present case of proton-proton scattering viewed in
the diquark model: Assuming, for the moment, that the
only b dependence of the amplitude is contained in the
Sudakov factors Eq. (9) of the four proton wave func-
tions, the integration over the b space can be estimated
by insertion of Eq. (10) and the use of a saddle-point
approximation in the form
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[ @ expl-45(2,5,0)

VI

- Aqep 1+¢

§ (‘/MQ>—cln

Aqcp

/i (VEzZQ/maco)

1:-:)

. (11)

where

c

_ 4Cp _ 64 1 (\/Zza:’Q)_m

B 27 " Aqcp \ Aqep
(12)

Thus the leading power of @, induced in the amplitude
by the Sudakov corrections, is given by —c In (1 + 1/¢) =
—0.83. Consequently the power of s in Eq. (8) for the
differential cross section is changed to —9.83, which will
be not distinguishable experimentally from a power —10
in the foreseeable future.

C. Hadronic helicity amplitudes

Using Eq. (1) for the proton helicity states, a matrix element for the hadronic process reads

d.’l?,d ICJ_,

(P3Py|T| P, Py) /H 167r3\/_ Us(p3)¥s(pP4)¥s(p2)¥s(p1)

X {<Q3Q4|T|q1q2>(S3S4|T,|SZSI) + <q354|T|9251)(53Q4|T'|5241)} ) (13)

where T' and 7" denote the two partonic transition matrices of the independent scatterings. S; and g; symbolize the
ith scalar diquark and the ith quark, respectively. The momenta of hadrons, P;, quarks, p;, and diquarks, p/, are
defined as indicated in Eq. 84) and Eq. (5). Recalling the relation between transition matrix elements and Feynman
amplitudes Ty; = i (2m)* 64 (P; —P;) M #i and the fact that momentum conservation for each of the independent
partonic scatterings implies the overall hadronic momentum conservation, Eq. (6) leads to

Myi(s,t) = (2 )8 25 Q3 sm19/ 2212 /Hd kii 6 (kiy + kay — kay — kay)

X{\I’g(z’kl‘l)\l’g(zvkﬂi) qu;qq(“’a §ai)Mss;Ss (z,8 ,t ") Us(z,ki2)¥s(z, ki)

+05(a, —k 1)U (x, ki3) Mysies(z, §,8) MS, s, (2,8, 1) Us(a, —ku)xps(m,k“)} , (14)

where M and M’ denote the partonic amplitudes. Fol-
lowing the basic idea of Botts and Sterman [7], a fac-
torized formula can be derived, when the remaining §
function in Eq. (14), which is caused by the conservation
of momentum components transverse to the scattering
plane, is expressed by its Fourier transform

) (kly + kzy — k3y — k4y)

1 *® .
= o [m db et b (krythay—ksy—kay) (15)
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The terms e’ *v may be reabsorbed together with mo-
mentum integrations over the k;, by the definition of
wave functions in the form

= dkl —ib-
\Ils(m,kiz,b) = / —2—‘”2 \Ils(w,kl,i)e bkiy . (16)

These wave functions ¥ s(z, kiz,b) are the Fourier trans-
forms of the old ones ¥g(z,k ;) with respect to the y
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component. Equation (16) defines the parameter b to be
the conjugate variable to the transverse momentum k;,.
Hence, as was mentioned above, b may be associated with
the separation of quark and diquark in the proton in the y
direction. The effects of soft gluonic Sudakov corrections
are taken into account in leading logarithm approxima-
tion at this stage of the calculation by multiplying the

wave functions ¥(z, k;;,b) with the exponential factor
exp [S(z, b, Q)] of Eq. (9).

The insertion of Eq. (15) and the use of the definition
Eq. (16) leads to the factorized formula

) 1 bode 24
. t —— . X -
M;yi(s,t) (2m)5 25 Q3 sinf /0 T2z’ / db/ i=1 dia exp =455 Q)

x {\i/g(m, kao,b)U%(T, ksx, b) Myggq(, 3,8) Mg, s5(x,8',1') Us(, kaay b)) Us(, kiay b)

+\i’*s($l, k4:cv b)\i}g(:E’ kSza b) MqS;qS(mv §s i)M.’Sq;Sq(z» éla tAl) \i/s(:l:/, kZma b)\ilS(-'Ey klz: b)} (17)

for the helicity amplitude. Note that it is the inclusion
of transverse momenta in the calculation which provides
the key to deriving the factorized formula. This is based
on the simple fact that the Fourier transform of a convo-
lution integral factorizes. Furthermore, the gluonic cor-
rections are treated such that they are described by ex-
ponential factors to the wave functions, which do not
destroy the factorization.!

To perform the integrations over transverse momenta
ki and ky;, the latter contained in the definition of the
NG s(z, kiz,b), an ansatz for the wave functions has to be
made. Here, the choice

Us(z, ki) = fs ¢s(z) E(z, k1) (18)
is used where
S(z, ki) = 167% 5 g(z) exp [—g(z) B2 k1]
and

g(z)=1 or 1/zz’ . (19)
The transverse momentum dependence is modeled as a
simple Gaussian, where the case g(x) = 1 assumes fac-
torization of longitudinal and transverse degrees of free-
dom and the case g(z) = 1/(xz’) is inspired by harmonic
oscillator wave functions transformed to the light cone,
which have been proposed to describe meson wave func-
tions [28]. Correspondingly, two types of DA’s are used
in the form

! As was shown in [7] the factorized form holds even for loop
corrections, which cannot be written as an exponential multi-
plying the wave functions (type II in Fig. 2), when a suitable
“soft approximation” is used.

2
pa(z) = Nazz" exp [—52 (ﬁ + m—%)}
xr

for g(z)=1/zz’, (20a)

¢B(z) = Npzz' for g(z)=1. (20b)
The polynomial ~ xz'® is the equivalent to the asymp-
totic DA ~ z;z,z3 in the pure quark picture and is
related to the latter by integration over one degree of
freedom. The values of Ny and Np are fixed by the
normalization condition fol ¢(z)dz = 1. The Gaussian
ansatz for the k; dependence models the unknown, in-
trinsic (nonperturbative) transverse structure of the pro-
ton. Note that fixing the oscillator parameter § with
a phenomenological input, like the root mean square
(rms) of the transverse momentum (k,; ?)*/2, introduces
a hadronization or confinement scale.

With the ansatz of Eq. (19) the transverse momentum
integrations lead to

1473

L ode
_ 4
Myi(s,t) = Q3 sinf fs /0 z2z'?
« /db #4(z) M(z,8,8) M’ (2,8, 7)
bZ

X exp [_W] exp[—4S(z,b,Q)] -
(21)

Equation (21) displays the two exponential suppression
factors brought about by the intrinsic, nonperturba-
tive transverse structure and by the perturbative Su-
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dakov corrections. Obviously, the borderline between
both effects will not be clear cut in nature. Neverthe-
less, Eq. (21) indicates the point of view adopted in the
present paper: The perturbative formula for the Sudakov
factor is taken literally even in regions where perturba-
tive calculations are known to become invalid, i.e., 1/b
as low as Aqcp- The intrinsic transverse structure, rep-
resented by the Gaussian, gives a weight function for the
probability of finding transverse distances in a proton.
Configurations with large b values, corresponding to the
soft regions mentioned above (i.e., 1/b = Aqcp), have a
tiny probability to be found. Hence the error induced in
the calculation by retaining incorrectly the perturbative
Sudakov formula in the very soft region is expected to be
small.

It is instructive to take a closer look at the inter-
play of both exponentials in Eq. (21). In Fig. 3 the
Gaussian exp (—b%/40%) [i.e., g(z) = 1] for the value
B% = 1.389 GeV~2 (see Sec. IV) and the Sudakov fac-
tor exp [—S(z = 0.5,b,Q)], the latter for different values
of In(s/s¢) with s =1 GeV?, are shown for compar-
ison. Clearly for large values of In(s/sq) the Sudakov
factor dominates the product of the two exponentials.
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Thus, the asymptotic behavior of the cross section as es-
timated by the saddle-point approximation Eq. (11), i.e.,
do/dt ~ 57983 is not affected by the additional intrinsic
transverse structure. However, in the region of In(s/so)
smaller than ~ 5 GeV? the Gaussian dominates the prod-
uct of both exponentials. Hence, taking into account the
intrinsic transverse structure, e.g., in the form of a Q-
independent Gaussian as in the present work, damps the
Q@ dependence implied by the Sudakov factor at least in
the region of presently available data.

The transition from an energy region where the trans-
verse structure is dominated by the nonperturbative in-
trinsic momentum dependence to a region where it is
dominated by Sudakov corrections has been discussed re-
cently in [18], too. There, for the proton-proton elastic
scattering near the forward direction, the transition is
supposed to show up in the differential cross section as a
transition from a ¢t~® behavior to a t~1° behavior.

Using the Feynman rules of the quark-diquark model
the helicity amplitudes can be calculated. Only three of
them are nonzero and get contributions from four dia-
grams of the type shown in Fig. 1(a) and two diagrams
of the type shown in Fig. 1(b):

44 5 bz ,
{h"\‘?r( )= QQ;rsifrfo / z2z'? /oo @b exp [ (m)ﬁz] exp[~45(o,b, Qe (e (@)
x {454(:1:) F3(= t)P3) (s,1) — 2¢*(2)$*(2') Fs () Fs (@) P{3) (s ,t)} , (22)

where {)A} denote the three sets of helicities (++,+4), (+—,+—), and (—+,+—). The expressions P{ ay and 2%

{a}
are explicitly given by

s(s—1t)

i s(s—u)
Pil-)h++(3’t) = ( 12 + w2

u

s? i su st
- E) ﬁ(L+)++(5 t) = (—" - ﬁ) )
i 1u(s— u(s — u) ii su
P a-(69) = ( ( t 2 - 2 );Pi‘)*‘(s’t) = (%)

t

PO (s,8) = (t(s;t) _%t(su—t u)) P (s,8) = (%) _ (23)

u
Using these results the differential cross section

doPP—PP 1 1
dt Ldsh (s’ t) =

diquark

has been calulated for a scattering angle of 90°.

IV. NUMERICAL RESULTS

Parameters for the quark-diquark wave functions are
taken from [21]: Qs = 3.22GeV? and (2 = 0.247 GeV~?
and 1.389GeV~2 for wave functions (20a) and (20b),
respectively. These values for the oscillator parameter
correspond to a rms transverse momentum (k; %)/ of
600 MeV. The value for fs = 73.85MeV has been fixed
by fits to the data of electromagnetic form factors of the

167 s(s — 4m,2) 4

Mgt |+ | Mo * + |M+—,—+|2} (24)

nucleons [21]; for the quark and the diquark the follow-
ing constituent masses are used: my = 330MeV and
ms = 580 MeV.

Soft end-point regions of integration over longitudinal
momenta (z — 0 or 1) with corresponding singularities
in the strong couplings and in the gluon propagators are
avoided by the introduction of a cutoff parameter C and
the condition

EZC—A—

730 for¢{ =z,z’ . (25)
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Independence from the cutoff serves as an indication
for the range of applicability of the formalism. In the
region of small b values, b < 1/ V2zQ, the Sudakov
factor e~ 5(=Q) js set to unity, which is its value at
b=1/ V2zQ.

Results for Landshoff contributions to the differential
cross sections at 90° obtained with the wave function
from Egs. (18), (19), and (20a) are shown in Fig. 4. The
dimensionless quantity R(s) = do/dt|gpc x 107851055® is
plotted, which should become constant according to the
dimensional counting rules. Results obtained with wave
function (20b) are very similar in shape and magnitude
to those in Fig. 4. They are smaller by a few percent and
the independence of the cutoff is shifted a bit to higher
In(s/so). Since differences are really tiny, no extra figure
for this case is shown.

The rise of the curves at lower values of In(s/s¢)
is caused by the @ dependence of the cutoff prescrip-
tion and, more important, by the behavior of the phe-
nomenological vertex functions Fs(Q?), which have not
yet reached their asymptotic Q~2 behavior. The posi-
tion of the maximum is predominantly determined by
the value of the diquark parameter @Q@s. The decrease
of the curves is induced by the behavior of the strong
coupling; the cross section is proportional to a?.

A comment about the experimental data should be
made here: The data reveal roughly the expected scaling
behavior with s71°, modified by (as it seems to be) an os-
cillation. It has been suggested [29] that the data indeed
do not show the beginning of an oscillation, but rather
a two-peak structure, with the second peak caused by
diquark correlations in the proton. The present results
confirm the existence of a bump, even roughly peaked in
the energy region of interest. However, the shape and
magnitude of this bump disfavor this explanation for the
structure of the data.

A different explanation has been suggested some years

20 T YT A | T
3 f — cet ]
o -=-=- C=20 1
8 + — — C=40 ]
. & - -2 R C=6.0 ]
14 —-— C=80 7]
12 [ C=10.0
2 10 C b
8 F ]
6 F .
4r .
2 f :
of :
N P 2]
[} 8 10

In(s/s,)

FIG. 4. Elastic proton-proton scattering at 90°. The di-
mensionless quantity R(s) = do/dtlgoe x 1078 5°s5® ob-
tained with wave function (20a) is plotted against In(s/so).
Data are taken from the data compilation [31].
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ago. Ralston and Pire [30] concluded the existence of
a phase proportional to ln(s/sg) from analyticity prop-
erties of gluonic corrections and fitted the coefficients
to the data. Botts and Sterman [7] showed that cor-
rections of type II in Fig. 2, neglected in the present
paper, cause imaginary parts in the Sudakov functions.
However, the resulting phase is proportional to the ra-
tio In(s/so)/1n(bA), which approaches a constant in the
region where the saddle-point approximation Eq. (11) is
valid, because of the power-law behavior of the saddle-
point bsp ~ 57935, Although the derivation of the phase
from corrections of type II in Fig. 2 is beyond the scope
of this paper, a comment can be made about this prob-
lem: The inclusion of the intrinsic transverse structure,
neglected in previous papers, reconciles the s dependence
of the phase in the region In(s/s¢) < 5. Here, the Gaus-
sian damps the Sudakov factor and the dominantly con-
tributing b region is almost s independent.

The magnitude of the results in Fig. 4 is roughly by a
factor of 10 below the experimental data, but it is defi-
nitely not suppressed by many orders of magnitude as has
been presumed before [2]. In this sense the result is an
independent confirmation of the observations Botts made
in the pure quark picture [8]. At In(s/sq) = 5 the results
in [8] vary in the range R = 0.07-9.0 depending on the
distribution amplitude chosen and the value of the cutoff.
This is in accordance with the range R = 0.5-1.5 found
in the present calculation in the framework of the quark-
diquark model. The largest uncertainty in the magnitude
of the results is caused by the normalization of the wave
functions. The value fs = 73.85MeV is taken from fits
to the electromagnetic form factors of the nucleons [21].
These have been done without assuming a specified k
dependence, which leads to the freedom to vary fs in a
limited range. Assuming a specified k, dependence, like
the Gaussian in the present case, fixes the relation be-
tween fg, (kJ_z), and Pgs, the probability to find a pro-
ton as a system of a quark and a scalar diquark. The
presently used values of (k;?)1/? and fs correspond to
P,s ~ 1. Constraining, for example, this probability to
be P,s = 0.5 would change fs by a factor of 1/2 and cor-
respondingly change the cross section by a factor of 1/16.
These considerations may indicate that lack of knowledge
about the nonperturbative wave functions easily induces
uncertainties of one order of magnitude.

Comparison to experiment is, somehow, ambiguous
because the results show strong cutoff dependence in
the region of the data. Independence of the cutoff and
therefore applicability of the formalism is reached for
In(s/s0) >~ 6 (i.e., s ~ 400 GeV?). This has to be con-
trasted with a value of In(s/so) ~ 8 (i.e., s =~ 3000 GeV?)
given in [8]. Thus the hope of improving the applicabil-
ity down to lower values of s by using the quark-diquark
model is fulfilled.

A further improvement of applicability will surely be
obtained by taking into account also the transverse mo-
menta in the hard scattering amplitudes themselves,
which have been neglected up to now. Thus, the strategy
of [10,11], developed for form factors, could be adopted;
i.e., to characterize soft regions by both small  and small
transverse momenta (or large b values). These regions are
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suppressed by the Sudakov factor. The transfer of this
concept to the present case of proton-proton scattering
is not straightforward, because the inclusion of trans-
verse momenta in the gluon propagators would destroy
the factorized form of Eq. (21). What can safely be done
to improve the applicability of the calculation is the re-
placement of the arguments of the strong coupling in the
form

a, (a:zt) - a, [max (wzt,l/bz)] ,
(26)
a, (z'%t) = a, [max (w'zt, 1/6%)] .

Thus, the largest scale in each independent hard process
determines the strength of the coupling. For vanishingly
small z,z’ the transverse scale of the process takes over.
A similar approach has been used by Sotiropoulos and
Sterman [18] in the context of elastic proton-proton scat-
tering near the forward direction.

Results with these prescriptions, Eq. (26), are dis-
played in Fig. 5 in comparison with the curves from
Fig. 4. Evidently, they coincide asymptotically. For
small values of In(s/s¢) the modified version lies a bit
below the results obtained with a cutoff C = 1.1. This
effect is readily explained by noting that the arguments
of the coupling have become smaller on the average. It
is worth emphasizing that the modified result (i.e., the
solid line in Fig. 5) is derived entirely without a cutoff
(or C = 0). On the contrary, results of calculations with-
out the replacement, Eq. (26), diverge for C < 1. The
reliability of the modified calculation, and thus the effec-
tiveness of Sudakov suppression of soft regions, can be
checked by testing the portion which has been obtained
with reasonably small values of the strong coupling, say
a, < 0.5. It turns out that at In(s/se) = 1.5 already 52%
and at In(s/s¢) = 3 even 84% of the full result fulfills this
criterion.

Clearly, the simple replacement Eq. (26) does not sub-
stitute for a calculation with all the transverse momen-
tum dependence taken into acount in the hard scatter-
ings. But results are quite encouraging that a more com-
plete, still lacking, calculation will render the formalism
reliable down to the energy range of the data.

V. CONCLUSIONS

It has been emphasized in this work that transverse
momenta are the key to understanding multiple, inde-
pendent scattering processes with respect to factoriza-
tion and their scaling behavior. The present calculation
of Landshoff contributions to the elastic proton-proton
scattering at wide angles in the framework of the quark-
diquark model is an independent confirmation of obser-
vations made before [8] in the pure quark picture. The
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FIG. 5. Comparison of modified calculation, Eq. (26), with
the cutoff method (cf. Fig. 4). Both calculations are done
with wave function (20a).

magnitude of Landshoff contributions is small, but defi-
nitely not suppressed by many orders of magnitude and,
therefore, a priori not negligible. The main uncertainties
in the calculation stem from our incomplete knowledge
of nonperturbative wave functions. The applicability of
the calculation, as indicated by cutoff independence, is
beyond the range of experimental access. It has been
shown that the phenomenological quark-diquark model,
as additional assumption to the hard scattering picture,
improves the range of applicability of the perturbative
calculations substantially down to smaller values of s,
though still outside the energy region of experimental
data.

A way out of this problem has been discussed and nu-
merically tested by taking into account transverse mo-
menta scales, at least in the argument of the strong cou-
pling. The results clearly indicate that an extension of
the HSP by taking into account transverse momenta con-
sistently (i.e., also in the hard scattering amplitudes) will
lead to self-consistency of the perturbative calculation
and, thus, will improve the reliability of the results down
to even small values of s.
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