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Deep-inelastic spin and flavor asymmetry of the nucleon
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A systexnatic procedure is described which permits the structure functions of nucleons to be
calculated from a nonrelativistic constituent quark model. Transformation from the nucleon rest
frame to the light cone or in6nite momentum frame is accomplished based on work of Susskind, which
does not require the weak binding and nonrelativistic kinematical approxixnations used in previous
work. The light-cone distribution functions so obtained are then subjected to /CD evolution, giving
predictions for the quark momentum densities. The model incorporates SU(6) breaking by the
/CD-inspired one gluon exchange potential originated by De Rujula, Georgi, and Glashow, with the
parameters 6xed by Isgur and Karl from the N-4 mass splitting. In contrast with some previous
work, the parameter values which 6t the baryon mass spectrum are here shown to also give rather
good agreement with the deep-inelastic Savor and spin asymmetries in the valence region.

PACS number(s): 13.60.Hb, 12.39.Jh, 14.20.Dh

I. INTRODUCTION

It was a set of experiments at SLAC in the late 1960s on
deep-inelastic scattering &om proton and deuterium tar-
gets that showed the nucleon to be made of pointlike ob-
jects. Further studies with neutrinos, polarized electrons,
and muons established the spin, charge, and baryon num-
ber of the pointlike objects and showed they were quarks.
It was also recognized that these experixnents not only de-
tect quarks but directly measure their distribution within
the target. In more technical terms, they measure vari-
ous light-cone or infinite momentum frame (IMF) quark
correlation functions in the target ground state [1]. If
the wave functions of valence quarks were taken &om a
naive static quark model with the SU(6) symmetry built
in, the I'2 /Iiz" ratio and the nucleon spin asymmetry
would be independent of Bjorken x. Experiments show
clearly that these quantities are in fact strongly x depen-
dent. These observed inhomogeneities mean that quarks
with different quantum numbers are distributed differ-
ently within the nucleon. The purpose of this paper is
to explore a possible dynaxnical origin for the observed
inhomogeneities in nucleon structure [2].

The mass splittings in the ground-state baryon mul-
tiplet of course show that there is signi6cant spin and
flavor dependence in the internal structure of baryons. It
has been shown that the mass splittings can be well re-
produced by a nonrelativistic constituent quark model
(NCQM) incorporating a perturbing potential of the
form expected from one gluon exchange (OGEP) in
QCD [3, 4]. In this paper we employ the constituent
quark wave function &oxn this model to calculate the ob-
servables of deep inelastic electron- (or muon-)nucleon
scattering.

Indeed, it is physically reasonable that nonrelativistic
physics should dominate the measured structure function
ratios at moderate x. Recall that the valence quark dis-
tributions are peaked at Bjorken x 1/3 and vanish at

x = 0 and x = 1, while the sea quarks and gluons tend
to populate the small-x region. The limit z -+ 0 gener-
ally implies very large parton momentum in the proton
rest frame while z 1/3 implies a particle with nonrel-
ativistic momentum in the proton rest frame [1]. Hence,
within the context of the ordinary space-time descrip-
tion, one can anticipate that the small-x region is dom-
inated by sea-quark and gluon effects arising &om the
short-distance behavior of QCD, while the behavior at
moderate z values could be expected to be determined
by the same nonrelativistic interactions of constituent
quarks manifested in low energy spectroscopy.

Several previous studies have explored possible con-
nections between low energy properties of the nucleon's
quark structure and the inelastic structure functions.
Early qualitative discussions of the F2 structure function
ratio and the nucleon spin asyxnmetry by Close [5] and
Carlitz [6] gave compelling symmetry arguments showing
that the SU(6) breaking required to explain mass split-
tings in the baryon ground state should also give agree-
ment with the trends in deep-inelastic observables which
violate SU(6). Subsequently, detailed calculations were
undertaken by Le Yaouanc and co-workers [7] to explic-
itly compute the nucleon structure function &om a low
energy model of the nucleon wave function. Surprisingly,
the results were found to qualitatively contradict those of
the syxnmetry arguments of Refs. [5, 6]. However, other
detailed calculations of nucleon structure functions by
Close and Thomas [8] in the MIT bag model, and by
Dziembowski et aL [9] in the NRQM, did succeed in re-
lating the spin and fIavor deformation of quark parton
distributions to the QCD-hyperfine interaction in a low
energy model of the nucleon. ID this paper we carefully
reexamine the rest &arne to light-cone connection and the
signs of the mixing angles, involved in the calculations,
to resolve these discrepancies.

The plan of the paper is as follows. In Sec. IIA, the
conventional quark model wave function in the nucleon
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at rest is discussed. In Sec. II8, quark position-space dis-
tributions are calculated which explicitly show the space-
spin and space-Havor asymmetries induced by the color
hyper6ne interactions. The quark-parton model is usu-
ally formulated in a reference frame in which the nucleon
has a very large momentum (P m oo) or alternatively
in terms of new variables corresponding to rotating t and
z to the light cone. In Sec. III A we recall the relevance
of these light-cone variables for the interpretation of the
deep-inelastic scattering data. Then in Sec. IIIB, the
wave function for the nucleon in motion is constructed
&om the rest kame constituent quark model wave func-
tion. The present method is based on earlier work by
Susskind [10], Kogut and Soper [11] where systematic
use is made of a Lorentz kame in which the nucleon mo-
mentum is allowed to approach in6nity. As discussed in
Sec. IIIC this systematic procedure avoids the extreme
kinematical and weak binding assumptions, implemented
in the calculation of Refs. [7, 12]. These assumptions
seem to be responsible for the apparent contradiction
between the spectroscopic and deep-inelastic scattering
evidences for the hyper6ne forces of the OGEP type in
Ref. [13].

In Sec. III0 we use the quark light-cone wave function
to compute the longitudinal and transverse momenta dis-
tributions of valence partons within the nucleon, which
show the momentum-dependent spin and Qavor asymme-
tries induced by the color hyper6ne interaction. These
distributions provide the reference-scale parton distribu-
tions for input to a QCD evolution procedure carried
out in Sec. IIIE. This step introduces gluons and qq
pairs into the nucleon and completes the connection be-
tween the constituent quark wave function and the quark
spin and Havor distribution functions measured in experi-
ments. The ratio of spin averaged structure functions for
neutron and proton, and the deep-inelastic spin asym-
metries are calculated and discussed in Sec. IV. Good
agreement with experiment is found, strongly suggesting
that the OGEP does incorporate the essential physics of
symmetry breaking in baryon structure, both for mass
splittings and nucleon structure function ratios.

II. QUARK SPATIAL DISTRIBUTIONS

A. The nucleon wave function in the NCQM

To set a framework for our discussion, we will brieQy
summarize the essential elements of the NCQM and then
show how the model's dynamics leads to pronounced spin
and Bavor dependences of quark distributions within the
nucleon.

With only a few phenomenological parameters and a
simple physical picture, the NCQM allows the direct cal-
culations of many hadronic properties, giving a descrip-
tion of electromagnetic, weak and strong couplings, and
decay rates accurate at the 10—15% level [14, 15]. Su-
per6cially the use of a nonrelativistic model for nucleon
structure would appear to be wholly unjusti6ed. How-
ever, it has been shown [16] that there is good reason
to believe that a nonrelativistic model with weak quark-
quark interactions and large constituent quark masses

H = Hsz+H

The spin-independent part

Hsr=) ]m + ' )+) kr,', +—U'' I,
( p,'l

2m) -(2 " )' (2)

includes a con6ning harmonic potential plus an anhar-
monicity U'~ which together determine the overall size
of the system and give a symmetric momentum spread
to the three-quark state. On the other hand, the spin-
dependent part comprises the contact and tensor spin-
spin interactions of the two-body Fermi-Breit potential
from the nonrelativistic reduction of one-gluon exchange:

+-
r3"t2

3(S; r;, )(S, r,, )
r2 S, S~
"~2

(.3)

where r,.~ = r, — r~, S, is the spin of the ith quark, and
o., is the effective quark-gluon coupling constant.

In the Isgur-Karl implementation of the OGEP, the
spin-orbit part of the Fermi-Breit potential has been ne-

glected because its inclusion spoiled the agreement with
the baryon resonance spectrum. Moreover, the anhar-
monicity U;~ and the QCD-inspired hyperflLne Hamilto-
nian in (3) are treated as a perturbation. A basis of
harmonic oscillator wave functions with the same oscil-
lator parameter for each relative coordinate is used to
perform perturbation theory calculations.

The short-range contact farce in (3) is repulsive for
quark pairs in a spin-1 state and attractive for those in a
spin-0 state. It is known [3] to make the 6(1232) (with
spin 3/2) more massive than the nucleon (with spin 1/2).
The same force that splits the 4 and nucleon also mod-
ifies their wave functions. References [18, 19] estimated

( 350 MeV) is in fact a good (low momentum scale)
approximation to the nucleon structure with "nonlinear
chiral quarks, " in which the chiral symmetry of the un-

derlying QCD Lagrangian is spontaneously broken.
The advantage of the NCQM over the other princi-

pal model of nucleon structure (i.e. , the bag model [17]),
is that the NCQM is a genuine three-body descrip-
tion in which momentum eigenstates (needed for connec-
tion with experimental observables) are obtainable in a
straightforward way without undue problems from c.m.
motion corrections.

The present work employs the low-momentum-scale
description of the nucleon ground state in the NCQM
developed by Isgur and Karl [4]. The proton and/or
neutron contains three nonrelativistic valence quarks of
two flavors (uud/ddu) with eff'ective masses m M/3,
adjusted to the values of the magnetic moments. The
quarks are assumed to be pointlike, spin-1/2 particles.
They carry a color quantum number that inHuences the
permutation symmetry of the nucleon wave function.

The model contains two dynamical elements for ex-
plaining the nucleon ground-state properties. A nonrel-
ativistic Hamiltonian is split into
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p p A A S ~ S'i') = (y~y~+ y" y") (cos8 4 + sin8 4 ), (5)

and the mixed-symmetry iNM) component contains the
70, JV=2 component and is given by

INM) = -(x' y' @"+ x' y" C" + x"y' C" —x"y" C'").
2

A small D wave com-ponent [19] has been neglected here.
In Ref. [19], the mixing angles y and 8 appearing in

(4) and (5) were fitted to baryon octet spectroscopy with
the results

sing —0.27 and sin8 —0.35.

The oscillator parameter value o, = 410 MeV was used in
the fit, with the constituent quark mass value m = 336
MeV. It has been shown in Ref. [20] that relativizing
the Isgur-Karl model does not substantially change the
composition of the physical nucleon state.

In the first published analysis of this problem, the au-
thors of Ref. [18] obtained similar results for the mixing
angle y while neglecting the 56' component. Note that
the sign of the mixing angle y in (7) is opposite to that
of Ref. [18] because we use a different phase convention
for the configuration-space wave function in (4). For our
phase convention, see Appendix A.

It has been argued on physical grounds [21, 22] that
a spatially dependent spin-spin interaction that is, like
the one in (3), more repulsive for quarks with parallel
rather than antiparallel spins, induces a segregation of
charge within the nucleon. This effect leads to a nega-
tive mean-square charge radius (MSGR) of the neutron
and increases the size of the proton (compared to the size
obtained with the unperturbed symmetric wave function
only). But it should be noted that the proton and neu-
tron MSGR computed from the valence wave functions
of Eq. (4), while in the correct ratio to one another, are
incorrect in absolute value by a factor of 3 to 4 [23].

The above observation apparently indicates some im-
perfections of the NCQM in general and defects of the
standard nonrelativistic method of MSCR calculations
in particular. The conventional quark model formula
for charge radii is based on simple additivity (r2)
g(N[e; r2iN). This expression does not take into ac-
count that the radii are derived &om the electron scat-
tering amplitudes at nonzero momentum transfer q. In
particular, the Lorentz boost from P to P+ q contributes
to both nucleon anomalous magnetic moment and charge

the first order perturbation-theory wave function correc-
tion for the nucleon ground state. In general, there are
five SU(6) states with J+ = zi up toN=2 that can mix
through the hyperfine interaction. Using the notation
and conventions of Ref. [19] (summarized in Appendix A
of this paper), the nucleon ground state is of the form

N) = cosy INs) + siny INM)

where the totally symmetric component i') contains 58
plus 56' components and is given by

radius [24]. This gives nontrivial corrections to calcula-
tions based on simple additivity. Studies of these rela-
tivistic corrections for the nucleon model of Eq. (4) are
in progress and will be reported soon.

The above-mentioned inability of the harmonic-
oscillator implementation of the NCQM to simultane-
ously fit spectroscopy and ground-state size has been
observed to be corrected (i) by replacing the harmonic-
oscillator basis for the nucleon unperturbed states in (4)
by a more accurate hyperspherical harmonic expansion
technique [25] or/and (ii) by inclusion of the "pion cloud"
which arises naturally from spontaneous breaking of chi-
ral symmetry [26, 27]. Alternatively, one could simply fit
the harmonic oscillator parameter n and mixing angle to
the nucleon size rather than to the baryon octet spec-
troscopy. This refitting has been shown [28] to permit
correct radii to be obtained without affecting the calcu-
lated deep-inelastic neutron-to-proton structure function
ratio and the nucleon spin asymmetries. These latter cor-
rections are omitted &om the present work, which focuses
on the results obtainable &om the hyperfine configuration
mixing. Inclusion of the pionic corrections and more sys-
tematic studies of the sensitivity of the presented results
for the asymmetries to details of the three-quark wave
function will be also examined in the future.

It has been shown previously [28] that the segregation
effects for the 56 + 70 mixed wave function, induced by
the S; Sz term in the hyperfine interaction (3), can be
approximated by a diquark cluster wave function. This
approximation provides simple physical int;erpretation of
the 56 + 70 mixing. However, the clustering effect is
quantitatively rather weak (as noted in Ref. [28]).

q; (r) =) (N t iP" 8 (r —rs)iN g)

= 3 (N t iP b(r —rs)[.N t). (8)

Here, Pq,. is the projector for the k th quark on the quark
with Bavor q and spin i.

Within the present model, the proton s distributions
can be computed analytically from Eq. (8) and the pro-
ton wave function of Eq. (4). The resulting spin-fiavor
distributions in the proton are given explicitly by

u~(r) = —cos y Is~(r) + y 2 ssiny cosy Isi(r)
+2 sin y [s Igg(r) + Ipp(r)], (9a)

u~(r) = dt(r) = s cos y Is~(r) — siny cosy Isi(r)
3

+2 sin y [s Iip(r) + I~~(r)], (9b)

di(r) = s cos y Igs(r) —~2 s siny cosy Is~(r)

+s sin y Iii(r). (9c)

B. Quark spatial distributions in the NCQM

Using the nonrelativistic three-body wave functions
obtained from the perturbation theory approach outlined
above, one can obtain spatial distributions for quarks
with different spins and Bavors within the nucleon. The
distributions are defined by
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The overlap integrals for states (SS,SA, AA, pp) are de-
fined in Appendix B. The distributions of Eq. (9) are
plotted in Fig. 1 for the full wave function of Ref. [19],
which has the mixing angles given in (7) and contains
56 + 56' + VO components. The 56' component has
been neglected in some previous works on the present
subject [7, 9], essentially because it is itself SU(6) sym-
metric and so would not be expected to contribute to
SU(6)-breaking asymmetries in the quark distributions.

In a totally symmetric nucleon model (y = 8 = 0), all
of the distributions given above would be proportional to
one another according to

ut(r) = sf(r) u~(r) = d~(r) = —.'f(r) di(r) = —.'f(r)
(10)

where f (r) is a Gaussian function given in Appendix B.
The symmetric limit is indicated in Fig. 1 by the dashed
curve for ut(r).

Several observations should be made about the distri-
butions shown in Fig. 1. Note that in Eq. (9b) we still
have u~(r) = d~(r). Also, the constituent quarks are
seen to be highly polarized (ug(r) » u~(r), d~(r)) This.
would of course be true in the symmetric limit as well,
due essentially to the overall bound state quantum num-
bers.

The novel effect of the color hyperfine interaction (3)
is to shift ug(r) = dt(r) and d~(r) components slightly
to smaller r leaving at large r the dominant u~(r) distri-
bution. This Bavor-spin asymmetry is more pronounced
when the 56' component is neglected. This result could
have been anticipated from the argument given in Ref. [7]
for neglect of the 56' component. The Havor-spin asym-
metry will survive when transformed to light-cone mo-
mentum space, where it shows up as SU(6)-violating z
dependence of structure function ratios and spin asym-
metries.

III. QUARK MOMENTUM DISTRIBUTIONS

A. Structure functions and light-cone dynamics

The deep inelastic electron- (or muon-) nucleon
cross section is determined by the hadronic tensor

0.0 0.2 0.4 0.6 0.8 1.0 1.2
r[fm]

FIG. 1. The quark spatial distributions q(r) for the 56 +
5B' + 'FO mixing.

W„„(q,P, S), where q is the virtual photon momentum
(q2—:—Q2), P and Sare the nucleon momentum and po-
larization, respectively. The hadronic tensor is a current-
current correlation function

W„„(q,P, S)

1

8m
d ( e'~ ~(N(P, S)]J„' (()J„' (0) ~N(P, S)).

It depends on the electromagnetic current density, J„' (()
and the physical nucleon state ]N(P, S)), represented

by a wave function that is an eigenfunction of mo-

mentum, energy, and spin. Changing variables for any
four vector from the ordinary time-space components
a = (ao, a„a~) to light-cone variables a = (a+, a, a~),
where a+ = ao &a, one can show [29] that in the Bjorken
limit of deep-inelastic scattering (DIS) (i.e. , q -+ oo, q

fixed) the integrand in (11) is dominated by contributions
from the tangent plane to the light-cone (+ = 0. Thus
the appropriate form of relativistic dynamics [30, 31] for
the description of DIS is not the instant form but rather
the light-cone form with the coordinate (+ treated as a
"time" coordinate. Then, with this choice of dynamics
the current-current correlation function in (ll) becomes
a static correlation function determined exclusively by
the nucleon light-cone wave function [32, 33].

B. The nucleon wave function on the light cone

If we let the variable (+ play the role of time and quan-
tize QCD on the null plane, then a nucleon can be de-

scribed by the Fock space expansion

IN) = @',"„Iqqq)+ @,"„,I qqqg)+ @,"„„lqqqqq)+"-
(12)

where the first valence term contains only three quarks
but the other terms include gluons and quark-antiquark
pairs. The coefBcients

(zi, p~i, Ai, . . .), (13)

in this light-cone Fock expansion are the parton wave

functions which depend on the light-cone constituent mo-

mentum variables x; and p~;, as well as on helicity A,. and
other internal variables of the ith parton.

The variable x, is defined as a &action of the plus com-
ponent of the nucleon momentum carried by the par-
ton, so that p,+- = x; P+. Values of x,. must lie in the
range [0,1]. The light-cone momentum coordinates z,
with (P z, = 1) and p~, with (P p~, = 0), respectively,
are actually relative coordinates, i.e., they are indepen-
dent of the total momentum P+ and P~ of the nucleon.

As shown by I eutwyler and Stern in Ref. [31], the
light-cone wave function 4 is invariant under all kine-

matical Poincare group generators, including a Lorentz
boost along the z direction. Hence, it is determined if it
is known at the nucleon rest kame. This feature brings
great simplification to model building as well as matrix
element calculations where the nucleon wave function in
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different &ames is required as an input.
The NCQM is based on the hypothesis that hadrons

may be approximately described in terms of rest-&arne
configurations of a definite number of quarks and anti-
quarks. Although this so-called valence-quark approxi-

mation has not been derived &om any underlying field

theory of strong interactions, it is usually formulated
in a language of the instant-form Fock-space represen-
tation. For instance, a nucleon state is approximated in
this &amework by

l~) = f »"» (~„~„.2 ~2 P3 ~3) &», „,t„„,&„„,I&), (14)

k, =rIP with ) rl= 1, (17)

and letting P ~ oo, with the g held fixed and positive,
one gets, for the quark on-sheD energy,

p
— g2P2+ g2 + m2

g2 +m2=rlP+ ~ +O(P '),
2qP

and, for nucleon energy,

(18)

where 4N is taken to be the nucleon rest &arne wave
function, a solution of the Schrodinger equation. The
indices other than momentum and spin have been sup-
pressed.

Since the work by Weinberg [34] it is known that a Fock
state description of bound states is only well defined in
the infinite-momentum &arne (IMF) of the instant-form
dynamics, due to the simplified vacuum structure in this
limit. Later, Susskind [10] showed that the IMF limiting
procedure is essentially a change of variables &om the
laboratory time and z coordinates ($0, (,) to the light-
cone time and space coordinate (g+, ( ). We shall use
here Susskind's method to connect the quark momenta
and spins in (14) to the light-cone counterparts in (13).

In the IMF limit the observer is supposed to be moving,
with respect to the nucleon-rest &arne, at high velocity
in the negative z direction. Hence for a quark with mo-
mentum k and energy kp in the fast moving &arne where
the nucleon has energy E and the momentum along the
z axis P, the quark momenta in the nucleon rest frame
are given by the inverse Lorentz boost p = 1(p E- k) k,
z.e»)

pp ——cosh ~ kp —sinh cu k„
p, = cosh u k, —sinh cu kp,

PJ =1CJ )

where

E . P
cosh cu = —,sinh u = —. (16)

Expressing the longitudinal momentum of a quark in the
fast moving &arne in terms of a &action g,

is obtained:

1 ( p~2+m'l
)

+
rlM

PJ = kg»

(21)

Thus the limiting Lorentz boost indicated by (20) in fact
gives a definite and finite result relating rest &arne mo-
menta p to IMF variables (rl, p~). Now, identifying in
the IMF, the longitudinal fraction g = k, /P and the light
cone &action 2: = k+/P+, one finds that the finite limit
of the Lorentz boost in Eq. (21) is essentially a change

of variables &om the ordinary quark momentum (po, p, )
to the light-cone momentum (p, p+) or equivalently the
longitudinal momentum &action and the transverse mo-

mentum (z, p~), i.e.,

1 1 ( p2+m21
po= (p'+p-) —= —

I
*M+

2 2 ( xM

PJ = ~L.

(23)

(24)

The above IMF boost or the equivalent change of mo-

mentum variables in Eqs. (22) and (23) requires a corre-
sponding change of spin basis. As is known &om Ref. [35],
the ordinary spin basis Ip, s)T of the instant-form dynam-
ics is related to a spin basis Ip+, p~, s) of the light-cone
dynamics by a certain rotation in spin space. For a spin-

1/2 particle the rotation is known as the Melosh trans-
formation [36]. Although the Melosh rotation R which
gives

I p, s)T ——g R, , Ip+, p~, s'), is derived in Ref. [35]
we rederive the connection here by direct boosting of the
Dirac spinors to IMF. This parallels the derivation of
Eqs. (22) and (23) demonstrating a systematic feature of
the method.

For a &ee quark with momentum k in the fast moving
&arne and with spin projection s along the z axis, the
Dirac spinor in the standard representation [37] has the
form

ME = QP2+ M2 = P+ + O(P ), (19)2P
respectively. Now if these relations are used in Eq. (15),
for

u(k, s) = [ko+m] ,], t' x()
(k, +"

where the Pauli spinors are

(25)

p= hm

L(peak)k,

(20)
x(1) =

I 0 I x(4) =
I 1 I

.
then all infinities cancel out consistently and a finite limit

(26)
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Using the spinor representation of the boost operator p =
1(p m k) k in Eq. (15),

The coefBcients ¹ are determined by imposing the con-
ventional light-cone normalization condition [40]

Ld

S(p ~ k) = cosh ——n, sinh —,
2

' 2' (27) [dz] [d'p~] IC'r c(x' »') I' = 1

and defining

M(p+, p~, s) = lim S(p m k) u(k, s),

the infinite momentum spinors of Ref. [38] are obtained:

M(p+, pi, s)

where [dx] = Q dx b{ Q x —1)»d [d'p~]
Q d2p~ h( P p~). It should be noted that the standard
light-cone measure factor 1/ P x, was absorbed into the
function in (34).

With the Melosh rotation of Eq. (31), the light-c»e
spin wave functions for the p and A wave function corn-
ponents in (5) and (6) are given by

&(p++m) y(s)+cr~ p~ o., y(s)l
+2p+ g(p' —m) ~ ~(s)+~~ pi x(s)yI

LC =xi(SX28 (36)

Substituting y(s) from Eq. (26) gives the final result

&(p+, P~, T) =
&p'+

1 ~R

g2p+ P+ —m
R )

&(p+, p~ 4) =
2p+ P

&-"™) (30)

u(p, s) = ) R, , M(p+, pi, s'),

where the matrix elements of 'R are given by

(31)

u(p, T) = N '(z, p~) [(p+-+ m) u(p+, p~, T)
-p" ~(p', p. , ~)], (32.)

p = p~ p ipy) and p+ = z M.
It can be shown [39] that the conventional Dirac

spinors of Eq. (25) are connected to the IMF spinors of
Eq. (29) or Eq. (30) by the Melosh rotation

The light-cone spin wave functions resulting from this
transformation are given in Tables I and II.

With these results, the rest kame wave function of the
conventional constituent quark model is now transformed
into a valence component of the light-cone wave function.

As described, the underlying nucleon model contains
four parameters: the Gaussian spread o., the quark con-
stituent mass m, and the mixing angles 8 and &p. We keep
these parameters fixed at the values obtained from fits to
baryon spectroscopy in (7). Augmented by the transfor-
mations just discussed, high energy nucleon structure can
also be investigated with the same underlying model.

C. Discussion of related vrork

Before proceeding with the calculation of deep-inelastic
scattering observables, some limiting cases of Eqs. (22)
and (23) will be discussed in order to make connections
with earlier work [7, 41, 42].

Note first that expanding po ——gm2 + p2 on the left-
hand side (LHS) of Eq. (22) through terms quadratic in
momentum and summing over the three constituent par-
ticles gives the Brodsky-Huang-Lepage prescription [43]

u(p, $) = N '(z, p~) [ (p+ + m) 2 (p+, p~, J.)
+p~ M(p+, p&, T)], (32b) where

2

M —3m- -2m) (37)

with the normalization

N(z, p~) = /2p+ (po+ m). (33)

2 m2~.&~+ I,
o —g

Returning to the construction of the light-cone wave
function, we are now in possession of all the elements
necessary to write down the momentum and spin part
of the wave function. The Schrodinger wave functions
given in Eqs. (A15)—(A18) are transformed by applying
the substitution of Eqs. (23) and (24) and multiplying
by a factor K; (gx, ) i~2, defining at last the light-cone
momentum space wave function:

~Lc(zi z2 zs Pzi P&2 Pcs)

= N; 4'(pi, p2, ps)/gziz2zs. (34)

The index i refers to the wave function components with
different symmetries (S,S,p, A) given in Appendix A.

TABLE I. The light-cone spin wave function y& with

a=x I+m, p ' =p ~ip„, and N given inEq. (33).

Al A2 A3

TTT
TTJ
TlT
TlL
4TT
kTl
l4t

x v2 NiNgN3
L I03 P2 —A2 A3 PlI R L R2 Pl P3 1 P2 P3I R

0,3+Q3 Pl P2
R R+l +2 P3 Pl P2 P3
R—+I 2 +3 —+3 Pl P2

R R L R+l +2 P3 + Pl P2 P3
R R

&& 3 P2 —2 O3 Pl
R R2 Pl P3 l P2 P3

This prescription has been used in various collaborative
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TABLE II. The light-cone spin wave function yt with
a=z M+m, p ' =p pip„, and N giveninEq. (33).

Al A2 A3

tttttl
tk t
tie
hatt
4tllit

y~ v 6 NiN2Ng
L L L2al a2 p3 al a3 p2 a2 a3 pl

L R L R2al a2 a3 + al p2 p3 + a2 pl p3
R L L R2 al P2 P3 + a3 Pl P2

R L R R Ra2 P3 Pl P2 P3 2 al a3 P2
R L R L2 a2 pl P3 + a3 Pl P2

R R L R Ra2 P3 Pl P2 P3 2 a2 a3 Pl
2 pl p2 p3 + al a3 p2 + a2 a3 pl

R R L R R

R R R R R R2a3 Pl P2 al P2 P3 2 Pl P3

works by one of the present authors [44] and also by oth-
ers [45, 46].

If we use the additional approximation m M/3 (this
is often referred to in the literature as the weak binding
approximation), put p~ = 0, and expand the right-hand
side (RHS) of Eq. (23) to lowest nonvanishing order in
(z —1/3), we obtain

p, M (z —1/3). (39)

This limit of Eq. (23) is referred to in Ref. [7] as the
Licht-Pagnamenta prescription. Extensive use has been
made of this expression [7] as a mapping &om p, to z
over the entire kinematic range of p, &om —oo to +oo.
However, applying this prescription away &om z 1/3
(i.e., p, 0) is seen to violate the assumptions used in its
derivation. This leads to a number of technical and qual-
itative problems, including improper support properties
in x for the light-cone quark distributions, and to struc-
ture function ratios with qualitatively different z depen-
dences than those resulting from use of the full Eq. (23)
(see below). It should be noted that the IMF spinor of
Eq. (29) also disagrees with the corresponding spinors
used in Refs. [7, 47].

The transformation given in (23) and (24) on the other
hand has a number of desirable features. It is kinemat-
ically relativistic and reduces to the Licht-Pagnamenta
prescription when p~ ~ 0 and z ~ 1/3. Equation (23)
also has reasonable behavior at the end points of the al-
lowed interval in x. For a fixed p~ and z ~ 0 it gives
p, —+ oo in accordance with the definition of the light-
cone &action x, where the limit z -+ 0 implies very large
constituent momentum in the nucleon rest &arne [1]. On
the other hand, for z ~ 1 Eq. (23) gives a finite, mod-
erately relativistic value for p, . As will be seen below,
Eq. (23) also leads to results for the structure function ra-
tios which are in good agreement with experiment, while

I

using the symmetry breaking parameter values fitted to
baryon mass splittings.

Other alternatives to the present procedure also ex-
ist. Recently Coester and others [48] used Eqs. (22) and

(23) for transformation of momenta to the light cone,
but replaced M by Mo throughout. This permitted a
unitary relation to be obtained between the wave func-
tion expressed in the center-of-mass momenta and light-
cone variables. It also guaranteed that constraints such
as Zp, = 0 remained valid when expressed in terms of
light-cone variables. Unfortunately we have found that
this appealing approach gives physically unreasonable re-
sults, for example that the proton structure function at
large x is dominated by down quarks rather than up. An-
other option is to apply Eqs. (23) and (24) as given above
to the momentum wave function written in terms of rel-
ative momenta Eqs. (All) —(A14) and obtain a unitary
transformation of the wave function to ligh-cone vari-
ables. We find that this procedure also leads to incorrect
structure functions with, for example, the proton domi-
nated by down quarks at large x.

The normalization of Tables I and II is different &om
that given in Ref. [42] and later used in Refs. [44, 45].
In the previous work, the normalization coefficient of the
Melosh transformation N(z, p~) = /2p+ (po + m) had

to be approximated by V)'2z P+ (2 m), because the tech-
nical facility for performing multidimensional integration
with respect to the p~ variable was lacking. The nor-
malization given in the present work is more accurate
since the full multidimensional integration can now be
performed, including the kinematical dependence of the
N(z, p~). For this task the vEGAs algorit&m invented by
Lepage [49] has been used, along with the very efficient
routine FDAI by Dydek and Pindor [50]. All symbolic
calculations for this work have been developed in MATH-

EMATICA [51].

D. Quark light-cone momentum distributions

Quark probability distributions derived &om the IMF
or light-cone Fock expansion are of the form [32, 33]

e,"(z,pi)

=). (N t ~&q,
" ~(z —zi) ~'(pi —pJl)]N t)

l

= 3 (N t ]&,", b(z —zs) ~'(pi —p~s) I& t) (4o)

Using the explicit form of the light-cone wave function
found above, one obtains the following expression for
such probability distributions:

V;(z, p~) = cos &p M; (z, p~) ISS(z PL)+sing cosrp M "(z,p~) IS&(z, p~)
+2sin rp [M; (z, p~) Iqq(z, p~) + lH~~(z, p~) l»(z, p~)]. (41)

Note that ~; = M,". " for all spin projections i. The
factors M result &om the Melosh transformation and
are given in Tables III, IV, and V. Their static limits
correspond to the spin factors appearing in Eq. (9). The
momentum space overlap integrals I;~ are explicitly given

I

by

(42)

I;,(*,vi) = J )~~1)~'nil c')c(~ Pi) @'Ic(* P~)

xh(z —zs) b (pg —pcs).
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TABLE III. Melosh factor M (a + pi ) with
a=x M+I, .

TABLE V. Melosh factor M~~(a'+pi ) with a = z M+m, .

Flavor)spin
Flavor(spin 1'

(5 a'+ p~)/3
(a + 2 p~)/3

(a'+ 5 pi)/3
(2 a'+ p~)/3

+Pa
Q2

6 +pg2 2

P~

These multidimensional integrals must be accurately
evaluated in order to compute the observables discussed
below. The evaluation employs the light-cone relative
momenta introduced by Berestetskii-Terent'ev [40] and
the numerical method mentioned above.

Structure functions are de6ned in terms of quark dis-
tributions with the p~ dependence integrated out:

distributions of quarks within the context of the NCQM.
The distributions in the longitudinal momentum fraction
z and transverse momentum p~ are not factorizable, and
furthermore depend on flavor and spin. The distributions
of (p2&) as a function of z is given by

(
2

( ))
J p~ "'Ii~ a(»p~)

g*(z)

The spin- and fl.avor-dependent quark distributions
u, (z, Q2o) and d;(z, Q2o) for i =f, $ resulting from this pro-
cedure are shown in Fig. 2 for the 56 + 56' + 70 wave
function. Anticipating the results of the next section we
introduce the parameter Qo2, representing the (unknown)
low momentum transfer scale at which these distributions
(obtained directly from the nonrelativistic wave function)
are expected to represent the nucleon structure. The sub-
tle peak shifts and width differences among the distribu-
tions exhibited in Fig. 2 result entirely from the SU(6)
breaking inherent in the underlying nucleon model. This
is clear since in the static, SU(6)-symmetric model all dis-
tributions are proportional to the single universal func-
tion of x indicated by the dashed line.

The effect of using the kinematic transformation of
Eqs. (23) and (24) is indicated in Fig. 3. The figure con-
trasts spin averaged quark distributions u(z)/2 and d(z)
for the proton, calculated with the Licht-Pagnamenta
prescription of Eq. (39), with those calculated using
Eqs. (23) and (24). Use of Eq. (39) leads to a non-
negligible fraction of the distributions lying outside the
kinematically allowed region z C [0, I]. Also, at large z,
d(z) is larger than u(z)/2 when Eq. (39) is used, rather
than being smaller as found experimentally and as ob-
tained using Eq. (23). This difference in the quark distri-
bution functions is precisely the reason for the difference
in x dependence of the structure function ratios between
the present work and Ref. [7]. The apparent contradic-
tion between SU(6)-violating baryon mass splittings and
deep-inelastic observables is due to the use of the more
approximate Eq. (39) rather than Eq. (23).

The light-cone momentum wave functions given above
in Eqs. (34) and (36), combined with Eq. (41), give a full
description of the longitudinal and transverse momentum

The z dependence of (»(z))/M in the NCQM is exhib-
ited in Fig. 4 for u and d Havors separately. Note that
the mean square value of p& vanishes at z = 0 and x = 1

as it must on kinematical grounds [52]. In addition the
mean square value of the transverse momentum of a d

quark at moderate z is calculated to be as much as 30%%uo

larger than that of a u quark.
The observed flavor dependence of (p~&) is as expected

from the repulsive OGEP interaction between identical
quarks. This causes the u quarks to be more spread-
out in coordinate space than the d quarks and there-
fore to have lower (pz). The longitudinal distributions
of Fig. 2 do not show this intuitive behavior, due to effects
of the transformation to the IMF. The counterintuitive
behavior of longitudinal distributions has been previously
noted by Isgur [22] in the context of the IMF approach.

K. +CD evolution

Before using the present model to compute deep-
inelastic observables, the relation between the quarks of
light-cone Beld theory, and the constituent quarks of the
NCQM must finally be faced. This is a thorny theo-
retical problem with no definitive resolution at present.
However, detailed model calculations have shown that an
empirical connection can be established.

TABLE IV. Melosh factor M "(a + pz) with
a = x M -+ I,.

Flavor)spin
0.0

I ~ I

0.2 0,4
I !

0.6 0.8

v 2 (4 a' —p~)/3
—+2 (a + 2 p~)/3

~~ (
—a'+ 4 p~)/3

—v2 (2 a'+p~)/3 PIG. 2. The quark longitudinal-momentum distributions

q(z) for the 56 + 56' + '70 mixing.
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bov, Lipatov, Altarelli, and Parisi equations [55]. These
equations are of the form

4( t') .(t') '
dy ~&*& („,)dt' 2ir y (y)

1.0—

0.5—

L—P
where P is a probability function for a quark (or gluon)
to split into a quark (or a gluon). The parameter t' ap-

pearing in Eq. (45) is given by

t,
' = —1n(n, (Q )/a, (Q )), (46)

-1.0 -0.5 0.0 0,5 1.0 1.5 with Po ——11 —2ny/3 = 25/3, for four fiavors, and

FIG. 3. The spin-averaged quark distributions q(z) ob-
tained with two difFerent transformations of Eqs. (23) and

(39); solid lin- u/2 and dashed lin- d quark.
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Working in the MIT version of the bag model, JafFe and
Ross [53] proposed that experimental observables should
be compared to distributions calculated in the bag model
only after these are QCD evolved to some appropriate
momentum scale. The experimental momentum transfer
dependences of structure function moment ratios were
shown to extrapolate at low Q2 to the values computed
in the bag model. The individual moments (except possi-
bly N=2) were shown to be reasonably consistent with a
single low scale Q2o being associated with moments &om
a bag-model calculation, although an accurate value of
this scale could not be determined. A similar procedure
has been adopted by other bag-model practitioners [54].

In the present work it is proposed to approximate the
measured parton-quark and gluon distribution functions
by applying QCD evolution to the valencelike input &om
the nucleon model transformed to the light cone/IMF. It
will be shown that in the valence region (0.2 ( x ( 0.8)
the resulting structure function ratios and spin asymme-
tries are in fact not qualitatively changed by the evolution
procedure. The main features of the predicted distribu-
tions in this region are determined by the underlying spin
and flavor dependent OGEP forces in our model.

The technical approach to QCD evolution adopted
here is based on the lowest order approach derived by Gri-

n (Q2) 2 1

2m Pp In(Q2/A~qcD)
(47)

IV. RESULTS FOR LONGITUDINAL
STRUCTURE FUNCTION RATIOS

In the range 0.03 & z & 0.7 these equations are accu-
rately solvable by the polynomial expansion method of
Kumano and Londergan [56]. For z & 0.7, the convo-

lution method of Ref. [57] is used to provide improved
convergence. Even this method does not allow reliable
calculation of structure functions or ratios to the z = 1
limit. First, the Gaussian wave functions used here are
so strongly cut oE at large momenta that numerical ac-
curacy in the unevolved distributions becomes a severe

problem above x = 0.9. Since the convolution method
requires integrals over x, evolved distributions can only
be calculated reliably up to x 0.85. Therefore struc-
ture function ratio plots are given only for x & 0.85 in
Sec. IV.

The value of t' is related to the low momentum scale

Qo associated with the unevolved input distributions. In
the present work an optimum value 0.55 was obtained

by computing the structure function I'& and varying t'
until the evolved Ff matched experimental data (taken
&om Table 1 of Ref. [58]) near z = 1/3 for Q2 = 11.5
GeV2. For the calculation we have used four active fla-

vors and AqcD ——200 MeV. The value of t' so obtained
corresponds to Qp = 266 MeV. This is of course so small
a scale that the use of perturbative QCD evolution is

highly suspect. Moreover the detailed z dependence of
the predicted I"z turns out to be too steep at all z values.
This is always the case when pure valence quark inputs
are evolved to force a match to experimental structure
functions [59]. Adding a small intrinsic sea quark and
gluon component to the wave functions has been shown

to permit use of a more realistic Qo. This would also
lead to less steep x dependence. In the present work we

do not intend to go beyond the conventional NCQM and
restrict our prediction to the valence region (convention-
ally defined [14] as 2: ) 0.2). Note that we are interested
here in understanding the pattern of symmetry break-
ing from the conventional NCQM. We show explicitly in
Sec. IV that the structure function ratios are actually
quite insensitive to the evolution procedure.

FIG. 4. The quark transverse-momentum distributions
~(~)).

The structure functions I"~, gz, and the spin asymme-

try A~ are de6ned in the standard way according to for-
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mulas given in Appendix C. Figures 5—7 give the results
of the present model for the Fi structure function ratio
R"" and spin asymmetries Ai'". The short-dashed lines
give the symmetric limit (Io = 8 = 0), the dot-dashed
lines give the result without any QCD evolution, while
the solid lines include this effect. Results are given sep-
arately for the full 56 + 56' + 70 wave function and for
the restricted 56 + 70 case. The data points and as-
sociated errors for the Fi ratio are from the New Muon
Collaboration (NMC) [60], the proton spin asymmetry
data are from [61, 62], and the neutron spin asymmetry
data are from the recent Sl AC measurement [63].

In the SU(6)-symmetric quark model, the ratio R"i'
and asymmetries Ai would be independent of x, taking
the values 2/3 and 0, respectively, aside from a mild z
dependence of Ai resulting Rom the Melosh transforma-
tion. As a result of the symmetry breaking introduced
in the present model by OGEP, all the ratios acquire sig-
ni6cant x dependence, in reasonable agreement with the
trends of the experimental data.

The limiting values at x ~ 1 of A», A~&, and R""
are predicted by perturbative QCD [64] to be 1, 1, 3/7.
The present calculation of Ai does approach 1 as x +

1. In the neutron case, the spin asymmetry appears to
approach 1 for the 56 + 70 wave function but not when
the 56' is included. Away from x = 1, the 56' component
fitted to spectroscopy has little effect. Qualitatively this
can be understood by noting that the 56' is a symmetric
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FIG. 5. The ratio of the neutron to proton structure func-
tions compared with the data of Ref. [60]. (a) 5B + 5B' + 70
and (b) 5B + 70.

FIG. 6. The proton spin asymmetry compared with the
data of Refs. [61, 62]. (a) 5B + 5B' + 70 and (b) 5B + 70.

but radially excited component, having enhanced high-
momentum content compared to the ground state 56.
Thus the 56' dilutes the symmetry breaking eKect of the
70 admixture at the high momentum limit. For R"", the
present calculations approach 0.25 at x m 1, rather than
3/7 0.43. It is interesting to note that the perturbative
QCD estimates of Ref. [64] include SU(6) violation in the
photon-quark dynamics, but assume an SU(6)-symmetric
structure for the nucleon wave function (56 configuration
only) as z ~ l.

The QCD evolution changes the normalization of the
valence quark momentum distributions and shifts them
toward the small-x values. However, the effect of QCD
evolution on the structure function ratios in the valenc~
region is rather slight, and the evolved and unevolved ra-
tios are sech to approach each other as x —+ l. All of
this suggest that the x dependence of neutron to proton
structure function ratio and the nucleon asymmetries in
the valence region are essentially low Q effects. As Close
has observed, "the memory of the constituent quark spins
(and flavors) is not lost as one proceeds to the deep in-
elastic" [65].

We believe that this success of the QCD-inspired quark
model indicates that the same spatially dependent color
hyperfine interaction which breaks the mass degeneracy
of the nucleon and delta is also responsible for inhomo-
geneity of the quark charge, Havor, and spin distribution
within the nucleon.
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FIG. 7. The neutron spin asymmetry compared with the
data of Ref. [63]. (a) SB + 5B' + FO and ('b) 5B + TO

V. DISCUSSION AND SUMMARY

The nonrelativistic quark model was originally formu-
lated to account for the symmetries observed in static
properties of baryons. Natural extensions of the model
mere also able to give a reasonable account of the pat-
tern of symmetry breaking in static properties such as
masses and magnetic moments. In the present work, this
program has been extended to explain symmetry break-
ing patterns in deep-inelastic electron- (or muon-)nucleon
scattering observables. The principal SU(6) violating ef-
fects in deep-inelastic scattering are the x-dependent ra-
tio of proton to neutron I'2 structure functions, and the
proton and neutron spin asymmetries. These are shown
to be consistent with the same NRQM of the nucleon
which fits the static SU(6) breaking.

The success of the present treatment is obtained
through use of a transformation from nucleon rest frame
momenta to light cone and/or IMF momenta which
avoids strong approximations made in previous work.
QCD evolution is found to have a non-negligible effect
on the quark distributions themselves, but these effects
for the most part cancel out in the distribution function
ratios which correspond to the observables selected for
study.

The present model is deficient in several ways. First,
the underlying quark model does not give correct ab-
solute values for the neutron and proton charge radii,

although it does give the ratio of these quantities cor-
rectly. This problem is likely connected to the model's
use of structureless (pointlike) particles as valence quarks
and (inaccurate) truncated harmonic oscillator basis. In-
timately related to this problem is the fact that the QCD
evolution in the present work must be extended to a very
low (nonperturbative) momentum scale in order to match
the experimental value of F~ at x = 1/3. The valence

quarks of the NRQM are giving only the "core" of the
physical nucleon wave function; the overall size and the
normalization can only be accounted for if the pion cloud
or sea quark and gluon content are somehow included.
The literature contains several reasonably successful ap-
proaches to including these effects. However, the approx-
imate spin and Savor symmetry of the sea suggests that
its inclusion would not change the results obtained here
too much.

The present work identifies, at a low momentum scale,
a three-particle Schrodinger wave function in Eq. (14)
with the lowest particle-number component of the rela-
tivistic Fock space wave function in Eq. (12). The depen-
dent variables of these two functions are then connected
using the Lorentz boost of Eqs. (20) and (28). The trun-
cation of basis is still in the nature of a "prescription. "
This is also the case for all other such transformations in
use, because there is an inherent mismatch between the
fixed particle number, instant picture of nonrelativistic
quantum mechanics, and the indefinite particle number,
equal (+ = t + s picture of light-cone dynamics. The ad-
vantage of the method developed in the present work is
that the kinematical transformations used are obtained
from the basic kinematical definitions of the two pictures
without introduction of a drastic nonrelativistic approx-
imation as has been done in the past. The present pre-
scription has been shown to reduce in the nonrelativistic
and static (z ~ 1/3) limits, to the prescriptions used in
previous works. Only a complete relativistic solution of
QCD on the light cone would completely eliminate this
deficiency.

Note added in proof After the s.ubmission of this work
we received a paper on related work by Weber [66] which
shows agreement with our results for the phase of the
56 + 'FO wave function admixture and for certain exper-
imental predictions.

ACKNOWLEDGMENTS

We wish to thank Z. E. Meziani for providing experi-
mental data on the neutron spin asymmetry, M. Pindor
for the very eKcient integration routine FDAI, and J.T.
Londergan for the code used to solve the Altarelli-Parisi
equations for QCD evolution. One of us (Z.D.) would
also like to thank the Institute of Nuclear Theory at the
University of Washington for kind hospitality and finan-
cial support during the completion of part of this work.

APPENDIX A: FLAVOR AND SPIN WAVE
FUNCTIONS IN POSITION
AND MOMENTUM SPACE

Explicit formulas for the nucleon spin and fIavor wave

functions used in the present work are given here.
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The proton and neutron Bavor wave functions each
contain a mixed-symmetry, antisymmetric (p) and a
mixed- symmetry, symmetric (A) component. These are
given by

p~ = (udu —duu), y„= (2uud —duu —udu),
2 6

(Al)

—2
(3~' —~', —pi) 4"

3

20.'
(—p, . pA) c'o,

3

(
—p.'+») @'

3

(A13)

(A14)

(p~ = (udd —dud), rp„= (udd+ dud —2ddu).
2 6

(A2)

The spin wave functions with the corresponding sym-
metries are given by

X' = (Nt —hatt) X" = (2 tN —4tt —Nt),

To transform wave functions to the light cone, the
above relative momentum wave functions must be re-
expressed in terms of the individual momenta as

(Pl P2& P3) = @o =
s~z exp

I

—2, ) p,

(A15)

(A3)

—2
@' (ps, ps, iss) = Ao' —) .p.') Oo

3
(A16)

Xg = (tW —lN) Xg = (Nl+ lN -2 Wt).

(A4)

The Jacobi coordinates needed for the radial wave
functions are

c' (Pli P2i P&) (Pg Pl) @os
3

—2

(Pl& P2& P3) = (2P3 Pl P2) 4'o.
3

(A18)

1
p = (rg —r2),

2

1
A = (r, + r2 —2rs),

6
(A5)

APPENDIX B: SPATIAL OVERLAP INTEGRALS

1
p, = ~(pi —P2),

We define the function

1
Pp —— (Pg + P2 —2ps). (A6)

6
The integrals occurring in the evaluation of quark spa-

tial distributions within the present model are defined
here.

With the de6nitions

C =-eo(pA) = exp] ——(p iW ) [.s
ms&'

q 2
(A7) x = a r, f(r) = (3o. /2n) ) exp( —1.5z ),

Cl4 = (p +A —3a )4'o,
3

(As)

Internal wave functions are normalized with respect to
the measure f dspdsA

Then the spatial wave functions relevant for the
present work are Iss(r) = f d pdsA [cord O +sio8 8 )* 8 (r —is)

= f (r) [cos 8 + v 3 sin8 cos8 (x —1)
+sin'8 (4

s—'-, z + 4 x )j, (82)

the overlap integrals needed to evaluate Eqs. (9) in the
text are given by

20!4~= P ~ A@o,
3

4" = (P —A ) 4o.
3

(A10)

Iss(r) =f d A (cosd ds +siod ds ) ds" I (r —rs)

= f(r) [ cos8 (1 —x )
~3
2

In the momentum representation, wave functions are
normalized with respect to the measure J d p~d pq.
% ith the de6nition:—@o(p& Pi) =,&, exp' —,(p, +») l,~s/2 ( 2~2 8 )

(All)

the momentum wave functions used in the present work
are

+ sin8 ( —4 + 2 x —
4 x )),

Iso(r) =f d pd A (4' ) I (r —rs)

=f( ) (-.'--', *'+-'. *'),

I ( ) = f d'pd'A (dr)' I'(r —r, ) = f(r) r'.

(83)

(85)
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APPENDIX C: FLAVOR AND SPIN
ASYMMETRIES

The spin average and spin weighted nucleon structure
functions are given in terms of quark charges and distri-
bution functions by the standard definitions

&e = ~t+ vt —Z —
v4.

»(* Q')
i(*,Q ) —F ( Q, )

(C4)

(C5)

Fi(*,Q') = —) e,' q'(~, Q'), (Cl)
~.,( Q.)

FP(»Q')
Fx'(* Q') (C6)

2 —1
»(2:,Q ) = —) e, Aq, (x, Q ),

e = et+c~+eg+c~,

(C2)

(C3)

Here the index i refers to quark Havor, and the bar
over a distribution refers to the corresponding antiquark
distribution, generated by the /CD evolution procedure.
Note that the anomaly contribution to gq is neglected,
although the present model does in principle permit cal-
culation of the gluon polarization.
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