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Variational approach to the spinless relativistic Coulomb problem
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By application of a straightforward variational procedure, me derive a simple, analytic upper
bound on the ground-state energy eigenvalue of a semlrelativistic Hamiltonian for (one or two)
spinless particles which experience some Coulomb-type interaction.
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I. INTRODUCTION

A standard (semi) relativistic description of bound
states built up by particles of spin zero is provided by a
Hamiltonian H which incorporates relativistic kinematics
by involving the "square-root" operator of the relativistic
kinetic energy, gpz + m2 for a particle of mass m and
momentum p, but describes the forces acting between the
bound-state constituents by some coordinate-dependent
static interaction potential V(x).

For the case of bound states consisting of two particles
of equal mass m, the generic Hamiltonian in the center-
of-momentum kame of these constituents, expressed in
terms of relative moment»~ p and relative coordinate x,
reads

II = 2/p2 + m2 + V(x).

The equation of motion resulting &om this type of Hamil-
tonian is the well-known "spinless Salpeter equation. " It
may be obtained from the so-called Salpeter equation [1]
by ignoring all spin degrees of &eedom and considering
positive-energy solutions only. The Salpeter equation, in
turn, approximates the Bethe —Salpeter equation [2] for
bound states within a relativistic quantum field theory by
eliminating, according to the spirit of an instantaneous
interaction, any dependence on timelike variables. A cen-
tral role in physics is played by the Coulomb potential, a
spherically symmetric potential, i.e., one which depends
only on the radial coordinate r = ]x~, parametrized by
some coupling strength e:

has been the subject of intense study. First of all, Herbst
[3], in a rigorous mathematical discussion, developed the
complete spectral theory of the one-particle counterpart
of the operator (1), (2), from which one may directly de-
duce for the two-particle relativistic "Coulombic" Hamil-
tonian under consideration its essential self-adjointness
for x & 1 and the existence of its Friedrichs extension up
to the critical value m„= 4/m of the coupling constant,
and derived a strict lower bound on the energy Eo of the
ground state which translates in the two-particle case to
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Durand and Durand [4] obtained, in a certainly rather in-
volved analysis of the spinless relativistic Coulomb prob-
lem for the particular case of vanishing relative orbital
angular momentum of the bound-state constituents, as
a by-product of the explicit construction of the corre-
sponding wave function, a closed analytic expression for
the exact energy eigenvalues. Castorina and co-workers
[5] generalized, for small relative distances of the bound-
state constituents, this wave function to arbitrary values
of the orbital angular momentum. Hardekopf and Sucher
[6] performed a comprehensive numerical analysis of one-
and two-particle relativistic wave equations for both spin-
0 as well as spin-2 particles, in the course of which they
were able to show that the result reported in Ref. [4] for
the energy eigenvalues must necessarily be wrong. Mar-

V(x) = V~(r) = ——, v)0.

The bound-state problem defined by the semirelativistic
Hamiltonian (1) with the Coulomb potential (2) is what
we call the "spinless relativistic Coulomb problem. "

Over the past years, this spinless relativistic Coulomb
problem, in both the one- and two-particle formulations,

The semirelativistic Coulombic Hamiltonians for one- and
two-particle problems, H = v P + M —o/R and H
2/pz + m2 —~/r, respectively, may be easily equated Re.
late their respective phase-space variables (X,P) and (x, p)
by rescaling them by some scale factor A according to P = A p
and X = x/A, which preserves their fundamental comxnuta-
tion relations: [X,P] = [x, p]. Let A = 2 and identify both
mass and Coulomb coupling strength parameters according
to M = 2m and a = rc/2.
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tin and Roy [7] improved the lower bound (3) somewhat
to

with respect to any of the above trial states, must neces-
sarily be larger than or equal to that eigenvalue Ep of the
Hamiltonian H which corresponds to its ground state:

1+gl —~2
Ep &2m

2
for ~ & l. (4) Eo & E(A) —= (AiHiA).

Finally, Raynal and co-workers [8] succeeded in restrict-
ing numerically the ground-state energy eigenvalue of
the semirelativistic Hamiltonian (1), (2), considered as
a function of the coupling strength K, to some remark-
ably narrow band.

The aim of the present paper is to find some simple
and, in any case, analytically given upper bound on the
ground-state energy level of the above semirelativistic
"Coulombic" Hamiltonian.

II. A VARIATIONAL UPPER BOUND

In order to derive an analytic upper bound on the en-

ergy eigenvalue of the ground state of the spinless rela-
tivistic Coulomb problem, we make use of a rather stan-
dard variational technique. The basic idea of this varia-
tional technique is (i) to calculate the expectation values
of the Hamiltonian H under consideration with respect
to a suitably chosen set of trial states ~A) distinguished
from each other by some variational parameter A, which
yields the A-dependent expression E(A) = (A~II~A), and
(ii) to minimize E(A) with respect to A in order to ob-
tain the upper bound to the proper energy eigenvalue E
of the Hamiltonian H in the Hilbert-space subsector of
the employed trial states ~A) as the above A-dependent
expression E(A) evaluated at the point of the minimizing
value A; of the variational parameter: E ( E(A;„).

For the Coulomb potential, the most reasonable choice
of trial states is obviously the one for which the
coordinate-space representation g(x) of the states ~A) for
vanishing radial and orbital angular momentum quan-
tum numbers is given by the hydrogenlike trial functions
(A &0)

A3
vP(x) = —exp( —Ar).

For this particular set of trial functions we obtain for the
expectation values we shall be interested in, namely, the
ones of the square of the momentum p and of the inverse
of the radial coordinate r, respectively, with respect to
the trial states ~A),

The application to the semirelativistic Hamiltonian of
Eq. (1) yields, for the right-hand side of this inequality,

E(A) =2(A gp +m A)+(A~~V(x)~~)).

Here, the rather cumbersome although (for convenient
trial states) not impossible evaluation of the expectation
value of the square-root operator may be circumvented
very easily by taking advantage of a trivial but never-
theless fundamental inequality. This inequality relates
the expectation values, taken with respect to arbitrary
Hilbert-space vectors ~) normalized to unity, of both the
first and second powers of a self-adjoint but otherwise
arbitrary operator 0 = Ot; it reads

For the purposes of the present discussion it is sufhcient
to replace, in turn, E(A) by its upper bound obtained by
applying this inequality:

E(A) ( 2/(A ~p [ A) + m + (A~V(x) ~A).

Identifying in this, as far as its evaluation is concerned,
simplified, upper bound the until-now general potential
V(x) with the Coulomb potential (2) and inserting both
of the A-dependent expectation values given above im-

plies

E(A) ( 2/A2+ m2 —~A.

From this intermediate result, by inspection of the
limit A m oo, we may state already at this very early
stage that, for the semirelativistic Hamiltonian (1), (2)
to be bounded &om below at all, the Coulombic cou-

pling strength K has to stay below a certain critical value:
v&2.

The value of the variational parameter A which mini-
mizes the upper bound on the right-ha, nd side of Eq. (5)
may be determined &om the derivative of this expression
with respect to A:

and

(A ~p' A) = A'

Let us follow this line of argument in some detail. As
an immediate consequence of the fundamental postulates
of any quantum theory, the expectation value of a given
Hamiltonian H taken with respect to any normalized
Hilbert-space state and, therefore, in particular, taken

For this value of A, by sh»+ing together all our previ-
ous inequalities, we find that the energy eigenvalue cor-
responding to the ground state of the semirelativistic
Hamiltonian (1) with the Coulomb potential (2), Es, is
bounded &om above by

K
Ep &2m 1—

4

The reality of this upper bound requires again tc, & 2.
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III. SUMMARY

Within the &amework of a simple variational tech-
nique we derived an analytic upper bound, Eq. (6), to
the ground-state energy level of the spinless relativistic
Coulomb problem. However, for any nonvanishing value

of the Coulombic coupling strength e, this upper bound

(6) turns out, in fact, to be violated by the lowest energy
eigenvalue obtainable &om the analytic expression given
in Ref. [4]. This provides, of course, further confirma-
tion of the corresponding findings of Ref. [6]; a similar
observation has been made in Ref. [9].

[1] E. E. Salpeter, Phys. Rev. 87, 328 (1952).
[2] E. E. Salpeter and H. A. Bethe, Phys. Rev. 84, 1232

(1951).
[3] I. W. Herbst, Commun. Math. Phys. 53, 285 (1977); 55,

316 (1977) (addendum).
[4] B. Durand and L. Durand, Phys. Rev. D 28, 396 (1983);

and erratum (to be published).
[5] P. Castorina, P. Cea, G. Nardulli, and G. Paiano, Phys.

Rev. D 29, 2660 (1984).
[6] G. Hardekopf and J.Sucher, Phys. Rev. A 31, 2020 (1985).
[7] A. Martin and S. M. Roy, Phys. Lett. B 233, 407 (1989).
[8] J. C. Raynal, S. M. Roy, V. Singh, A. Martin, and J.

Stubbe, Phys. Lett. B 320, 105 (1994).
[9] A. Le Yaouanc, L. Oliver, and J.-C. Raynal, Orsay Report

No. LPTHE Orsay 93/43, 1993 (unpublished).


