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Parity violation, anyon scattering, and the mean field approximation
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Some general features of the scattering of boson-based anyons with an added nonstatistical
interaction are discussed. Periodicity requirements of the phase shifts are derived, and used to
illustrate the danger inherent in separating these phase shifts into the well-known pure Aharanov-
Bohm phase shifts, and an additional set which arises due to the interaction. It is proven that
the added phase shifts, although due to the nonstatistical interaction, necek~arily change as the
statistical parameter is varied, keeping the interaction fixed. A hard-disk interaction provides a
concrete illustration of these general ideas. In the latter part of the paper, scattering with an
additional hard-disk interaction is studied in detail, with an eye towards providing a criterion for the
validity of the mean-field approximation for anyons, which is the first step in virtually any treatment
of this system. We find, consistent with previous work, that the approximation is justified if the
statistical interaction is weak, and that it must be more weak for boson-based than for fermion-based
anyons.

PACS number(s): 03.65.Bs, 03.65.Nk, 74.20.Kk

INTRODUCTION

It is well known that in two space dimensions the
possibility of &actional statistics exists [1]. The sim-

plest way of describing these fractional statistics parti-
cles, anyons, is to start with conventional particles and
attach fictitious "statistical" point charges and Quxes to
the particlesi [2,3]. The resulting Aharonov-Bohm (AB)
interaction mimics a change in statistics; for example,
adopting a path-integral point of view, a path involv-

ing a winding of one particle around another acquires an
additional contribution to its action &om the statistical
interaction proportional to the change in relative angle,
independent of the details of the path.

Depending on whether one starts &om bosons or

fermions, the strength of the statistical interaction mea-

sures the departure of the statistics &om the "base"

statistics. Evidently, one has a periodicity require-

ment: starting from bosons, for example, one eventually

reaches a statistical interaction which transmutes them

into fermions; one requires that the dynamics of bosons

transmuted to fermions agree with that of the fermions

themselves, all else being equal.
Anyons have been studied in great detail, mostly due

to applications in the &actional quantum Hall effect and
to the prospect of a new mechanism of superconductiv-

ity [4]. Since the statistical interaction is rather difficult

to handle, the starting point is usually a mean-field ap-
proximation (MFA), which consists in replacing the flux

carried by each anyon by a uniform magnetic field with
the same average value [5]. This reduces the many-anyon
problem to a system of many conventional particles in a
uniform magnetic field plus an interaction which is a sum

In this article, we consider only electrically neutral parti-
cles; thus any reference to charge, Hux, etc. , is understood to
refer to the statistical quantities.

of the conventional (e.g. , Coulomb) interaction between
anyons and an interaction term due to the MFA (equal to
the point magnetic fields of the individual anyons minus
the mean field).

At an intuitive level, since a sum of b functions is ex-

ceedingly nonuniform, the validity of the MFA merits
some scrutiny. Several arguments have been proposed,
suggesting that the approximation should be valid if the
statistical interaction is weak. One can, for instance,
devise a criterion for the validity of the MFA via a self-

consistency argument [6,7]. After making the MFA, par-
ticles move in circular orbits due to the uniform magnetic
field. One can then evaluate the number of particles Q
contained inside a typical orbit and express it in terms
of the strength of the statistical interaction n (normal-
ized so that o. = 1 transmutes bosons to fermions and
vice versa). When q is sufficiently large, the granular-

ity of the statistical magnetic field is unimportant and
the MFA is deemed valid. One finds [6—9] q n
for fermion-based anyons and q n i for boson-based
anyons, yielding the following criterion of validity:

o. && 1 boson-based anyons,

&& 1 fermion-based anyons .

Thus, we see that the approximation is valid near Bose
statistics for boson-based anyons, and near Fermi statis-
tics for fermion-based anyons; the difference in powers
of o. indicates that one can be slightly further &om con-
ventional statistics for fermion-based anyons before the
approximation breaks down.

In a recent paper [10], another means of justifying the
MFA which does not rely on self-consistency was ex-
plored. The argument, alluded to in Ref. [11], consists
in using parity violation in the scattering of anyons [12].
This results in an asymmetry in the scattering cross sec-
tion of two anyons, which allows one to evaluate a mean
scattering angle for a typical anyon trajectory. Prom this,
one can calculate the mean radius of the resulting qua-
sicircular orbit and extract (as in the self-consistent ar-
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gument described above) the number of particles Q con-
tained inside a typical orbit. The procedure, carried out
for a system of boson-based anyons, yields the same re-
sult as found in the self-consistent argument described
above, i.e., Q o. , recovering the criterion for validity
of the MFA, o; (( 1.

One peculiarity of the above "asymxnetric scattering"
approach is that it is necessary to introduce a conven-
tional interaction between the anyons. In [10], this in-
teraction was parametrized by introducing a phase shift
put into the lowest partial wave. The MFA result was
recovered for "generic" phase shift, i.e., for one not near
a xnultiple of vr.

At a purely pragmatic level, this need for a conven-
tional interaction arises because the scattering of two &ee
anyons does not violate parity [12], and thus the mean
radius of curvature calculated as above would be infinite.
At a more profound level, it was conjectured [10] that for
Bee anyons, the motion of a single anyon in an anyon gas
is not correctly analyzed by regarding it as a sequence
of individual scatterings (thus ignoring interference ef-
fects between subsequent scatterings). This conjecture is
supported by a study of scattering of a charged particle
off a semi-infinite rectangular lattice of fiux tubes [13],
wherein it was found that in the lixnit where the flux per
anyon goes to zero, the scattering agrees with the motion
of a particle in a uniform magnetic field (and hence with
that of the MFA).

If this conjecture is correct, it is interesting that the
asymmetric scattering approach of [10] (which did not
take into account multiple scatterings) seemed to work
so well. Apparently, the coherence found in &ee anyon
scattering which necessitates the inclusion of interference
between subsequent scatterings is absent in the scattering
of anyons with an additional interaction.

Ideally, as suggested in [13], it would be interesting
to study the scattering of one anyon off a random array
of fiux tubes (more closely approximating the motion of
an anyon in a gas of anyons) to see if the result of [13]
persists.

Since such studies of multiple scatterings appear ex-
ceedingly difficult, it is worthwhile exploring further the
validity of the MFA in a situation where the statisti-
cal interaction is either modified or supplemented by a
conventional interaction, ignoring multiple scatterings.
The first possibility was examined in detail by Kogan
and Selivanov [14], whose motivation was rather difFer-
ent: the scattering of particles off cosmic strings strongly
resembles Aharonov-Bohm scattering, and they explored
whether or not parity violation due to a finite-sized flux
in the core of the string could have observable cosmolog-
ical effects. In this paper we study the second possibil-
ity, applying the asymmetric scattering method to a gas
of anyons with hard-disk repulsion. (Indeed, as we will
show, parametrizing an added conventional interaction
by a phase shiR in the lowest partial w'ave is dangerously
misleading in a rather subtle way, since it implies that the
conventional interaction itself violates parity. ) The scat-
tering of two such anyons clearly exhibits an asymxnetry
in the cross section [15] due to parity violation, allowing
us to calculate a mean radius of curvature for a typical

orbit, and thus to deduce a criterion for the validity of
the MFA. In the course of the analysis, we will present
some peculiarities in the partial wave decoxnposition for
anyons, which sheds some light on a seemingly bizarre
situation arrived at in [12].

GENERALITIES

To begin, it is perhaps worthwhile to discuss briefly
the familiar case of conventional (non-AB) scattering, in
order to set up notation, etc. The relative Haxniltonian
for two particles interacting via a potential V(r) is

A scattering solution is sought of the form of an incident
wave plus a scattered wave:

the scattering amplitude f(8) being related to the scat-
tering cross section in the usual way, do'/d8 = [f(8)~2.

If the particles are identical bosons, the scattering am-
plitude is in fact F(8) = f(8) + f(8 —m), whereas for
fermions it is F(8) = f(8) —f(8+ x).

With parity P defined as (r, 8) ~ (r, —8), it is clear
that if V is an even function of 8, the Haxniltonian re-
spects P, and both f(8) and the cross section will be even
functions of 8. If the potential is cylindrically symmetric,
a partial wave expansion can be performed:

f (8) ) e%TI18( 2Ebppg 1)
1

Since cylindrical symmetry implies P invariance, b

. This iinplies, among other things, that F and F are
sums over even and odd values, respectively, of m, and
also the familiar result that fermions cannot scatter at
angle w/2 (equally valid, under normal circumstances, in
two or three dimensions).

Indeed these "normal circe~stances" are so ubiqui-
tous that any suggestion that identical fermions could
scatter at angle 7r/2 [12] seems at first inconceivable. It
is perhaps worth mentioning, therefore, that with an un-
usual interaction fermions can easily be made to scat-
ter at angle vr/2: a fairly silly but perfectly valid ex-
ample would be "hard-rectangle" scattering in the clas-
sical lixnit, where the infinite rectangular potential bar-
rier is skewed at an angle vr/4 with respect to the rela-
tive moxnentum vector of the two particles. Scattering
off the long/short face would produce a scattering an-
gle of +s'/2, respectively, with the long face yielding a
much larger scattering amplitude. Thus, the fermionic
amplitude at m/2, F(m/2) = f(vr/2) —f( m/2), wou—ld
be nonzero. Clearly, the standard wisdom that identi-
cal fermions cannot scatter at angle m/2 applies only to
parity-invariant potentials.
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Although in potential scattering the ability to perform
a partial wave decomposition implies P invariance, one is
certainly &ee to contemplate a situation where b is not
aa even function of m, in which case fermions can scat-
ter at angle z/2. As will be seen, this is exactly what
occurs when a statistical interaction is added: one has
rotational invariance, so that a partial wave decomposi-
tion is possible, yet P invariance is broken, so that in
general b g h

Pure AB scattering and the scattering of free anyons
are both described by the Hamiltonian

2

A sino~ ei(N+1/2)8
fAB

v'2~it»n8/2
CLO Sln &71

2zk sin 8/2

where N is the integer part of o., while, for boson-based
anyon scattering,

FAB (8) fAB (8) + fAB(8 + ~)

sinner 2e'( + /' )~e'(

v'2~ik sin 8
ggAB 2

= I+"'(8)l' =
88 '?t k sin 0

It is interesting to observe that, despite the fact that
the Hamiltonian is aot P invariant, the scattering cross
section is.

One important property of f (8) is its periodicity
(up to a phase) under an integer change of a. This is
due to the fact that oaly the &actional part of the Bux
is physically relevant in AB scattering. Thus, the differ-
ential cross section must be invariant under a ~ a + n,
although the scattering amplitude itself can (and does)
change by a phase: one finds

(2)

1 g2 1g 1H= —— + ——+ ———?0!
2 Br2 r Br r2 ~88

Here, a represents the Qux in AB scattering in units of
the fiux quantum, and the statistical parameter in anyon
scattering (normalized so that n = 1 represents transmu-
tation between fermions and bosons). Again, one looks
for a solution in the form of an incident wave plus scat-
tered wave. Technically, the incident wave must be a
plane wave "modulated" by an additional phase due to
the vector potential in order to describe a uniform par-
ticle current (specifically, Q;„,= exp[i(kr cos8+ a8)]),
but, as has been emphasized by Hagen [16], we can be
cavalier about this since a "naive" incident plane wave de-
scribes the correct covariant particle current as r ~ oo,
and, indeed, the scattering amplitude is unaffected by the
choice of incident wave except in the form of a b func-
tion in the forward direction. In fact, in what follows we

will simplify life by ignoring contributions to f (8) which
represent a 6 function in the forward direction.

The solution of this problem is well known [17,16]: the
phase shifts, scattering amplitude, and differential cross
section for AB scattering are

S"'(~) = -(~m~ —~m - ~~),

fAB (8) ( )va its/2fAB(8)

This relation, expressed in terms of phase shifts, is

(4)

Now let us suppose a cylindrically symmetric poten-
tial V(r) is added, and study scattering as a is varied,
holdiag the poteatial fixed. Again we caa perform a par-
tial wave expansion, obtaining phase shifts b, (a) which,
in principle, can be determined in terms of the potential.
These phase shifts obey the same periodicity requirement
as the b'An(a):

It is useful to separate b,v into the AB phase shift and
a residual one due to the potential:

Z ~(~) = S"'(~) + ~v(~) .

The key observation is that bv, although due to the po-
tential must necessarily depend upon a. This can be seen
most easily by subtracting the periodicity conditions (4)
and (5); one obtains

(6)

Although convenient, this separation is not without its
dangers. For instance, in Refs. [10,12] a "conventional"
interaction between anyons was parametrized by aa ad-
ditional phase shift b in the lowest partial wave m = 0,
and P violation in the resulting scattering as o. varied was
discussed. However, keeping the residual phase shifts bv

fixed as o. varies implies that the conventional interac-
tion must evolve as a changes, in a rather complicated
way. Indeed, if the added phase shifts are an even func-
tion of m, the added interaction is P invariant at a = 0,
but away from this point the conventional interaction
(suitably evolved so as to keep the added phase shifts
constant) necessarily violates parity.

This can be clearly demonstrated in a simple way for
integer values of o., as follows. As stated above, for con-
ventional scattering (a = 0), P invariance implies that
b is an even function of m; in the present context,
thus, bv (0) = hv(0). The periodicity requirement (6)
of bv(a) then implies the following "shifted evenness"

requirement for any P-conserving potential at nonzero
integer values of o.:

S„+ (~) =~V (~).

The hypothetical potential which produces o.-

independent phase shifts will certainly not obey (7), since
its phase shifts are an even functien of m. (It takes but
a moment to convince oneself that phase shifts which
are even beth about m = 0 and about m = n g 0 are
pathological beyond all reason. ) Thus, the potential must
evolve to a parity-violating one for nonzero integer n. For
noniateger o., while we have not proven that the potential
must evolve to one which violates parity if the residual
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phase shifts are independent of a, continuity arg»ments
make it exceedingly plausible.

To make these ideas concrete, we can examine the
case discussed in Ref's. [10,12], where the potential was
parametrized by a phase shift in the lowest partial wave.
At o; = 0, such a phase shift is the result of a rather
peculiar b-function potential if the other phase shifts are
truly zero. A complete discussion would involve delving
into the subject of self-adjoint extensions [18],but for our
purposes a less mathematical approach will suffice [19].
Consider scattering in the presence of a cylindrical poten-
tial well of radius a and depth A/z a, in the limit a -+ 0,
whence the potential tends towards Ah2(r). This "reg-
ularized" h function enables us to adopt the physically
reasonable boundary condition that the wave function is
finite at the origin (mathematically, this is equivalent to
making a particular choice of self-adjoint extension) [20].
Keeping the momentum k fixed, it is easy to show that,
as a ~ 0, the phase shift in the lowest partial wave goes
to zero as 1/ ln ka. However, if we consider the coefficient
A to be itself a function of a, which goes to zero as a -+ 0,
then the lowest partial wave is given by

tan hp
2(ln "~ + p) + 4—

„

(8)

7r
tanbp m ——.

D (9)

All other partial waves will be zero, essentially because
the centrifugal barrier prevents them &om coxning into
contact with the potential.

It is a straightforward matter now to check how the
phase shifts evolve when we turn on the statistical inter-
action; not surprisingly, one finds that bp drops to zero
immediately once a becomes nonzero: the delicate bal-
ance between the two divergent terms in the denoxninator
of (8) is lost. Furthermore, all the phase shifts remain
zero until o. = 1, at which point the first partial wave is
nonzero and all others are zero, in agreement with (6).

Since the initial potential does not maintain constant
phase shifts for nonzero o., some other potential is re-
quired. It would be interesting to find this potential, but
we have not managed to do so. (It would certainly be
very unusual, since, according to the general arg»ments
given above, we expect it to violate parity. )

A second concrete example of the above ideas is the
example of hard-disk scattering [15], which is discussed
below, and with which we will examine the question of
justification of the MFA for the anyon gas.

ANYONS WITH HARD-DISK REPULSION

This can be made nonzero if A goes to zero just quickly
enough to cancel the divergent logarithm; specifically, if

4m
Am k~v ~D —2p —ln 4

where D is a constant, then

a region of size a [15]. Parity violation in the scattering
cross section will enable us to use the ideas presented in
Ref. [10] to address the question of the validity of the
MFA.

The scattering amplitude f (8) can be determined in
a rather conventional fashion; as mentioned above, it is
useful to separate it into a pure AB piece f+B(8) and
a new piece which owes its existence to the hard-disk
interaction:

The latter term can be written in terms of phase shifts
bHD(n), which are computed by imposing the boundary
condition Q(a) = 0; explicitly, one finds

tanhhHD lna —al (ka).l(ka)

These phase shifts clearly depend on the statistical pa-
rameter a, and, moreover, satisfy the periodicity require-
ment (6), in accord with the discussion of the preceding
section. In fact, at low energies the tangent of the phase
shifts has the following limiting behavior:

(ka)2l~ ~l, m —a P 0,
sn-+p lnka, m —o. = 0 .

If o. = 0, the particles are normal bosons and the dom-
inant partial wave is m = 0; the potential thus gives
approximately the scattering behavior discussed in Refs.
[12,10]. As a evolves towards 1, the m = 1 partial wave
starts to contribute significantly and is, indeed, the dom-
inant one beyond a = 1/2. When o. = 1 we have a shift
by one unit of the phase shifts compared with o. = 0, in
agreement with the preceding section.

The hard-disk part of the scattering amplitude is

pD(g)1 ) e' se'~(l~l l~ ~l)—(e»—s" (~) 1)

This problexn is a natural situation in which we can apply
the method presented in Ref. [10] in order to check the
validity of the MFA. %e start by considering boson-based
anyons. The cross section for the scattering of two anyons
is given by

dZ

dg
= If-(8)+ f-(e ~)l'

for which an even integer o. describes bosons while an
odd one describes fermions.

Our goal is to compute a mean scattering angle, and
&om it to coxnpute a xnean radius of curvature for a typ-
ical anyon trajectory. In order to proceed with the argu-
ment, we now have to evaluate the quantity

Consider the case of the scattering of two anyons whose
interaction is described by a hard-disk repulsion within

X = d08
dZ

(12)
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which, once normalized by the total cross section Z, gives
the mean radius of curvature 8 = X/Z. The mean length
between scatterings is given by I = 1/sZ where s is
the anyon density. These two ingredients enable us to
evaluate, if the mean scattering angle is small, the mean
radius of curvature of the quasicircular orbit, which is
given by

1

sX
The number of particles contained within this roughly
circular orbit will then be

k2
Q Rs= sX'2

where we have defined a new quantity X' = kX, which
depends only on the parameters a and ka.

The momentum k can be estimated in the follow-
ing way. The mean radius R, which classically repre-
sents a length scale for the particle's trajectory, can be

used to define at the quant»m level the size of the re-
gion where the wave function is localized. The uncer-
tainty principle then gives us a minimum momentum of
k 1/R = sX'/k. The number of particles Q can then
be expressed in the simple form

1
X'

The MFA is declared valid if Q » 1, since that implies
that the graininess of the distribution of particles is on a
much smaller scale than the length scale of the particles'
trajectories. This gives us the criterion of validity:

(14)

where X,' (( 1, the appropriate value being dictated by
physical considerations.

From the definition of the mean angle (12) and using
the scattering amplitudes (2) and (11), we can compute
the cross section dZ /d8, and thus the quantity X'. We
find the rather unwieldy expression

1 J+J+(J+N+ —J+N+) J J' (J N' —J' N )l+l'/2
tl (N2 + J+)(N&2 + Ji2) (N2 + J2)(NI2 + JI2)

IJ J+
t + ti (N2 + J2 ) (N'2 + J'2)

l, l' g(0,0) + +

x[(N N++ J J+)2sc+ (J N+ —J+N )(c —s )]

8 . N s2+ J sc N+s2+ J+sc
N2+ J2 + N2+ J2

l + +

where the sums are over L, l' = 0, 2, 4, . . . , and where we
have used the notation Jy = Jly (ka), J+ ——Jl y (ka),
s = sin(a7r), and c = cos(nx). Furthermore, Il is given
by

l/2
( )l,

Il = 7r ) + m ln 2 .
k=z

[

a near 0, i.e., anyons near the bosonic regime; (2) a
near 1, i.e., anyons near the fermionic regime; (3) ka
very small for n arbitrary. The last condition is not very
surprising since as ka goes to zero the particles become
free anyons, whose scattering does not violate parity [12].
The trajectory of an anyon is then apparently straight

Equation (15) is sufficiently ugly that we must turn to a
numerical analysis in order to extract the behavior of X'
as we vary the parameters a and ka. The resulting graphs
are then visually analyzed to determine the regions in
the parameters a and ka which satisfy the criterion of
validity of the MFA (14). Without loss of generality, we
can restrict the range of a to [0,1], a = 0 and n = 1
describing, respectively, bosons and fermions.

Figure 1 presents a three-dimensional plot of X' in
terms of the parameters o. and ka. Figure 2 displays a
contour plot of the same function where the solid region
indicates the values of n and ka satisfying the criterion
of validity (14) (where we have chosen X,' = 0.1). Figure
3 shows a plot of X' in terms of n for fixed ka (which
has been put at the value ka = 0.1).

By inspection of the plots displayed in Figs. 1 and 2,
we are able to conclude that the criterion of validity is
assured in three difFerent limits of the parameters: (1)

FIG. 1. Three-dimensional plot of I' in terms of the pa-
rameters o. and A:a.
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FIG. 3. Plot of X' in term of cr for fixed ka (which has

been put at the value ka = 0.1).
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FIG. 2. Contour plot of X' in terms of the parameters o.
and ka. The solid region indicates the values of o. and ka
satisfying the criterion of validity (14), with X,' = 0.1.

2vr3 ln 2

[p + ln(ka/2)]' + n' (16)

which clearly shows a linear dependence on the statistical
parameter o.. The MFA is, therefore, deemed justified for

o. « 1 near bosons . (17)

In the fermionic regime, 6 near 0, the situation is more

(on average) and the argument based on parity violation
described above loses its utility for studying the validity
of the MFA.

The plot displayed in Fig. 3 allows us to go much fur-
ther in our analysis of the MFA since it shows not only
the regions in the parameter a where the criterion of va-
lidity (14) is respected, but also gives an indication of
the dependence of X' on a near o. = 0, 1. As we can see,
one can expect X' to depend linearly on the statistical
parameter o. near the bosonic regime and quadratically
on the statistical parameter n = 1—n (measuring the de-
parture from Fermi statistics) near the fermionic regime.

This can be seen analytically as follows. We are inter-
ested primarily in values of ka considerably less than 1,
since on the one hand the momentum satisfies kR 1,
and on the other hand the mean radius of curvature R
should be greater than a in order for the whole approach
of considering isolated scatterings of anyons to be reason-
able. In the bosonic regime, o. near 0, X' has the limiting
form

complicated. Writing ka = e, for a « 1, we find

X' ~ m e a(ce + d6), c, d ~ 1 . (18)

Thus, for a « e2, the dependence of X' on r% is linear,
while for o. & e, it is quadratic. However, we are con-
cerned with the dependence when X' is near its critical
value X'. For e considerably smaller than 1, the appro-
priate dependence on a can easily be seen from (18) to
be quadratic, indicating that the MFA is justified if

n && 1 near fermions . (19)

In both cases, we recover the results obtained previously

[6,9,8,7] but perhaps in a more trustworthy way since
self-consistency was not a part of our argument.

CONCLUSION

We thank T. Gisiger for help with the numerical work,
and F. Wilczek for useful discussions. This work was sup-
ported in part by the Natural Sciences and Engineering
Research Council of Canada and the Fonds F.C.A.R. du
Quebec.

In summary, we have discussed general features of
Aharonov-Bohm scattering with an additional conven-
tional interaction, with a particular emphasis on the par-
ity violation which may be found in the scattering cross
section. The danger of parametrizing the added interac-
tion by phase shifts was pointed out; the essential point
is that the added phase shifts must depend on the sta-
tistical parameter. In the latter part of the paper, we
applied the "asymmetric-scattering" method discussed in
[10] on anyons with a hard-disk repulsion in order to ex-
tract a criterion for the validity of the MFA. In agreement
with previous works, we found that the statistical inter-
action must be weak both for anyons near bosons and
near fermions, the quantitative criteria being given by
(17) and (19).
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