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In supersymmetric theories, one can obtain striking results and insights by exploiting the fact
that the superpotential and the gauge coupling function are holomorphic functions of the model

parameters. The precise meaning of this holomorphy is subtle, and has been explained most clearly

by Shifman and Vainshtein, who have stressed the role of the Wilsonian effective action. In this

article, we elaborate on the Shifman-Vainshtein program, applying it to examples in grand unifica-

tion, supersymmetric +CD, and string theory. We stress that among the "model parameters" are

the cutoffs used to define the Wilsonian action itself, and that generically these must be defined in

a field-dependent manner to obtain holomorphic results.

PACS number(s): 11.30.Pb, 11.10.Gh, 12.60.Jv

I. INTRODUCTION

It is possible to make very powerful statements about
four-dimensional supersymmetric theories using some
minimal information about conventional global and local
symmetries, combined with the constraints that super-
symmetry implies on the effective action. These tech-
niques have been used to explore the nature of dynami-
cal supersymmetry breaking [1,2] and to prove powerful
nonrenormalization theorems insuring theory in only a
few lines [3,4]. More recently, the idea that the effec-
tive superpotential should be an analytic function of the
parameters has given new insight into the nonrenormal-
ization theorems of supersymmetric field theories, shed-
ding light on the nonperturbative behavior of these the-
ories, even in their strong-coupling regimes [5,6]. It has
also been used to consider properties of nonperturbative
string theory [7,8]. All such arguments rely on the fact
that the effective low-energy Lagrangian is specified by
three functions, two of which are holomorphic functions
of the chiral fields: the superpotential W and the gauge
coupling function f

Yet there is a cloud that hangs over the use of argu-
ments of this type. If one examines perturbation the-
ory, one finds that these functions appear to obtain non-
holomorphic corrections in low orders in theories with
massless particles. It was Shifman and Vainshtein who
explained that the problem is to differentiate between a
"Wilsonian action, " in which states with mass or momen-
tum above some value have been integrated out, and a
more conventional efFective action [9]. Their arguments
also resolved a set of paradoxes connected with the "mul-
tiplet of anomalies. " Still, it is often unclear how to im-
plement these ideas in practice, and there is great unease
about the consequences of holomorphy.

In this paper, we elaborate the Shifman-Vainshtein
(SV) program Following R. ef. [5], we view the param-
eters of a supersymmetric theory as vacuum expectation
values (VEV's) of chiral fields. In string theory, this is
generally the case. In field theories, this is a powerful
device to constrain the possible dynamics [5,6]. How-

ever, field theories (including the Wilsonian efFective ac-
tions, which describe string models at low energy) con-
tain parameters that do not appear explicitly in the La-
grangian: the cutoffs. If these cutoffs are not chosen
properly, one can induce nonholomorphicity; in partic-
ular, field-dependent redefinitions of these cutoffs lead
to (in general, nonholomorphic) field dependence in the
action. This viewpoint leads us to rephrase the SV pro-
gram in terms of field- (or parameter-) dependent cutoffs.
Two types of nonholomorphicity have been discussed in
the literature. First, SV have pointed out that, quite
generally, at two loops and beyond, the gauge function

f is not holomorphic as a function of the coupling con-
stants. Second, Dixon, Kaplunovsky, and Louis (DKL)
[10] have noted that in models in which there are mass-
less states and in which the mass matrix has a nontrivial
field dependence (e.g. , on some moduli fields, as in string
theory), there is generically some nonanalyticity already
at one loop. We will understand, in fact, both classes of
problems in terms of field-dependent cutoffs.

The basic problem, and the resolution we will describe,
are easy to understand. The problem has two aspects.
First, why is it crucial to deal with a Wilsonian action?
In theories with massless fields, the conventional "one-
particle irreducible action" is not local. It contains, for
example, at the loop level terms involving ln(p2). As a re-
sult, this action cannot necessarily be written according
to the standard rules in terms of a superpotential, Kahler
potential, and gauge coupling function. The appearance
of nonholomorphic functions of the chiral fields, much
less of the parameters, in the nonlocal action should not
be a surprise. The Wilsonian action, defined by integrat-
ing over momenta above some cutoff, on the other hand,
is necessarily local, and, provided the regulator preserves
supersymmetry, must be expressible in the standard su-
persymmetric form. It thus involves a superpotential and
a gauge coupling function, which must be holomorphic
functions of any chiral fields. For models where one can
add explicit mass terms for fields, this has been verified
through two loops in Ref. [11]. In this paper, we will il-
lustrate this point with a number of additional examples.
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Even in the context of the Wilsonian action, however,
there are additional issues, which must be faced in under-
standing holomorphy. The basic argument for analytic-
ity is that the terms in the superpotential can be viewed
as VEV's of chiral fields. More precisely, we can view
changes in these parameters as arising due to changes in
the VEV's of chiral fields. For example, we might write
some mass parameter as me+ f (mo) 4, where (P) = 0. By
our argument above, the superpotential and gauge cou-
pling function are necessarily holomorphic functions of P.
But their dependence on mo is more subtle. It is clear
that in order that quantities be analytic in mo, we must
parametrize the 6elds sensibly. If we rede6ne, for exam-
ple, the chiral fields by nonholomorphic functions of the
parameters, we will obtain nonholomorphic expressions.
This problem already exists at tree level, as we will illus-
trate in the model of DKL. At the loop level, there is an
additional difficulty. The Wilsonian action itself contains
parameters not explicitly present in the Lagrangian —the
cutofF(s) used to define it. Changing these cutouts by
field- or coupling-dependent amounts changes the cou-
plings by 6eld- or coupling-dependent amounts. As a
result, only for a special choice of cutoffs do we expect
to obtain results analytic in the parameters. In many
cases, these choices are equivalent to nonpolynomial re-
de6nitions of the parameters. We will see, however, when
we consider grand unified theories, that this description
is not always suitable, and so we prefer the cutoH' lan-
guage.

In some cases, as we will note (by a modest extension of
the Shifman-Vainshtein discussion), one can choose cut-
oHs so that everything is guaranteed to be analytic &om
the start. However, one can (at least at low orders of per-
turbation theory) give many definitions of the Wilsonian
action, and not all of these give manifestly holomorphic
results. We will consider two schemes, which are vari-
ants of the usual minimal subtraction and momentum
schemes, and see how the cutoffs must be redefined in
order to obtain holomorphic results. The lessons we will
draw &om all of this are simple. In trying to infer the con-
sequences of holomorphy in a given situation, one must
be careful about Geld rede6nitions and allow for the possi-
bility of nonholomorphicity arising &om field-dependent
cutoffs. We will turn to an examination of how consid-
erations of this kind apply to some of the applications
of holomorphy mentioned above. In particular, we will
consider supersymmetric /CD, with various numbers of
Havors and colors. For Ny ( N, it is possible to compute
the form of the effective superpotential. The dynamical
calculation is different in diHerent cases; we will verify
that in all cases this superpotential is holomorphic in
the appropriate variables. This is consistent with the re-
markable arguments of Refs. [6] and [12], which permit
one to perform computations in what would seem to be
inappropriate limits.

Finally, we will discuss how our considerations extend
to string theory. In string models with low-energy super-
symmetry, all of the parameters are determined by expec-
tation values of chiral fields. However, only the Wilsonian
action is guaranteed to be expressible as a holomorphic
function of these fields [9]. Based on our field theory

II. HOLOMORPHY AT TREE LEVEL

Before jumping into loop computations, it is instruc-
tive to examine how the problem of holomorphy appears
at tree level. As an example, we consider a model due
to DKL [10]. This model was constructed to reproduce
certain features of one-loop string computations. We mill
consider the model at one loop in the next section, but
already at the tree level it contains some subtle features.
The model is based on the gauge group Es (this is not
essential; indeed, at the tree level, the gauge interactions
will be irrelevant). There are two 27's, 27i, and 272,
and one 27. There are two singlet fields, Pi and P2 (to
be thought of as moduli). The superpotential is taken to
be

WDKL = $227i27+ $227227 . (2.1)

We want to explore the analyticity properties of this
model as a function of Pi and P2. At a generic point
in the "moduli space, " the 27 pairs with a linear combi-
nation of the 27's and gains mass.

At the tree level, we would like to integrate out the
massive Geld, and obtain an effective Lagrangian for the
light fields. As the model stands, this is rather trivial,
since the superpotential of the light field vanishes. How-
ever, if we add to the original superpotential cubic (and
possibly higher-order) terms, the problem becomes more
interesting. For example, take

TV;„t ——Ag27y + %227

It is helpful to organize the computation by writing

4i = mi+ ~Pi, 42 = ~2+ ~42, (2.3)

where now Pi and P2 have no vacuum expectation values.
We can now write the massive field as

m/27/ + m2272

Qlmi[2+ lm2l2
(2.4)

This field has mass m& = v Imil2+ Im212. The light field
is the orthogonal linear combination. Taking mq and m2
as complex, we are led to define

—m227~ —mr 272
I =

m, l2+ I~, I2

experience, we will discuss procedures for de6ning the
Wilsonian action, and the problem of making a suitable
choice of scale. This is important to understanding con-
straints on nonperturbative effects following from sym-
metries [7,8].

It is important to stress again that the discussion of
this note is simply an elaboration on the ideas of Shifman
and Vainshtein. Hopefully, it will be of value to those
trying to understand how these considerations apply in
various contexts. All of our considerations will be in the
context of global supersymmetry. Important additional
considerations, which arise in the context of local super-
symmetry, have been discussed recently by Kaplunovsky
and Louis [13].
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(With this choice, 27~27' + 272272 ——hth+ ltt. ) Invert-
ing these relations gives

m1h —m2l
2

Qlm~ I'+ lm21'

W.~ = -X,(m, l)' . (2.6)

The Kahler potential, however, is now, to this order,

K = (lmql + lm2l )ltt . (2.7)

Integrating out the massive 6eld gives terms that are
higher order in l. The leading correction is proportional
to l . It is given by the Feynman diagram of Fig. 1
written in superspace. It is manifestly proportional to

jd28, and thus might be interpreted as a term in the
superpotential. However, it is proportional to

m2h+ m1l
272 =

v'1m~i'+ lm2I'

Now we can try to integrate out the massive field. The
leading eKect is just to rewrite A1271 in terms of l. It is
clear that this term will only be analytic in m1 and m2 if
we rescale the field 1, I ~ l/glmql + lm2l . The leading
term in the superpotential is then just

FIG. 2. Combining the corrections to the Kahler potential
with the lowest-order superpotential to yield the l coupling.

1 ~1 P2P ltl4
v'lm~ I'+ lm21'

(2.1O)

It is straightforward to check that these are present with
the correct coeKcients.

So we have encountered one of the problems described
above. It is clearly necessary to carefully de6ne the 6elds.
It is also necessary to be careful how one organizes the
efFective Lagrangian into Kahler potential and superpo-
tential. In particular, iterating the Kahler potential and
superpotential can lead to couplings which, in terms of
Buctuating fields, have the structure of a superpotential.
Indeed, Leigh suggests another approach, which makes
clear that the tree-level eH'ective superpotential can be
written as a holomorphic function [14]. Take, as the
heavy 6eld,

Q3

p3p 6 1 l6
(Qlm&l + lm2l')'

(2.8) h = m1271+ m2272 .

where l is the rescaled field. This is clearly not holomor-
phic. This is all the more puzzling, since the superpoten-
tial is manifestly an analytic function of Pq and P2.

The resolution to this puzzle is simple. The amplitude
can be reproduced in the low-energy theory, provided we
add to the Kahler potential a term of the form

Q3

bK = A1A2ltl
(Ilm&l + Imil )

Take, as an interpolating field for the light field,

l' = —m2271+ m1272 .

These fields are no longer orthogonal (e.g. , they have
mixed kinetic terms). Still, one can integrate out the
field h (and 27) at the tree level by solving its classical
equations of motion. The result is holomorphic efFective
action for l', which will reproduce the 8 matrix for the
light 6eld.

Then the diagram of Fig. 2 reproduces the coupling
above. One can verify that this procedure is correct by
includin. g Buctuations in the moduli. For example, re-
placing m~ + m~ + P~t, we expect terms in the Kahler
potential such as

27

III. THE DKL MODEL AT ONE LOOP:
A FIRST ENCOUNTER

WITH FIELD-DEPENDENT REGULATORS

We now turn to the analysis of this model at one loop,
and the problem raised by DKL. If one computes the
gauge coupling function in a theory of this kind, one ob-
tains a result proportional to the logarithm of the mass
of the heavy field, i.e.,

»(lm~+ ~4~1'+ lm2+ hy. l') .

FIG. 1. Diagram conributing to an l coupling in the effec-
tive superpotential for the light Selds.

To understand how this nonholomorphicity results, we
can modify the theory slightly in a way that permits
a simple de6nition of a Wilsonian action. Add to the
theory an additional 27, which does not appear in the
superpotential; call this field 272. Obviously this theory
su8ers &om the same difhculty as the original one. How-
ever, now we can define a Wilsonian effective action by
adding a mass term of the form
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M2Tg 272,

where we will be interested in M « mq, m2. This has
the effect, as noted in Ref. [11],of cutting off momenta
p « M. It is easy to check that for this Wilsonian action,
the coupling function is holomorphic; it is proportional
to ln[M(m, + by, )].

I.et us examine the structure of this modified theory
more closely. Introducing the Wilsonian action in this
way, we write a general amplitude as

I' = I'w+ (I' —I'w),

where I'~ denotes the amplitude one would compute by
taking matrix elements of the Wilsonian action. This is
an instruction to take the low-energy action for the gauge
fields as the action one would obtain by integrating out
a massive 6eld, and to regulate the theory with a Pauli-
Villars mass. It is easy to see that the physical mass of
what we earlier called the field l, with this mass term, is

Imi+ b4il'
( )mi + b'pi( + )m2+ bp2)

In other words, the regulator mass is field dependent.
Indeed, it is clear that loops computed in the low-
energy theory with this 6eld-dependent cutofF reproduce
the nonanalyticity observed above in the gauge coupling
function. Having seen that 6eld-dependent regulators are
an inevitable aspect of the holomorphy problem, we pro-
ceed to consider some more general examples.

action for a theory in which we add a mass term moee
to the superpotential. This has the effect of eliminating
momenta smaller than mo. With this rule, we break the
full amplitude for some process I' into two pieces, similar
to those of our previous example:

I' = I'w (mp) + [I' —I'w(mp)] (4 2)

Sw = —4S+ bp In(m'p/mp), (4.3)

where bp is the First term in the usual P function.
However, the masses mo and mo are themselves renor-

malized. At one-loop order, denoting the renormalized
parameters by m and m',

m' mp mp g(m)
m mp mp g(m')

(4 4)

where I'w(mp) is the amplitude computed with the
Wilsonian action. This rather trivial decomposition is
just the instruction to compute in the low-energy theory
with the Wilsonian action and a Pauli-Villars regulator.
More precisely, we should introduce two masses, mo and
moI, mo )& moI, and de6ne the Wilsonian action as the
difFerence of the action computed with these two masses.
Because the theory with this regulator is completely 6-
nite, and because the action is necessarily an analytic
function of all of its parameters, one expects that the ac-
tion, written as a function of mo, mo, and S is completely
analytic, and this is indeed the case. In particular, writ-
ten as a function of these quantities, the gauge 6eld terms
in S~ are corrected only at one loop:

IV. GAUGE THEORIES: THREE REGULATORS

In this section, we restate in slightly diferent language
the results of SV. Consider, first, a U(1) gauge theory,
with two massless chiral fields, e and e. In such a theory,
the function f, computed at some scale, should be a holo-
morphic function of the gauge coupling and a "O-angle. "
In other words, think of the gauge coupling 1/g as the
VEV of a chiral Beld:

S = —+ia+. . .
g2

(4.1)

f should be a holomorphic function of S. However, the
theory is invariant under shifts of a, so the only allowed
terms in f are

f = ——,'S+b,
where b is independent of S(g). This would suggest that
there is no correction to the p function beyond one loop,
contradicting well-known results. SV provided the solu-
tion to this paradox: the coupling for which analyticity
holds (which they referred to as the Wilsonian coupling)
is related to a more conventional one by a nonpolynomial
redefinition of the coupling.

We can restate their arguments slightly in a way that
makes this conclusion obvious. For a theory such as this
one, we can deFine a Wilsonian action Sw(mp) as the

c(g /16vr2) is the anomalous dimension of the charged
6elds. This connection of the mass renormalization and
the anomalous dimensions, as is well known, follows &ora
the fact that there is no renormalization of the super-
potential, so the only mass renormalization arises &om
wave-function renormalization. A straightforward one-
loop calculation gives c = 4.

As an aside, we note that the calculation of this anoma-
lous dimension has a few amusing aspects. First, if one
works in a manifestly supersymmetric fashion, in terms of
supergraphs, the statement that any fermion mass is only
renormalized as a result of wave-function renormalization
means that the wave-function renormalization must be
gauge invariant. This indeed turns out to be the case.
In addition, if one uses the standard supergraph rules,
there are two diagrams; each is infrared divergent, due
to terms proportional to 1/k4 in the propagators. These
divergences cancel between the two diagrams, which con-
tribute, leaving c = 4.

If we rewrite S~ in terms of the physical, renormalized
scales, using Eq. (4.4), we discover the dependence on
scales expected from the two-loop P function:

As an intermediate step, one can use dimensional regular-
ization (reduction) to regulate the separate actions.
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8~2(,), =
( ), + to»(m'lm)

+—ln, +O(g ),
g(m)

bp g m' (4.5)

where

bg ———8. (4.6)

8'
2

g~

8~' b,+ —' ln(g) .
g2 bp

(4.7)

What if we use some other sort of regulator? We can,
for example, calculate the coupling-constant renormaliza-
tion using dimensional regularization2 and the modified
minimal subtraction (MS) scheme. In this calculation,
this regulator cuts ofF momenta A larger than

In other words, written in terms of the "bare" cutofF
masses, the P function is renormalized only at one loop.
However, written in terms of the physical, renormalized
cutoffs, we recover a conventional P function. As pointed
out by SV, the validity of Eq. (4.3) means that there is an
exact relation in this theory between the P function and
the anomalous dimension to all orders of perturbation
theory. Note that, as usual, a change in the scale corre-
sponds to a redefinition of the coupling; in the present
case, the coupling in terms of which the action is analytic,

There is still a third regulator, which is convenient for
discussing the Wilsonian action: a momentum-space reg-
ularization scheme. We can simply define the Wilsonian
action by specifying the values of certain Green's func-
tions at a suitable Euclidean moment»m point M. This,
again, has the efFect of cutting ofF momenta below the
scale M. Actually, me want to take, again, the difFerence
of two such regulated actions, with scales M' and M.
This gives an expression for the action similar to that of
Eq. (4.9). Again, one can define new masses as in Eq.
(4.10) such that the action is analytic.

These last two regulators are convenient for discussing
non-Abelian theories and chiral theories. Here there is
no convenient Pauli-Villars-type regulator available, but
it is clear that what we want to do is define suitable
rescaled cutoffs so as to eliminate the two (and higher)
loop renormalisations of the couplings. There is no ob-
stacle to doing this. Indeed, the equations are identical to
those we have discussed above for the momentum-space
regulator or MS regulator, provided the P functions are
simply taken appropriately.

Before considering nonperturbative questions, let us
apply these ideas to an SU(5) grand unified theory
(GUT). To make the equations simple, consider a the-
ory with an adjoint Z of chiral 6elds, but with no other
matter fields. In terms of the bare fields, write the La-
grangian as

(4.8) d'e Z„-' trZ, Z,

So we can again define a Wilaonian action as the dif-
ference of two regulated actions, with scales3 p and
p'. In this formulation, we will, at two loops, obtain a
conventional-looking result for the action, with coupling

8~2 8~2 g(~)(,), =
( ), +bo»(~'lu)+ q» (,)

+o(g ).
(4.9)

It is clear &om our preceding discussion what has hap-
pened. In order to de6ne the Wilsonian action, it is nec-
essary to introduce cutofF parameters. Only for suitable
de6nitions of these parameters, will the action be holo-
morphic. Here it is necessary to de6ne

+ d 8 trmpZp + tr —Zp .2 &p 3
p ' (4.11)

g(M)
g(Mv)

(4.12)

This Lagrangian has a minimum, which breaks SU(5) to
SU(3) xSU(2) xU(1) [15]:

Zp = 0'pdiag(2, 2, 2, —3, —3) (4.13)

where

Here Z~, the wave function renormalization factor, is
given by

Vo g(V)
~o g(~').

(4.10)
mp

(Jp =2
Ap

(4.14)

The action as a function of these new parameters pp and
pp is also an analytic function of S.

In this vacui~m, the vector masses go as

Mv = 5~2g(Mv) o = g(Mv)&o/v Z . (4.15)

More precisely dimensional reduction. Note ere are content
to use in this analysis regularization schemes, which vrork only
to low orders.

A dimensionally regulated action is not, in general, a Wilso-
nian action, since dimensional regularization does not really
act as a cutofF in integrals mith poorer divergences. Similar is-
sues arise arith the momentum-space scheme discussed belovr.
We thank Joe Polchinski for a discussion of this issue.

The remaining members of the adjoint have mass of order
m = Zmp, the octet, triplet, and singlet have masses zm,
zm, and 2m, respectively.

We would like to consider the Wilsonian efFective ac-
tion obtained by integrating kom a scale M well above
the GUT scale to a scale p mell below the GUT scale.
Using the conventional renormalization-group analysis,
we can determine the coupling constant at the scale p
(p && Mv) for each group:
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s~' s~' b," g(M)
(;),( )

—,(M)+ 0 (P/ )+-(,) (,)( )

+(bo —b()* + N '
) 1n(M~/M)

—N(*) ln(m/M)+ —' —,'.
, ln g

(4.i6)

In this expression, bp ——2N = 10 and bq ——0 denote
the one- and two-loop P-function coefficients of the high-

energy theory; bp' and bz' denote the corresponding
quantities for the three low-energy groups, and N~'~ is the

I

Casimir of the adjoint representation (associated with the
massive octet, triplet, and singlet). Note that for the low-
energy U(1) these quantities vanish. The various terms
here can be inferred simply by noting that above the scale
Mv, the couplings fiow with the P function of the high-
energy theory. For the massive fields, we can then simply
replace p with the appropriate threshold. The thresholds
for the vector fields are at M~ and those for the octet,
triplet, and singlet are at m (up to a constant of order
one).

Now rewriting M~ and m in terms of bare quantities,
using Eq. (4.12) and the explicit forms of the P functions,
we obtain

g( ) (P)
—

g (M) "'"( / ) '
b( )
'

g( )(p)

+(2N —2N ')
) ln g(M) + (2N —2N(') ) 1n(0'o/M) —N ') ln(mo/M) . (4.17)

These expressions are analytic in the bare parameters 7Ap

and Ao. However [apart f'rom the U(1), which does not
involve the scale p at all] they are only analytic in g(M)
if we define independent parameters p~'~ for each gauge
group; i.e. , we let p m y(') in Eq. (4.17), and then rescale
p~'~ and M. For example, we can take

(e) 0
0 ~ ~ ~

Vny

t (') g(')&
g(M)

M Mo g(p)
M = Mpg(M) .

(4.is)

In other words, it is necessary to integrate differently
over different fields. This should not come as a surprise.
If we had considered some sort of Pauli-Villars regula-
tor fields, as we did for our U(1) example, these would
have come in complete SU(5) multiplets, and the differ-
ent components of the multiplets would be renormalized
difFerently at low energies. Thus our Wilsonian cutoffs
would be different for each gauge group. It is for this
reason that we said in the Introduction that we prefer
the Geld-dependent cutoff language, since the rescaling
in this case does not correspond to any simple redefini-
tion of the unified coupling g(M). The rescaling in Eq.
(4.18) is not unique. We will comment on this after we
have considered nonperturbative effects in the next sec-
tion.

V. SUPERSVMMETRIC +CD

A somewhat more intricate example is provided by su-
persymmetric /CD with Ny fiavors of quarks and anti-
quarks. This theory is well-known to have Hat directions,
at the classical level, in which the gauge symmetry is
completely or partially broken. Let us concentrate Grst
on the case Nf ( ¹ In these models there are Hat di-
rections with

(0 0 0)
In these directions the symmetry is broken to SU(N —Ny)
if Nf & N —1, and is completely broken for Nf —N 1.
The effective coupling in these directions is essentially
the coupling of the full theory at the scale V.

If Nf ( N, nonperturbative effects give rise to a su-
perpotential. The form of this superpotential can be
uniquely determined from the symmetries of the theory
and the requirement of holomorphicity:

A(3N Ny)/(N N—y) (d tq q )
——1/(N ivy)—(5.2)

where the determinant is in Qavor space. In stating that
this result is exact, it is important that the chiral fields
here must be understood as bare, unrenormalized fields.
In the case Nf ——N —1, for large v the superpotential is
generated by instantons; in the other cases it is generated
by gluino condensation in the unbroken group SU(N-
Nf) [1].

In both cases, if one examines the detailed computa-
tions, one might expect complicated corrections in the
coupling. Indeed, one might worry not only about non-
holomorphic dependence on g(M) but also on g(u), or
equivalently In(]u]). Yet the general holomorphicity con-
siderations we are invoking here show that this should not
be the case, provided we work in terms of suitably de-
Gned couplings, or equivalently provided that we choose
our cutofFs appropriately. In this section, we will show
how this works for the first subleading corrections.

In the case Nf ( N —1 the nonperturbative super-
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potential arises as a result of gluino condensation in the
SU(N —Ny) theory; indeed, W„~ is proportional to (AA)
[1]. Let us first examine the form of the gauge coupling
function, along the lines described in the preceding sec-
tion. Work (for definiteness) in the momentum scheme,
where we integrate out between some large scale M and
p. The xnassive vector supermultiplets will be taken to
have mass Mv = g(Mv)v. Then, by the same logic as in
the unified theory case,

of g()p', ) and g(M). Choosing p, (( Mv (( M,

,g(M)' ( 3 x 8vr2)
AA = p exp

g(~)' E bog'(/))
(5.9)

[The dependence on g(M) can be determined by writ-
ing a renormalization-group equation for this object as
a function of M, including the appropriate anomalous
dimension. ] Now use our earlier relation to write p in
terms of pp. Using Eq. (5.8), one sees that

8+2

g'(v)
+ bp ln(p/M) + = ln

b~ g(M)
g2 M bp . gIJ
+(bo —bo) ln(Mv/M)

bg bg g(M)
bp bo g(Mv)

(5.3) +bp 1n(pp/Mp)
)

(5.10)

t' 3 8~'
(AA) = po exp~ —= + (bp —bp) ln(vp/Mp)

bo .g

(5 4)

bp = 3(N —Ng), by = 6(N —Ny)

The vector mass in this expression is given by

—1
M~ ——gv = gvp Z (5 5)

where vp denotes the expectation value of the unrenor-
malized scalar field, and ~Z is the corresponding wave
function renormalization factor:

[(N —1)/2N] (2/bo )gjM
g(Mv)

(5.6)

Using (5.6) and (5.4) we can rewrite Eq. (5.3) in terms
of vp'.

8m2 8+2 bg g(M)+ bo ln(p/M) + ='ln

+(bp —bp) ln(vp/M) + (bp —bp) ln g(M) . (5.7)

In other words, only the expectation value of the bare
scalar field appears here. All nonanalyticity in g then
disappears if we write the coupling in terms of new scales
pp and Mp.

g(M)P=Pp '
. g(v) .

M = Mog(M)( ' ')/ ' . (5.8)

Clearly there is some freedom at this stage in the choice
of rescaling; the reasons for the particular choice above
will be clear shortly.

With this expression, it is now a sixnple matter to com-
pute the superpotential through two loops. We can use
a conventional renormalization-group analysis to deter-
mine the form of the (AA) condensate as a function both

Here, as before, bp and bq are the P function coefficients of
the high-energy theory; bp and bq are those of the broken
phase. Explicitly,

N2 —1
bp = 3N —Ny, b] = 6N —2Nf N —4Nf

2N

This yields precisely the nonperturbative superpotential
of Eq. (5.2):

—2Ny/(N —Ny gM 8~ /bing (M) i350/bo
Vp (5.11)

Note that the result is, as expected, an analytic function
of the bare fields and the couplings. More precisely, we
have shown here that there are no terms involving ln(~v~ )
or ln(~g] ). It is an elementary exercise to show that the
result has the correct dependence on the phase of v and
the 0 parameter.

The reason for our particular choice of rescalings in Eq.
(5.8) is now clear. It is necessary to satisfy two holomor-
phy conditions: holoxnorphy of the gauge coupling and
holomorphy of the gaugino condensate. Indeed, a major
component of the analysis of SV is the holomorphy of the
condensate. They prove this requirement by studying su-
persyrnmetry Ward identifies. Alternatively, we can ar-
gue for it in the spirit of holomorphy as a function of
couplings used in this paper. If we couple a chiral field S
to R'2, not only must the coupling function be analytic in
S, but also any superpotential generated for S (by gluino
condensation, in particular) must be holomorphic. So the
gluino condensate itself xnust be holornorphic. Indeed, as
discussed in Ref. [12], its precise dependence on S can be
determined a priori from symmetries.

Let us now turn to the case Nf ——N —1, in which the
superpotential is generated by instantons. The required
instanton coxnputation, including the required one-loop
determinant, has been performed by Cordes in Ref. [16].
Indeed, Cordes has considered the g dependence of the
calculation. Some features of this discussion, however,
are slightly obscure. In particular, including only the
one loop corrections to the instanton, one cannot deter-
mine whether the factors of g, which appear correspond
to the coupling at the scale of the vector meson masses
or at the scale of the cutofF. Here we give a slightly dif-
ferent description, in which we use dixnensional analysis,
improved by the renormalization group. We will see im-
mediately that, if we work in terms of the bare fields, the
superpotential is an analytic function both of the expec-
tation values of the fields and of the "Wilsonian" gauge
coupling.

The easiest quantity to compute with instantons is the
mass of the light fermion. The result has dimensions
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of mass. The relevant scale in such computations, as
stressed in the original work of 't Hooft [17], is the vector
boson mass g(Mv)n. The result is then necessarily of the
form

m„=ag(M )u. "-'»'(M ) (5.12)

for some constant a. Substituting the explicit form of the
two-loop P function gives

M2N+1—8m jg (M)
g(M)2N

g~cvI
(4Ny /bp ) (N —i) /2 N

v2N&+2 g(MV)
(5.13)

But from this we see that the superpotential is

[M sm /b—pg(M) ]2N+i

detQQy Z
(5.14)

where

M
g(M) 2N/(2N+i) (5.15)

Thus the bare superpotential satisfies all of the expected
holomorphicity requirements.

This is a good point to return to the unified model,
and consider the rescalings to be performed there. In
that theory, there are two unbroken low-energy groups,
SU(3) and SU(2), with nomatter fields. Clearly we want
to require analyticity of the gauge coupling functions.
What of the gluino condensates in the two groups' Con-
sider, again, the coupling of the field S. Both the SU(3)
and SU(2) condensates contribute to a superpotential for
S, but the SU(3) condensate is exponentially larger. In
other words, the effects of the SU(2) condensate are much
smaller than any of the two-loop effects being considered
in this paper. Indeed, the analysis of the SU(2) conden-
sate is complicated, for example, by the fact that higher-
dimension operators obtained by integrating out MGUT
fields can induce an SU(2) condensate independent of
any pure SU(2) dynamics. Thus at the level of our low-
order analysis, we should only impose the requirements
of holomorphicity on the SU(3) condensate. This yields
a somewhat different set of rescalings than those given
earlier. The rescalings of the p~'& are still different for
the SU(3) and SU(2) groups.

possible factors k from the Kac-Moody algebras of the
various gauge groups). The usual holomorphicity argu-
ment would then say that in perturbation theory, the
only corrections to unification arise at one loop. If the
string coupling is weak, any nonperturbative corrections
will then be extremely small. However, there is good
reason to think that if string theory describes nature, it
is strongly coupled. Does this nonrenormalization of the
gauge couplings have any significance then'

In Ref. [8], it is shown that in some cases, discrete
gauge symmetries (which are expected to survive non-
perturbatively) ensure that any corrections to the gauge
coupling function (and to the superpotential) are neces-

2gsarily of the form e ~ . In. this reference, jt is argued
that even though string perturbation theory may not be
valid, S may, as observed in nature, be large, meaning
that the effective gauge couplings are small. Potentially,
then, the nonrenormalization of the gauge couplings is
a quite powerful statement about the full, nonperturba-
tive string theory. Shifman and Vainshtein, on the other
hand, have taught us that this nonrenormalization is only
true with a suitable definition of the coupling. One might
worry that since this redefinition must be rediscovered at
every order of perturbation theory (and beyoad) that the
nonrenormalization is &ee of content. Here, however, the
field-dependent cutofF language is very helpful. While in
strong coupling, we do not expect the required rescaling
of the cutoff to be computable, we also do not expect it to
be exponentially large; indeed, we expect that it is of the
order some power of the coupling, i.e., of order 1. This
is of the same order as the uncertainties due to threshold
effects; indeed, we expect thresholds to move by amounts
of order one at strong coupling as well. So while we do
not expect to have complete control of these corrections,
we do not expect them to be incredibly large.

This is, of course, both good and bad news. On the
one hand, it means that string theory is more predictive
than we might have expected. On the other hand, string
theory is in danger of making the wrong prediction, at
least if it produces a theory with minimal supersymmet-
ric standard model (MSSM) particle content. It is con-
ceivable that the cutoff's must be rescaled by factors of
100 or so, but this is an uncomfortable refuge.

In any case, this problem provides an example of a
situation where the Shifman-Vainshtein program is po-
tentially of more than academic interest. It provides a
qualitative insight of quantitative significance.

VI. A STRING THEORY APPLICATION

We conclude by considering a problem in string theory
in this language. Consider the question of the unifica-
tion of couplings. It is well known that in string theory
the gauge couplings are unified at the tree level (up to
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