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We consider the form of the chiral-symmetry-breaking piece of the effective potential in the linear
o model. Surprisingly, it allows for a second local minimum at both zero and finite temperatures.
Even though chiral symmetry is not exact, and therefore is not restored in a true phase transition at
finite temperature, this second minimum can nevertheless mimic many of the effects of a first-order
phase transition. We derive a lower limit on the height of the second minimum relative to the global
minimum based on cosmological considerations; this limit is so weak as to be practically nonexistent.
In high energy nuclear collisions, it may lead to observable effects in Bose-Einstein interferometry
due to domain walls and to coherent pion emission.

PACS number(s): 11.30.Rd, 11.30.+c, 12.38.Mh, 25.75.+r

I. INTRODUCTION

The possibility of producing a quark-gluon plasma in
relativistic heavy-ion collisions is an exciting one, espe-
cially &om the point of view of observing the chiral-
confinement phase transition and/or crossover as the
plasma expands and cools. The formation of domains
in a chiral phase transition where the chiral field may
not be oriented along the true vacuum has been a sub-
ject of many investigations recently. The formation of a
large domain with a disoriented chiral condensate (DCC)
has been proposed by Anselm [1], by Blaizot and Krzy-
wicki [2], and by Bjorken, Kowalski and Taylor [3] in the
context of high multiplicity hadronic collisions. It was ar-
gued in [3] and by Blaizot and Diakonov [4] that, as the
chiral field relaxes to the true vacuum in such a domain,
it may lead to coherent emission of pions. A motivation
for this proposal comes &om Centauro events in cosmic
ray collisions [5]. In the context of quark-gluon plasma,
Rajagopal and Wilczek proposed [6] that the nonequilib-
rium dynamics during the phase transition may produce
DCC domains. They argued that long-wavelength pion
modes may get amplified leading to emission of coherent
plons.

One difhculty in these scenarios is that one typically
expects domains that are not much bigger than the pion
size [7]. Several studies have focused on the possibility of
getting a larger domain. Gavin, Gocksch, and Pisarski
have argued [7] that large doxnains of a DCC can arise
if the efFective masses of mesons are small, while Gavin
and Miiller propose [8] the annealing of smaller domains
to give a large region of DCC. Blaizot and Krzywicki [9]
have pointed out that even if the average domain size
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is very small, random fIuctuations could result in some
subset of all nuclear collisions having a large domain of
DCC.

In this paper we consider the structure of the efFective
potential in the chiral model and note that more general
possibilities exist for the symmetry-breaking term than
considered in these previous investigations. This allows
for the existence of a second local minimum of the poten-
tial, in addition to the true global minimum, leading to
the formation of domain walls which interpolate between
the two minima. These walls are unstable unless the two
minima are exactly degenerate. We consider constraints
coming &om cosmology on the parameters responsible for
the existence of such walls. We find that such constraints
are extremely weak. We then consider phenomenological
consequences of the richer structure of the efFective po-
tential of the model, especially &om the point of view
of the formation of a DCC. We show that in these more
general models large domain walls naturally form but
eventually disappear, leading to emission of pions &om
shell-like structures. Bose-Einstein interferometry should
be able to reveal any such shells [10]. We further argue
that large regions of a DCC may arise naturally in these
models, and may be able to account for phenomena such
as Centauro events.

There is some analogy to the physics of spin glasses
[11]. A spin glass is characterized by a phase space,
which has a complicated landscape of valleys. As the
temperature is reduced, barriers between valleys become
significant, and the relaxation times become very long.
The system may even get trapped in a single metastable
state for the duration of the experiment. One may ob-
serve hysteresis in strong magnetic fields that vary with
the experimental conditions. Real spin glasses have an
anisotropy. In hydrodynamic models of Heisenberg spin
glasses one is naturally led to consider a coarse-grained
&ee energy, which has similarities to the efFective poten-
tial given in Eq. (20) below.
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The paper is organized as follows. In Sec. II we con-
sider the details of the efFective potential, both at zero
temperature and at finite temperature, and discuss var-
ious possibilities for the symmetry-breaking term. In
Sec. III we consider constraints on the parameters of
the model arising &om the formation of domain walls in
the early Universe. In Sec. IV we consider potentially
observable efFects in high energy collisions, namely, pion
production &om domain walls. In Sec. V we present
some conclusions.

II. THE EFFECTIVE POTENTIAL

The a model [12] is thought to represent the long-
wavelength limit of /CD [13,14]. Much has been written
about the model, both at zero temperature [15,16] and
at finite temperature [17]. Despite this, the shape of the
efFective potential at both zero and finite temperature
may have a nontrivial structure when the pion mass is
nonzero, which feature seems to have escaped attention;
at least it goes against the conventional considerations.
In this section we explore the effective potential, and in
the following sections we shall explore its phenomenolog-
ical consequences.

A. The vacuum

B„A"=fme. (3)

Vsn = —) ", cr" + (bia —+ 82cr )m

is realized as an operator equation.
(2) Vsn = 2m m, which is quadratic in the pion field.

The PCAC relation is realized only in the weak-field
limit.

(3) Vsn = const x NN, which is quadratic in the nu-
cleon field. The divergence of the axial vector current is
proportional to the axial vector nucleon current.

In principle one could imagine that low energy pion
scattering measurements could distinguish between (1)
and (2). However, by its very nature that occurs in the
weak-field limit, so the measurements would have to be
very precise. Also, low energy pion scattering is influ-
enced by the tails of resonances, such as the p meson
[20], which would tend to mask the effects of the non-
linear symmetry-breaking terms. We are not aware of
any experimental evidence that prefers one symmetry-
breaking term over the other. In this paper we shall not
consider the possibility (3).

If one insists on an efFective Lagrangian, which is ro-
tationally invariant and renormalizable, then the most
general symmetry-breaking potential can be written as

We use the o model in its linear representation. The
Lagrangian is expressed in terms of a scalar field cr and
the pion field m:

8 = —(O„cr)'+ —(B„n)'

——(cr + m —c /A) —Vsn.

The piece of the Lagrangian that explicitly breaks chiral
symmetry is Vsg. In the absence of this term, the poten-
tial has the shape of the bottom of a wine bottle. Chiral
symmetry is spontaneously broken in the vacuum, the
pion is the massless Goldstone boson, and the o. meson
gets a mass on the order of 1—2 GeV. The axial vector
current, defined by

A„= (B„cr)~ —(B„m)a, (2)

is conserved. It is believed that chiral symmetry is re-
stored by a phase transition, which is perhaps of second
order, at a critical temperature T 160 MeV; we come
back to this point later.

Any quantitative description of nature at finite mo-
mentum and energy must include the vector mesons [18].
Since we are proposing here a qualitatively new phe-
nomenon we shall neglect them, as well as strangeness.

The up and down quarks, while very light, are not
massless; therefore, neither is the pion. Historically, there
have been three ways to add a symmetry-breaking term
to the linear cr model [19].

(1) VsB = f m a, which i—s linear in the a' field. The
PCAC (partial conservation of axial vector current) re-
lation

Other symmetry-breaking terms one might think of
adding simply amount to a redefinition of the eight pa-
rameters A, c, e„,b„. Relaxation of the renormalizability
condition would allow further terms but, as we shall see,
there is already sufFicient &eedom to generate interesting
physics. In what follows we will set bq

——b2 ——0, mainly
for simplicity of presentation.

With the symmetry-breaking potential as given above,
the divergence of the axial vector current is

B„A" = —Vsn(cr)7r,

VSB(aGS) = y.m.', —

aGS(AaGs c ) + VsB(aGs) (7)

2 2 — 2o-Gs (8)

and so aGs = f»
One must still ensure that the global minimum is really

obtained when n (x) = 0. To investigate this problein, let
us expand the fields about an arbitrary point as follows:

cr(x) = v cos0+ a.'(x),

where the prime denotes difFerentiation with respect to
o. It is clear that PCAC is an operator identity only if
VsB is linear in o. The ground state of this theory ought
to occur at cr(x) = aGs ) 0 and m(x) = 0. We must
immediately impose three conditions: that the minimum
of the full potential occur at oGs, that PCAC hold for
small fluctuations about ocs, and that the pion has its
physical mass there. Therefore,
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m(x) = v sin 8+ m'(x), (10)

where ~v~ = v and the primes denote Huctuations about
the given point. The full potential is

V(v, 8) = —(v —c /A) + Vsn(v cos8) .
4

We now consider several limits for the symmetry-
breaking piece of the potential.

Suppose that ei ——f m, and all other e's are zero.
Minimizing the potential with respect to v at fixed 8
gives

v(8) = f (1+4), (12)

where 6 = —2(m /m ) sin (8/2), m2 = 2Af + m
and

V;„(8)—V;„(0) = 2f m sin (8/2).

Corrections to the approximate equalities are of relative
order 4 &( 1. This is a tilted wine bottle bottom with
only one minimum.

Now suppose that e~ ——m, and all other e's are zero.
Then

v (8) = f [1 —2m sin 8/m ], (14)

where m2 = 2Af, and

V;„(8)—V;„(0) = f m sin—8.
2

We neglect a correction of relative order (m /m )2. This
potential has two degenerate minima located at 8 = 0
and K.

In general, one may expect that Vsg allows for two
minima, one at 6P = 0 and one at 8 = vr. If they are not
degenerate then by a simple redefinition of the fields we

may, by convention, choose 8 = 0 to be the global min-
imum. We shall investigate what limits cosmology may
place on the existence and depth of the second minimum
in the next section; we shall find that the constraint is
extremely weak. It is quite surprising to us that neither
terrestrial experiments nor pure theoretical computations
in qCD so far tell us anything about a possible second
minimum.

Our statement certainly goes against the conventional
point of view as expounded by Pagels [21], for example,
which says that the symmetry-breaking potential should
be linear in the fields, and for three quark flavors should
follow the (3, 3') + (3', 3) symmetry-breaking scheme of
Gell-Mann, Oakes, and Renner [22]. The main argument
seems to be that this is the simplest description, which
gives reasonable low energy phenomenology. Thus, on
p. 225, Pagels writes, "It is the burden of this arti-
cle to show that the simple set of assumptions of the
(3,3') + (3', 3) model works as well as it does. This is at
least the case until critical and difficult experiments have
greater resolution. At that time it might be necessary to
abandon or revise these ideas. " There was some inter-
est in this issue in the 1970s in regard to three-flavor

physics. It was found that the addition of symmetry-
breaking terms bilinear in the scalar fields resulted in low

energy phenomenology as good as, or better than, linear
terms alone [23]. These bilinear terms could have the
structure (3, 3*)+ (3', 3) or they could have components
of some other group structure. A more recent study [24]
has found a nonzero coefficient of a bilinear term in the
three-flavor nonlinear 0 model. We will not pursue the
three-flavor world in this paper, but it is certainly worth
doing.

One might at first think that e„oc m" (where m~ is
the up or down quark mass) so that ei is much greater
than e2 and so on. We think it is quite possible that all
e„oc m~ and therefore of comparable magnitude (when
scaled appropriately with f ) The .argument is that the
0 model is only a low energy efFective model of QCD, and
all possible terms, which are allowed, should be included.
Indeed, even if one started originally with only a linear
symmetry-breaking term 6'y loop corrections would gen-
erate nonlinear terms. These nonlinear terms would have
coefficients equal to cy times some function of A and c.
Since A and c are big, we expect that all e„f" would turn
out to be comparable in magnitude.

For clarity of exposition we shall hereafter restrict
our attention to the possibility that only eq and e2 are
nonzero. This is sufficient to parametrize the effective
potential with the &eedom to adjust the tilt of the bot-
tom of the wine bottle as well as the depth of the second
minimum. We have then at our disposal four parameters
in the effective Lagrangian: A, c, eq, and e2. These pa-
rameters must be restricted so as to give the proper pion
mass, pion decay constant, a reasonable value for the 0
mass, PCAC in the weak-field limit, and the condition
that the ground state of the theory occur at 0 = f and
m = 0. We obtain

m =2Af +m
f m =ei+e2f2

(16)
(»)
(18)

B.Finite temperature

To estimate what may happen at finite temperature
we will calculate thermal fluctuations to one loop or-
der and, furthermore, take the high temperature limit.
Quantitatively this cannot be very accurate. The rele-
vant coupling constant is large: A (m /f ) /2 —50.

The numerical values chosen in this paper are m = 140
MeV and f = 94.5 MeV. Lin and Serot [25] have em-
phasized that the o meson in this model is not to be
identified with the exchange of two correlated pions in
the isoscalar-scalar channel in the nucleon-nucleon inter-
action. That exchange is rather broadly distributed in
mass with a peak around 600 MeV. Good phenomenol-
ogy for low energy pion and nucleon dynamics is obtained
if the o meson has a mass greater than about 1 GeV. For
definiteness, we choose m = 1 GeV. We shall vary eq

between 0 and f m2. There is no further freedom given
the above constraints.
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Qualitatively the result should be all right; however, see

[6,26].
To proceed, we expand the fields about an arbitrary

point, as in Eqs. (9) and (10), and determine the masses
of the fIuctuations. If v points in the third direction in
isospin space, then the eigenvalues of the mass-squared
matrix are

positive to negative. The saddle eventually disappears
at the higher temperature T2. Here

2c' (~i 5
Ti —— 2

A (e2)

m~ =Av —c2= 2 2

2 — 2 2
7%2 = AV —C

2

m = 2Av —c ——— A2v4 —C2Av2 cos(2g) +—2 2 2 62 Eg
3 2

2(c + e2) eq /

2A

T = 138 Mev

(22)

2= 2 2
7Ap = 2Av —c ——+

2

2

v —e2Av cos(28) + —.
4
(19)

7-

6 .
-

In the high temperature limit of the one-loop approxi-
mation, one keeps only the terms of order T and m T .
Ignoring terms that are independent of v and 0 we get
the simple expression

6
4-I

I
X

4 1(2
V(v, 8;T) = —v ——

i
c + e2cos 8 —

~

v
4 2
—6]v cos8. (20)

—40 —20
(MeV)

20 40

In the chiral limit one finds, as is well known, a
second-order phase transition at the critical temperature
T, = V 2c2/A = ~2f . An analysis by Karsch [27] of all
available lattice simulations of two-flavor QCD extrap-
olated to zero quark mass is consistent with a second-
order transition with critical indices the same as the
O(4) model. So at least qualitatively the model and ap-
proximations made here make sense. However, as em-

phasized by Shuryak [28], the o model is supposed to
represent only the long-wavelength modes, and certainly
does not include the contribution from short-wavelength
modes. For example, as one approaches T, from below,
the model does not include the g, p, ~, and the whole
tower of mesons above them. As one approaches T,
&om above, the model does not include all the degrees of
&eedom represented by quarks and gluons. The energy
density of the long-wavelength modes represented by the
pion and cr degrees of &eedom should be thought of as
sitting on top of a much larger energy density represented
by all these other degrees of freedom.

When the up and down quark masses are nonzero, chi-
ral symmetry is not exact. It cannot be restored at high
temperature. If VsB is an even function of a the I a-
grangian still possesses a discrete symmetry, which is re-
stored at some critical temperature. For example, when
only e2 g 0, this temperature is /2(cz + mz)/A.

It is straightforward to show that the zero-temperature
effective potential has a second, local, minimum at 0 = m,

which is separated &om the global minimum at 0 = 0
by a barrier when the inequality e2 V c /A ) ei ) 0 is

satisfied. (Qc2/A is just f up to corrections of order

m„/m .) As the temperature is increased, this mini-

mum develops into a saddle at temperature Tq, where
the curvature in the azimuthal direction changes from

T = 133 MeV

0. 8 .

—0 6-
6
W

0
Z

0. 2

0. I

—40 —20
g (MeV)

20 40

T = 128 Mev

2-

1.5

(D
Z

0. 5

0

g (MeV)

2Q

FIG. 1. Temperature dependence of the effective potential
for the choice of parameters ~1 ——~q ——0. The curve shorn
represents a slice through the V-cr plane. The potential is

rotationally symmetric. There is a second-order phase tran-
sition at T, = ~2f = 133.6 MeV.
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In Figs. 1—4 we show the evolution of the effective po-
tential with increasing temperature for four sets of e. All
of these represent a slice through the V-0. plane, and are
normalized such that V;„=0 at each temperature. One
can imagine that a system cooling through Tq could get
trapped in the metastable minimum. We shall consider
such possibilities in the following sections. We call this
the proximal chiral phase transition, since it is a con-
sequence of the proximity of exact chiral symmetry in
parameter (quark mass) space, but it is not a true phase
transition in the thermodynamic sense.

III. COSMOLOGICAL CONSTRAINTS

Considerations of phase transitions in the early Uni-
verse have been very useful in restricting particle the-
ory models. We now ask whether cosmology places any
constraints on the parameters characterizing the effec-
tive potential in Eq. (1). As mentioned earlier, we will
be considering only eq and e2 to be nonzero as this is suf-
6cient to capture the qualitative aspects of the effective
potential. It is well known that when the effective poten-

80.
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6 (Me V)

20 40

FIG. 2. Temperature dependence of the effective potential
for the choice of parameters sq ——f m and sq = 0. The
curve shown represents a slice through the V-cr plane. The
bottom of the potential is tilted. There is a saddle point at
8 = m for T ( 114.9 MeV.

FIG. 3. Temperature dependence of the eHective potential
for the choice of parameters eq ——0 and eq ——m . The curve
shown represents a slice through the V-o. plane. There is a
second-order phase transition restoring the discrete symmetry
o ~ cr at T, = ~2f—= 133.6 MeV.
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tial has more than one disconnected minima then domain
walls are produced in a phase transition. For the poten-
tial term in Eq. (4) this happens if ex ——0 and e2 g 0.
Two regions of space, which correspond to the two de-
generate vacua 0' = f and 0' = f—, respectively [see
Eq. (14)), will be separated by a domain wall where the
chiral field smoothly interpolates between the two vacua.
In the context of the early Universe, stable domain walls
are almost always disastrous unless the phase transition

T = 132 MeV

60.
6

4-I

~ 40 ~I
X

20 ~

happens at extremely late times. This already suggests
that the parameter ei cannot be identically zero.

By expanding o and m, as in Eqs. (9) and (10), we can
determine the effective Lagrangian for 8 from Eqs. (1)
and (20) to be

2V 2 2 2 2Eg = —(8 8) + E xv cos 0+—v cos g.P 2

Here v minimizes the effective potential at 6xed 8 and T;
that is, it traces the bottom of the valley of the potential.
Since this valley has an almost constant radius at 6xed
T, we can neglect its very weak dependence on 8. Hence,
v = v(T).

As we will show in the following, cosmology places a
lower limit on ei, which is very small. Thus, as far as
cosmological considerations are concerned, we can deter-
mine the structure of the domain wall by taking ~i ——0.
With this, and de6ning 8' = 28, we get the following
equation of motion for 8':

0 ~ .
-100 -50

a IMeVi

50 100

0'+ e2sin8' = 0.

This is the familiar sine-Gordan equation, which is known
to have the domain-wall solutions [29]

T = 127 MeV 0'(z) = 4 arctan exp (Qe2z)j,

50.

4 0

=30
6
X

20

10-

0.
-100 -50

g (Mev)

50 100

T = 122 MeV

15-

6

R

12.5 .

5.
2. 5

0 -
~

-100 —50
a (Me V)

50 100

FIG. 4. Temperature dependence of the effective poten-
tial for the choice of parameters eq = 0.25 f m and
~2 ——0.75m . The curve shown represents a slice through
the V-u plane. The direction 8 = m has a local mini-
rnum when T ( Tq ——123.2 MeV, a saddle point when
T~ ( T & Tq ——127.0 MeV, and no critical point at all when
T) T2.

where the z axis is normal to the wall. The thickness of
the wall is b e2 . Thus the surface energy density p~
of the wall is of the order

Pg 62V 6 = V
2 2 (26)

When ~i is nonzero then, even though domain walls
still form, they are not stable any more. (It is simple to
check that domain walls always form as long as ex & f„e2,
which is just the condition that there be a local minimum
at 8 = vr. ) Instability of the wall arises because now one
minimum (8 = 0) is energetically preferred over the other
(0 = 7r), so the region corresponding to 8 = vr shrinks,
while the region corresponding to 0 = 0 expands. These
unstable domain walls then disappear in the course of
time as the true minimum spreads throughout space. Of
course, in the context of the early Universe, there is an
upper bound on the lifetime of such walls if they are
not to dominate the energy density of the Universe. As
the standard theory of nucleosynthesis is in. very good
agreement with observations, one would also like that
any such unstable domain walls do not inBuence it.

A restriction on the lifetime of the unstable walls im-
plies restriction on the parameters e~ and ~2, which we
now consider. [Other paraxneters in Eq. (1) are not con-
strained by such considerations &om cosmology; the only
other topological objects in the model are skyrmions,
which are supposed to be nucleons. ] Let us refer to the
difference in the energy densities at 8 = m and 0 as Ap~.
Froxn Eq. (23) we have bpv = 2exv. One expects that
the instability of domain walls becomes signi6cant when
the age of the Universe t* is such that the energy excess
at the scale t' becomes comparable to the energy of the
domain wall on the same scale [30].
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A good way to understand this is to realize that when
ei g 0 one is actually considering a situation similar to
a first-order phase transition. As domain walls keep in-
tersecting each other and pinching off, one can consider
closed domain walls at any given time. The whole region
then looks like bubbles of one phase embedded in the
other. The bubbles that have 8 = vr inside will always
shrink, while the bubbles that have 8 = 0 inside should
expand, but only if the size of such bubbles is larger than
a critical size R . This critical size can be determined by
considering the total energy E~ of a bubble of radius R:

4m 2E~ ————R Spy + 4+R ps.
3

(27)

The critical size R, is determined by requiring that ER be
stationary with respect to small variations in R. Bubbles
larger than R„which have 8 = 0 inside, will expand,
while those smaller than R, will collapse. We find that

2ps
C v

Qp~
(28)

So far we have neglected the fact that the Universe
is expanding. If R„at a given time, comes out larger
than the horizon size at that time, then all the bubbles
with sizes smaller than the horizon will shrink. Bubbles
with sizes equal to or greater than the horizon always
stretch along with the horizon due to the expansion of the
Universe, irrespective of which phase is enclosed. There-
fore, in order that the difference between the global min-
imum and the metastable minimum become important,
R, must be smaller than the horizon size H (correspond-
ing to the age of the Universe at time t'). Using the
above equation, this implies that

H)v
E1

(29)

Using the constraint given by Eq. (18), we can write this
as

v e2 v mH& f (m —e2) ei
(30)

The horizon size at the time the Universe passed
through the chiral-confinement phase transition and/or
crossover is about 10 cm, which is very large compared
to the /CD scale of 10 is cm. Unless e2 is extremely
close to m the above inequality will be trivially satisfied.
(Note that the domain walls do not really have to disap-
pear much before the time of nucleosynthesis. Therefore
the real constraint is somewhat weaker than this. ) Since
e & f, we find the lower bound to be

eq ) 3 x 10 MeV (31)

As long as eq is larger than this, the domain walls will
disappear very quickly and will not afFect the Universe
in any significant way. Because the horizon is very small
at that time, any density fiuctuations generated by col-
lapsing domain walls will also get wiped out quickly.

Clearly, the constraint on ei given by Eq. (31) (and the

corresponding constraint on e2) is extremely weak. Since
Eq. (1) describes an efFective theory anyway, it is safe to
say that cosmology imposes no practical constraints on
the parameters of this model.

IV. HIGH ENERGY NUCLEAR COLLISIONS

We now consider chiral-symmetry breaking in the con-
text of quark-gluon plasma formation in a heavy-ion col-
lision and the inBuence of a misaligned chiral condensate
on pion production. As we mentioned in the Introduc-
tion, the possibility of coherent pion emission from ex-
tended domains is very interesting and has been a sub-
ject of many investigations recently [3,4,6—8]. One of the
problems in getting a clean signature is that such do-
mains are expected to be very small [7]. However, these
investigations have been restricted to the case when only
~q is nonzero. As we have discussed earlier, there does
not seem to be any reason to exclude other symmetry-
breaking terms in the potential. The structure of the sys-
tem drastically changes when we consider e2 also nonzero,
as exemplified by the presence of domain walls. In this
section we will consider what sorts of signatures one
can expect for these more general possibilities for the
symmetry-breaking terms in the efFective potential.

Let us first consider pion production due to different
regions of misaligned condensate. Since previous studies
have considered only nonzero e~, we first briefiy comment
on this case. It has a uniformly tilted potential with
unique minimum at cr & 0. It has been suggested earlier
[6] that, in a rapid phase change, the chiral field could roll
down to different minima in difFerent regions. In a given
region, a pion condensate could form if the chiral field
points in a direction different &om the true minimum.
As this pion Geld relaxes to the true minimum it will
lead to coherent emission of pions.

One difficulty with getting a clean signal in this sce-
nario is that the typical domain one expects is very small,
of order 1 fm [7]. However, we would like to point out
that this does not exclude the possibility of the formation
of pion condensate in a large region. For example, con-
sider two adjacent domains where the chiral field points
in two difFerent directions, say Oq and 82. As the chiral
Geld relaxes, one may expect that both Hq and 82 will ap-
proach zero. However, this really depends on the values
of these angles. For example, assume that Hq ——~+nq and
82 ——m —o.2, where both aq and a2 are small. Then in the
region where the two domains are in contact, the chiral
Geld will have to smoothly interpolate between the two
angles, and hence somewhere in that region it will point
in the direction vr. As the outer regions of the domains
relax to 8 = 0, the chiral field raay start to cover a larger
region of the order parameter space M. (We use M to
denote the manifold defined by the bottom of the valley
traced by the minimum of the efFective potential. ) This
means that the evolution of the chiral fields in a collec-
tion of domains is not totally uncorrelated. Essentially,
the chiral field defines a smooth map from the region cov-
ered by the domains into the manifold fH. The image of
this map is actually a smooth and connected patch in
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the manifold W. Smoothness of this patch is enforced
by the condition that the chiral field must smoothly in-
terpolate in-between any two adjacent domains. When
the chiral field relaxes, this patch deforms as its portions
slide down to the global minimum. It is quite conceiv-
able that this type of evolution of the chiral 6eld leads
to a pion condensate pointing in a direction which is in
some way the average direction de6ned by the patch. It
is thus not clear that small individual domains imply no
pion condensate in large regions.

We will not, however, pursue this line of argument,
since ~2 ——0 is unnecessarily restrictive. Rather, we will
show that a nonzero value of e2 leads to the existence of
large domains in a very natural manner.

As discussed in Sec. II, nonzero values of ~2 lead to
the existence of domain walls if the inequality ei ( f E2

is satisfied. (If not then there is no qualitative differ-
ence between this case and the case with e2 ——0.) These
walls are unstable for all non-zero values of e~. Consider
the chiral phase change in a region of the quark-gluon
plasma. As now there are two minima, a local minimum
at cr = v(n) and the global minimum at cr = v(0), the
chiral Geld can relax to either of these two values. One
therefore expects a domain pattern as shown in Fig. 5(a).
For pion production, the initial size of these domains is
not crucial to our model; this clearly distinguishes our
case &om previous considerations, where the size of the
initial domain was crucial. In Fig. 5(a) we have denoted
diferent domains by the angle to which the chiral 6eld
relaxes in that region.

Initially, when the temperature is high, the global min-
imum is only very slightly preferred over the local min-

imum. At those early times, smalL walls may collapse
but large ones may simply be stretched by the expan-
sion of the plasma. This is very similar to the situation
in the early Universe. As the plasma cools, the energy
density decreases, eventually reaching a point when the
walls become unstable in the sense that the 0 = 0 mini-
mum becomes favorable over the 0 = m minimum. If the
expansion is slow, then all the walls with sizes smaller
than the critical size [as given by Eq. (28)] will shrink
and disappear. In any case, one is led to a hierarchy of
sizes of collapsing walls [see Fig. 5(b)], which will lead
to emission of pions. As the walls collapse, the average
domain size will increase. Once the typical domain size
becomes larger than about R, the instability of walls
will become significant. After this the regions with 8 = 0
will expand and the regions with 8 = vr will contract.

The simplest prediction is the formation of walls with
size of order A, carrying excess energy density. It is im-
portant to note that these large walls will form irrespec-
tive of the size of the initial domains. These walls may
expand, converting the false minimum into the true one,
or they may collapse if they enclose the false minimum.
One would expect generally that a large wall (comparable
to the size of the system) may be left enclosing the true
minimum as shown in Fig. 6. Between this wall and the
outer boundary of the plasma region the chiral field is in
the metastable phase. As the 8 = 0 phase expands both
&om the outside and from the inside the two walls will
meet. This will lead to a shell of the size of the system
containing high surface energy density. All the energy
contained in the two walls will be converted to pions.

The most important feature of these pions is that they
ought to be emitted &om a shell-like region; studies of
Bose-Einstein correlations of pions should be able to re-
veal such a shell structure. Investigations in [10] could
be useful in this context. A second feature is the possi-
bility that the pions emitted &om such a shell, or from
the collapsing walls, may be coherent. We now address
this possibility.

Consider a closed wall, which bounds a region of the
false minimum embedded in the true minimum. This
wall will collapse and all the energy contained in the wall
will be converted into pions. The initial structure of the
wall is determined by the details of the variation of the
chiral 6eld &om the 8 = 0 region to the 8 = ~ region.

e=o

(b)

FIG. 5. (a) Formation of domains after the phase tran-
sition. Domains denoted by 0 and m here represent regions
where the chiral field has settled to the true and the false min-
imum, respectively. Solid lines separating different domains
show the initial structure of domain walls. The outermost
solid line denotes the boundary of the system. (b) As domain
walls join and collapse, a hierarchy of domain sizes is gener-
ated. The solid lines again represent domain walls separating
diferent minima.

FIG. 6. Eventually one may be left with a large shell-like
domain of metastable matter. As this domain shrinks, one
will be left with a large shell (of the size of the system) con-
taining large surface density.
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We remind ourselves that we are actually dealing with
the minimum of the effective potential, which is topolog-
ically a three-sphere S3. Different portions of the wall
correspond to different trajectories, which the chiral field
traces &om the north pole of this S to its south pole.
Clearly there is no reason to expect that different por-
tions of the wall will all correspond to the same curve on
S initially. One can then think of the initial distribution
of the chiral Geld in the entire wall as a thick strip joining
the north and the south poles of-S3.

As the wall collapses, one will also expect the thickness
of this strip to decrease because a thick strip costs gradi-
ent energy. Since the pion is very light, the shrinking of
a strip on S3 may proceed faster than the wall shrinks,
especially for the walls that do not shrink initially, either
due to the expansion of the plasma, or due to being the
least unstable. If this strip on S shrinks significantly be-
fore the wall completely collapses, then the entire collaps-
ing shell will correspond to a chiral field, which, though
still interpolating between 8 = 0 and m, goes through a
unique plane. For example, this curve may lie entirely in
the mq-m2 plane. This might lead to a pion condensate,
culxninating in all of the wall energy being emitted in co-
herent pions. (Of course, the process of shrinking of the
strip on S3 also will produce pions but they will not be
coherent. ) The same consideration can be applied to the
type of situation in Fig. 6 where coherent pions may be
emitted &om a shell-like structure.

Let us make a rough estimate of the energy contained
in the walls. As an example, take e2 ——0.8 m . Then with
Eqs. (18) and (28) we get the size of the critical bubble to
be R, 4.5m . With the surface energy density of the
wall as given in Eq. (26) the net energy contained in the
wall is about 14 GeV. This is a very large energy, which
can lead to a high xnultiplicity of pions. In this estimate
we have only considered the energy of the wall, neglecting
the difference in energy of the two minima. During the
collapse (or expansion) of the wall, false minimum energy
will be converted into the kinetic energy of the wall which
should be included to get the net energy emitted in pions.

We brieBy discuss the possibility that our model can
also account for Centauro-like events [5]. A highly ener-
getic cosmic ray collision may produce a tiny bubble of
false vacuum such that the bubble wall propogates ini-
tially outwards due to the initial momentum (or may be
due to the initial expansion of the partons). Eventually
this wall will collapse back. As this wall first expands
and then collapses, there xnay be enough time to develop
a pion condensate on the wall (due to shrinking of the
strip on Ss in the sense described above), and hence lead
to the emission of coherent pions. This is especially likely
as the initial size of the bubble may be very small so the
pion Geld configuration in its wall rn.ay be pretty much
uniform any way. Another possibility is that as the bub-
ble of false vacuum expands due to initial wall xnomen-
tum, a true vacuuxn bubble of critical size nucleates inside
it. This then may lead to a large spherical shell contain-
ing high surface enrgy density (similar to that in Fig. 6).
All this energy may then be emitted in coherent pions.

If we assume that all of the coherent pions come &om a
8 = vr bubble, which eventually collapses, then the energy

emitted in pions E can be related to the radius RF of
this bubble using Eq. (27) as

E = 4mf [1' ~egRrp+ segR~].

RF here represents the radius of the bubble at its largest
size. The entire event will include any hadrons produced
when the bubble was nucleated as well as the hadrons
emitted at the end when the bubble completely collapses.
Presumably coherent pions will be emitted at the end of
the event. If we assume a relation between RF and the
duration of the event r, say RF 7, where a is some
parameter, then our model predicts a very specific depen-
dence of E on w [given by Eq. (32)]. If the information of
E and v is experimentally available, then this equation
can be fitted with data to check our model and hopefully
get the parameters a, eq, and e2.

V. CONCLUSION

Our main idea is that the effective potential, or &ee
energy, resulting from chiral Lagrangian models of /CD
may have a second metastable minimum at a chiral angle
of x. We illustrated this in the linear 0 model with two
quark Bavors. Our numerical examples were restricted to
a symmetry-breaking potential, which had terms linear
and quadratic in u but, in general, there is no reason to
think that the other possible terms are ignorable. There
does not seem to be any fundamental reason why one
should not take this situation seriously. Indeed, three-
Bavor models with linear plus bilinear terms were inves-
tigated brieBy in the 1970s. The motivation then was to
investigate the pattern of symmetry-breaking, the ana-
lytic behavior of observables as the symmetry-breaking
parameters were sent to zero, and to obtain improved
phenomenology. It should be kept in mind that the pa-
rarneters in a two-Bavor model can be renormalized by
the presence of a heavier, third Bavor. Generalizations of
our study to three Bavors should be done.

Cosmology places a constraint on the height of a possi-
ble second minimum relative to the true minimum. This
constraint arises &om the requirement that the energy
in domain walls not upset standard calculations of nu-
cleosynthesis. The constraint is so weak that it has no
practical consequences for high energy particle or nuclear
experiments.

High energy nuclear collisions seem to present a re-
markable opportunity to study the topography of the ef-
fective chiral potential at finite temperature. Nonzero
up and down quark masses spoil the ideal chiral sym-
metry and smear out the probable second-order phase
transition. This may be a cloud with a silver lining if
a second metastable minimum exists as it could mimic
the efFects of a first order phase transi-tion. We have
argued that formation and evolution of domains, with
their attendent doxnain walls, can plausibly lead to ob-
servable consequences. These include coherent pion emis-
sion and Bose-Einstein interferometry of shell structures.
Detailed predictions with a specific effective potential re-
quire numerical simulations as well as the inclusion of
vector mesons.
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