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We investigate quantum tunneling in the theory of a complex scalar Beld with a global U(1)
symmetry when the charge density of the initial con6guration does not vanish. We discuss the
possible 6nal con5gurations and set up the Euclidean path integral formalism to 6nd the bubble
nucleation and to study the bubble evolution. For the stationary path, or the bounce solution, in
the Euclidean time, the phase variable becomes pure imaginary so that the charge density remains
real. We apply this formalism to examples when the initial charge density is small. While the phase
transition considered here occurs in zero temperature, the bubble dynamics is richly complicated,
involving conserved charge, the sound wave, and the supersonic bubble wall.

PACS number(s): 11.15.Kc, 11.3G.Qc

I. INTRODUCTION

Recently, there has been some interest in the 6rst order
phase transition involving nonzero global charge. The fi-
nite temperature effective potential and the phase struc-
ture in this type of phase transition have been extensively
studied [1]. However, how the phase transition proceeds
has not been discussed in detail. Here we investigate the
phase transition in a model which involves nonzero charge
and a nontrivial bubble wall dynamics. This model is the
theory of a complex scalar Geld with a global Abelian
symxnetry. Even in the zero temperature phase transi-
tion, this model has a rather rich dynamics in the phase
transition, depending on the initial con6guration and the
potential energy. Since there are only two field degrees of
freedom in this model, this xnodel can be rather easily ap-
proached analytically and numerically. We hope that our
toy xnodel illuminates soxne aspects of the phase transi-
tion involving global charge and that soxne of the insight
gained would be applicable to the /CD phase transition
and the electroweak phase transition.

The general formalism of the Euclidean phase inte-
gral involving nonzero charge in our model was developed
sometime ago [2]. While this formalism has been applied
to wormhole physics, there has been no direct attempt
to apply it to the first order phase transition. We extend
this formalism to the first order phase transition at zero
temperature, following the standard formalism [3). One
interesting aspect of our formalism is that the station-
ary path of the angle variable of the complex scalar 6eld
becoxnes pure imaginary. Prom this Euclidean path inte-
gral, one can find the bounce solution and calculate the
bubble nucleation rate. In addition, one can gain some
insight into the bubble evolution.

The initial configuration we are interested in here is
a hoxnogeneous con6guration which is classically stable
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but not quantum mechanically. The charge density of
the initial configuration is nonzero and uniform. The 6-
nal con6guration after the phase transition, it turns out,
could be xnore coxnplicated than the con6guration of the
lowest potential energy. In our model, there could be
an attractive force between charges and charges clump
together forming Q balls [4]. Thus the final configura-
tion could be inhomogeneous with Q balls fioating in the
symmetric phase.

The Euclidean path integral allows us to calculate the
imaginary part of the energy for the metastable initial
con6guration by the semiclassical method. The contri-
bution to the path integral is dominated by bounce so-
lutions. Contrasted with the usual case [3], the initial
charge density now breaks the O(4) symmetry to the
O(3) symmetry. In this paper we focus on the case of
small initial charge density, where the bounce solution is
close to the O(4) bounce solution of zero charge. When
the charge density is small, we can look at the pertur-
bative correction to the O(4) symmetric solution. The
current conservation equation in this background turns
out to be a boundary value problem in the classical elec-
trodynamics and can be solved in the thin wall lixnit.
This leads to soxne insight into the current Bow in the
bounce solution and the deformation of the O(4) sym-
metric bounce solution. This in turn leads to an under-
standing of the bubble evolution via the analytic contin-
uation.

When there is nonzero charge density and the initial
con6guration is metastable, there is always the sound
wave of the speed less than the speed of light. When the
bubble of a "true vacuum" is nucleated, it will expand.
The bubble wall speed could reach the sound speed of the
initial configuration in 6nite tixne, becoming supersonic.
In addition, some bubbles speed up to the speed of light
in finite tixne, which implies some sort of a new instability.

The plan of this paper is as follows. In Sec. II we in-
troduce the theory of a coxnplex scalar field. We study
the stability condition of the possible initial configura-
tions and discuss the final configurations we expect after
the phase transition. In Sec. III we study the Euclidean
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in two dimensions are renorxnalizable interactions and
that the corresponding sound speeds I/~3, I/i/2, and
1 are those of hot relativistic gases in the corresponding
dimensions.

The stability condition (2.10) can be examined more
concretely in the potential

(2.12)

(Here we are not concerned about the renormalizability
of the theory. We are interested in the general charac-
teristics of the tunneling when global charge is involved. )
Assume that the charge density is very small compared
with other scales. When m2 ) 0, the condition (2.4) can
be satisfied for fo near the symmetric phase:

&o = V'~/m+ O(~'). (2.13)

The stability condition (2.10) becomes

3

fo'U" (&o) —&' = » — [1+O(&) l »
m)

(2.14)

v, =
4 s[1+0(p)], (2.15)

which is much smaller than unity when the charge density
is sxnall.

In the case where the potential (2.12) takes a local
minima at f = v, U —lm' (f —v)2, with m'2 = U"(v).
The condition (2.4) implies p m' v (fo —v). The
stability condition (2.10) becomes

which is satisfied only if g & 0. The con6guration is thus
stable only if there is a short range repulsion due to the
self-interaction. The velocity of the sound in the case
g & 0 is given as

In the case of the theory of a real scalar field, the an-
swer comes immediately &om the potential energy den-
sity [3]. The potential energy density for the Bnal con-
figuration would be the lowest. A metastable initial con-
figuration can decay via nucleations of bubbles whose
interior is in the true vacuum. We know well how this
phase transition proceeds.

For the theory of a coxnplex scalar field, the story is
more complicated as there are two degrees of freedom
which work together or against each other. If we reg-
ularize the system in a large finite box, we expect that
the possible final configuration has the minimum energy
for a given total charge. The excessive energy of the
initial configuration would be channeled into elementary
excited modes in the final con6guration through the ra-
diation and bubble collisions. In general, it is not easy
to find such a final con6guration. A possible final con-
figuration could be inhomogeneous. In this paper, we
concentrate on the cases where the potential U(f) has a
local minimum at f = 0 and the phase transition occurs
between the f = 0 and f g 0 phases. Figure 2 shows
such potentials. In addition, we assume that the initial
charge density is small compared with other scales in the
problem.

In these limits, we can analyze the problexn in a some-
what satisfactory way. As far as the f field is concerned,
this Beld wants to settle at the ground state of e(p, f) in
Eq. (2.3). However, we will see that the charge will move
so that the energy per unit charge, e(p, f)/p, takes the
lowest value. Since we are concerned with the phase tran-
sition between the symmetric and asyxnmetric phases, we
choose U(f = 0) = 0. It turns out that there are three
difFerent cases of the phase transitions to consider: (A)
The ground state of U( f) is an asymmetric phase where
U(f) ( 0, and the initial configuration is in the symmet-

m"v +3p'+vp U"'(v)/m' +O(p ) ) 0, (2.16)

which is automatically satis6ed when the charge density
is small. The sound velocity becomes

4p2
v, = 1 —, + O(p4). (2.17)

This shows that the massless Goldstone boson becomes
the sound wave as the nonzero charge density is intro-
duced in the broken phase.

We have examined the stability condition on the pos-
sible initial configurations. If an initial con6guration is
metastable, it will evolve quantum mechanically so that
the potential energy is converted to the kinetic energy of
bubbles and the radiation energy. The important ques-
tion is how we know whether an initial configuration is
metastable quant»m mechanically. %Ye would say a con-
6guration is not stable quant»m xnechanically if we can
6nd a field configuration of a lower energy and the saxne
quant»m number so that there is no superselection rule
preventing the transition between these two configura-
tions. FIG. 2. Plot of two potentials Ui( f) and fjs(f).
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ric phase; (8) the potential U(f ) has a local minima at an
asymmetric phase where U(f) ) 0, and the initial con-
figuration is in the asymmetric phase; (C) the potential
U( f) is identical to case (8), but the initial configuration
is in the symmetric phase. In Fig. 2, Ui(f) corresponds
to case (A) and U2(f) to cases (8) and (C).

Let us first study the cases (8) and (C) where the
symmetric phase is the ground state of U(f) T.o find
out the final configuration, let us recall that in these cases
there could be Q balls in the theory for an appropriate
potential. Let us here recapitulate the Q-ball physics
briefiy [4]. In the symmetric phase, charged particles
have mass m and so the ratio e/p would be m. For a
given large charge Q, the lowest energy state, however,
does not need to be made of a collection of these charged
particles at rest, whose energy is mjQj. Rather, that
could be a Q bail if there is an enough attraction between
the charged particles.

To find the condition on the potential for Q balls to
exist, let us examine a homogeneous configuration whose

energy per unit charge is lowest. We first minimize e/p
with respect to p:

I

j2U j

'v
I

U„

l

i

I

(2.18) FIG. 3. Plot of /2U(f)/f2 for three potentials Uq, U2, U~.

The charge density is then fixed as a function of f:
p=2f U. (2.19)

The energy per unit charge is given by

(2.20)

We have to minimize e/p in Eq. (2.20) with respect to
the f field. Figure 3 shows /2U/f2 for various poten-
tials. When /2U/f 2 takes the local minimum value to,
at the nonzero f = f, field, such a configuration is called
Q matter whose charge density is fixed to be p, = f, ur, .
A Q ball is a sphere whose inside is made of Q matter
and outside is just the symmetric phase. When the to-
tal charge is large, the size of a Q ball would be large,
the surface energy will be negligible compared with the
volume energy, and the energy per charge would be very
close to ur, . Thus, if u, is less than m, the Q balls are
stable against decaying into charged particles. Such Q
balls are possible with Uq, U2 of Fig. 3.

For case (8) the initial configuration should be classi-
cally stable, which means g ) 0 as shown in Eq. (2.15).
U2 in Fig. 3 represents such a potential.

When the stable Q balls are possible, the final config-
uration for cases (8) and (C) is inhomogeneous. There
will be a region with Q matter and the rest as the sym-
metric phase of zero charge density. The domain walls
separating two regions would slowly evolve to reduce the
surface energy. The ratio of the volumes between two re-
gions would vary depending on the initial charge density.
If the initial charge density is sinall, Q balls will fioat
in the symmetric vacua. If the initial charge density is
large, the balls of the symmetric vacua will fioat in the Q

matter. In case (8) the phase transition would proceed
with the nucleations of Q balls, and in case (C) it would

proceed with the nucleations of bubbles with less charge
density.

If Q balls are impossible because u, ) m as in Us of
Fig. 3, then the final con6guration would be in the sym-
metric phase with nonzero charge density. If the initial
charge density is larger than p„ the final con6guration
could be more complicated and will not be discussed here.

To understand the condition (2.18) better, consider the
pressure of a homogeneous con6guration given by

(2.21)

We see that Eq. (2.18) is identical to the zero pressur~
condition. When Q balls can exist, we have argued that
the final configuration could be inhomogeneous where Q
balls Boat in the symmetric vacuum. The zero pressure
condition means that there is no pressure diH'erence be-
tween Q balls and the symmetric vacuum, leading to an
equilibrium situation.

Having analyzed the last two cases where the symmet-
ric phase is the ground state of U(f), let us now consider
case (A) where the asymmetric phase is the ground state
of U(f) For tbis case,. both the f field and charge pre-
fer the asymmetric phase because the energy per charge
in the asymmetric phase would be negative compared
with that in the symmetric phase. The final configu-
ration would be in the asymmetric phase with uniform

charge density. An interesting observation on this case
has been made when the initial state is not classically sta-
ble because g ( 0 in the potential (2.12) [5]. Note that
the initial configuration of zero charge density is classi-
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cally stable. When we introduce a small charge density,
charges get concentrated in several regions and these re-
gions would evolve classically into the true vacu»m. For
the initial configuration at the symmetric phase to be
stable, there should be a repulsive force between charges
(g ) 0) at long distances.

We note that the energy per unit charge and the pres-
sure are sensitive to the shiR of the potential energy.
In the above arguments, U(0) = 0 was used crucially
because we are dealing with tunneling between the sym-
xnetric and. asymmetric phases. If we attempted to under-
stand the tunneling between two asymmetric phases, me
would have needed another device to figure out the final
state. We will try to investigate this examp1e elsewhere.

III. QUANTUM TUNNELXNC

where Eo is the energy density of the initial con6guration,
Ko is the prefactor from the small fIuctuations around
the initial configuration, the B factor is the diHerence
between the bounce action and the background action,
E'OVT, and KKO is the prefactor arising fmm the sxnall
Quctuations around the bounce solution. There is a nega-
tive mode around the bounce solution which implies that
the factor K is purely imaginary. The bubble nucleation
rate per unit volume is then given by 2~K~e

The path integral will be dominated by the station-
ary configurations of the path integral. In our case the
boundary condition on the f field of such a stationary
configuration is 6xed to be the initial classical con6gu-
ration. However, Eq. (3.3) implies that the boundary
condition on the 8 field is Bee. Thus the stationary con-
figuration in the path integral (3.1) satisfies the Euler
equation for the action S@+Z, where Z is the boundary
term,

We have studied the general characteristics of the
phase transition &om a homogeneous initial con6gura-
tion with nonzero charge density. We found out qualita-
tively what will be the final configuration after the quan-
tum tunneling. We now want to approach this problem
more analytically by using the Euclidean path integra1
formalism [3]. When a nonzero global charge is involved,
the standard formalism should be extended to accommo-
date the nontrivial boundary term [2]. Here we summa-
rize and expand the known results.

We start with the Euclidean generating functional

(3.1)

where the Euclidean action is given by

SE —— d x -8„+- „8 +U . 3.2~ ~

The initial and final states 41 ~ describe the configura-
tions of the charge density, pI ~, or

Z = —i d r pFH r7E —pI~ ~7I (3 5)

8 = —iq. (3.6)

The Euclidean field equations for the f, g fields are then

8„(f 8„rI) = 0.

The boundary condition on g becomes

(3.7)

(3.8)

The f field should approach the time-independent f
given by the initial configuration. We assume that there
is no vortex in the initial configuration. Then the classi-
cally stable configuration for a given charge should satisfy

From the Euclidean equation &om the combined action
SE+Z, one can see that the stationary path of the angle
variable 8 should be purely imaginary:

or@'(ii f) exp i d z pry 8). (3.3)

2

8, f+ ——U'(f) = 0, (3.9)

e = t e

= Kge ' 1+VTKe

+~(VTKe ) +.. .
)

= exp( —(Ep —Ke )VT), (3.4)

In our case, the initial and 6nal states are identical and
describe the initial metastable configuration.

By calculating the imaginary correction to the energy
of the metastable initial configuration, we can find out
the tunneling rate or the bubble nucleation rate. When
we sum over the multibounce contributions to the energy,

since 8 f = 0 and 8;g at the boundary. In our case,
the initial configuration is homogeneous in space and so
Eq. (3.9) becomes identical to Eq. (2.4).

The solution of Eq. (3.7) is the so-called bounce for
quantum tunneling. When the initial charge density van-
ishes, we know that O(4) symmetric solution of Eq. (3.7)
has been shown to exist by the undershoot-overshoot
method [3). In our case, the boundary condition reduces
this O(4) symmetry to the O(3) symmetry because the
charge density selects a preferred time direction. Thus
we are interested here in the bounce which is O(3) sym-
xnetric invariant under the spatial rotation. This makes
Eq. (3.7) a partial differential equation, whose solution
is much harder to find. We can either use some analytic
tools or nuxnerical analysis to find the bounce solution. In
the next section, we use the perturbation method to get
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an approximate bounce solution when the initial charge
density is very small.

Once we find the O(3) bounce solution fs, gs, we can
calculate its action S@+ o from Eqs. (3.2) and (3.5). By
using Eqs. (3.7) and (3.8), we can see that the combined
action becomes

S~+o-= dx 20) g +~ ~ 0)gg +V

(3.10)

The bubble nucleation per unit volume is then given by
Ke where

B = (SE + o)(bounce) —(S@+ 0)(background). (3.11)

f (r, t) = fs(r, it),

8(r, t) = —ii1s(r, it).
(3.14)

A further insight about bubble nucleation with a global
charge can be gained by using the dual formulation [2j. It
is well known that Goldstone bosons can be described by
an antisymmetric tensor Geld B„„.In Minkowski time,
the dual Lagrangian is given by

Once we know the initial bubble configuration (3.13),
we can. solve the Geld equation in Minkowski time to find
out how a given bubble evolves. The bounce solution

(f&, g&) can also by analytically continued to a solution
in Minkowski time:

While the action for the bounce S@+cr could be infinite,
the difference B between that of the bounce and that of
the initial configuration should be finite when one expects
a finite tunneling rate. While we will not attempt to
calculate the eKect of the fluctuations around the bounce
solution, we note that the field fluctuations bf, 88 should
be kept real in the functional integral. This is exactly
what happens in a Gaussian integral:

—x +ipse

To find out the escape point or the bubble configura-
tion at the nucleation moment;, we use the time trans-
lation and reflection symmetries of the action under

—v and g ~ —g of S@ + o to choose the origin
to be the center of the bounce so that

(3.15)

f2gPg 1 PvPnH
6 p&p (3.16)

The uniform initial charge density becomes the condition
of the uniform "magnetic" Geld 0/23 ~ In Euclidean time,
there will be no boundary term arising &om the wave
function 4(f, B;z). The Euclidean Lagrangian becomes

l Li@ = (O„f) +— H„„p+ U(f) (3.17)

The bounce equation becomes

where H„p = OpB p+0 Bpy+OpBp . The field strength
of the antisymmetric tensor is related to the original cur-
rent by

(3.12)

B„f+ H„„—U'(f) = 0,

{3.18)
qi, (r, ~ = 0) = 0.

As in our problem the charge density remains real in
Minkowski and Euclidean times, it is natural to identify
the initial charge density of the bubble to be given by
that of the bounce. The initial bubble configuration is
then

I
0 Hp~p: 0

We can relate the Euclidean Gelds either through the Eu-
clidean time dual transformation or by comparing the
current. The relation between the antisymmetric tensor
Geld and the angle variable in Euclidean time is given by

f 0"g = 'e"" H- (3.19)

(3.13) Thus the bounce solution in terms of the B„„field would
be real and there would be no contribution to the bounce
action &om the boundary.

IV. EXAMPLES

In usual quantum tunneling, momenta are imaginary and
coordinates are real under the potential barrier, and we
Gnd the escape point in the coordinate space. In our case,
the charge or momentum density and the angle variable
have changed their role. Under the barrier the angle
variable is imaginary and the charge density is real, and
we find the escape point in the charge density.

We are now in position to examine in more detail the
three cases of the phase transition which we have dis-
cussed in Sec. II. To be more specific, we choose the po-
tential to be given by Eq. (2.12). Case (A) has the initial
configuration in the symmetric phase. The potential en-

ergy has the absolute minimum at the asymmetric phase.
For cases {B)and (C) the potential energy U(f) has the
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absolute minimum at the symmetric phase and the local
minimum at the asymmetric phase. The initial con6g-
uration of case (B) is at the asymmetric phase, and the
initial configuration ofcase (C) is at the symmetric phase.
In cases (A) and (B) the tunneling would proceed even
when there is no initial charge density because the ini-
tial configurations are at the metastable points of U(f)
Introducing a small amount of charge density would not
change much of the original bubble nucleation. Thus we
would expand perturbatively the bounce solution by the
initial charge density and see how the zeroth order O(4)
symmetric solution deforms. These are the cases we will
examine closely in this section. For case (C) we do not
have the zeroth order bounce solution because the quan-
tum tunneling occurs solely due to the charge density.
However, we can still get some insight into this case as
we will see later.

Let us consider first the cases where the initial con-
6guration is un~table even without any charge density.
The symmetric phase of the potential Uq and the asym-
metric phase of the potential U2 in Fig. 2 are such initial
configurations. When there is no initial charge density,
the bounce solution can be obtained by the O(4) sym-
metric ansatz f(s = gr2+v2) [3]. Let us assume that
the thin wall approximation works. We call that inside
the wall f = f, and outside the wall f = f, The w. all
radius a can be determined as follows. Suppose that the
potential energy difFerence AU = U(f, ) —U(f;) & 0 be-
tween the f, and f; phases is small. Then the bubble
radius will be large and we can approximate the bub-
ble wall as a domain wall separating two phases. This
wall satisfies the equation, 82f + U'(f) = 0, neglect-
ing the potential energy difFerence. De6ne the tension of
the wall to be the action density per unit three-volume,
T = f Ch[(df/dz) /2+ U(f)]. The gain of the action due
to this true vacuum bubble of the radius a is then

7r2
g(a) = 27r Ta ——b,Ua .

2
(4.1)

3T/6, U, S(a) takes the maximum value
27m T4/2(b, U)s, which is the B factor in the bubble nu-
cleation rate.

We ask what happens to this O(4) symmetric thin wall
bounce solution if we introduce a small initial charge den-
sity. From Eq. (3.7), we see that the equation of the an-
gle variable is first order in the charge density and the f
6eld equation has a second order correction to the bounce
equation of the zero charge density. Thus we can solve
Eq. (3.7) by a perturbative expansion around this O(4)
symmetric background. The phase variable will be 6rst
order in the charge density and satis6es the current con-
serva, tion

f28»g with the dielectric constant f .Equation (4.2)
implies that the boundary condition at the wall that the
normal component of J„and the tangential component
of 8&g should be continuous. The boundary condition
at in6nity is that there is a constant external electric
displacement field J = po. For a given O(4) symmetric
configuration described before, it is trivial to 6nd the
potential g, ; outside and inside the thin wall:

4f.'
f.' (3f2+f )

(4.3)

The charge density J at w = 0 would be the charge pro-
file of the bubble at the moment of nucleation as shown
in Eq. (3.13). Let us now examine the implications of
this solution (4.3) in various cases. The correction to the
f field would be second order and will be considered in
each case.

A. Case (A): from the symmetric phase to the
asymmetm;ic phase

4l
Jexterior l

1 ——
4 pp )r

(4.4)

Let us 6rst consider the case when the asymmetric
phase is the ground state and the initial con6guration is
near the symmetric phase. Thus f, 0 « f; v. Since
there is no initial charge density, the previous argument
would imply that f, = 0. When we introduce a uni-
form charge density in the initial configuration, the initial
value of f would be given by Eq. (2.13) with 8 = mt, in-
validating our assumption f = 8(1). Here let us assume
simply that f, is nonzero even when there is no charge,
say, due to a small bump in the potential at f = 0. This
would not change the physics of the tim~eling under con-
sideration much and allows us to use Eq. (4.3).

The global current J» around the O(4) symmetric
bounce solution can be obtained from Eq. (4.3). Out-
side the thin wall (( & a), J„=f28»il„and inside the
thin wall (( & a), J„=f28»rt; The ener. gy per charge
inside the wall is small, and so the charge is attracted
to the interior region, making the charge density inside
the bubble higher than that outside. The charge density
profile of the bubble at the moment of nucleation would
be given by J at 7. = 0:

~i(f'(8)~i.) = 0, (4.2)

with the boundary condition f2'(r, 7 = +oo) = po with
the initial charge density pp. The above equation can be
interpreted as a boundary problem of a dielectric media
in four space dimensions. The electric field is B„g with
the potential g, and the electric displacement is J„=

when f; » f, The charge. density inside the bubble
is 4 times larger than the initial charge density. Prom
Eq. (4.4), we can see that J dsx( J —po) = 0, implying
that the charge inside the bubble came &om the region
near the bubble wall. Figure 4 shows this global current
on the O(4) symmetric solution background.
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where b ( a takes a complicated function of po. Figure 4
shows the deformed bounce wall.

Let us now think about the bubble nucleation and evo-
lution. The bubble of a true vacuum mill nucleate mith a
radius b and a higher charge density 4po and then expand.
As argued in Eq. (3.14), we can analytically continue the
bounce solution to 6nd out how the bubble will evolve.
Prom Eq. (4.6), we see that the bubble wall trajectory
will be givea by R(t) = (gb/a)gt2+ ab Si.nce b & a,
the terminal velocity v& ——gb/a is less than 1.

How do we understand the inite terminal velocity~
Energy conservation implies that the change of the wall
energy comes &om the potential energy difFerence:

(4.7)

The tension of the bubble wall surface could depend on
R. Integrating Eq. (4.7), we get

FIG. 4. Bounce solution for case (A). The dashed circle is
the wall of the O(4) symmetric bounce solution. The dotted
lines indicate the charge Bow. The solid ellipse is the wall of
the deformed bounce.

3T(R)~
"

DUB (4.S)

Let us now consider the efFect of the charge fiow on
the f field. The f field equation (3.7) can be expanded
around the O(4) symmetric solution as

When there is no charge density, T, AU are 6xed and
we see that the terminal velocity is the light speed. If
the tension grows linearly with the radius for large B,
T(R) nR, the terminal velocity uq ——gb/a will be

(4.5)

r'
+ 1)b2 ab

(4.6)

where J2 can be obtained &om Eq. (4.3) and f would be
given by the O(4) symmetric solutioa. Rather than try to
solve this partial difFerential equation, let us approach the
problem more qualitatively. When f, « f;, oae can show
that at the north and south poles J„16p02 both inside
and outside and that at the equator J„Ooutside and
J„16pso inside. The centrifugal terin J2/2f2 would
be then important at the poles, but not at the equator.
Directly &om the f equation (3.7) aad the previous argu-
ment about the thin wall approximation, we see that the
centrifugal term reduces the tension on the domain mall
by reducing the efFective potential energy barrier. Since
the tensions at the tmo poles are lower while the tensor
at the equator remains constant, the curvature at the
poles would be larger than 1/a and that at the equator
will remain 1/a where a = 3T/b, U is the radius of the
O(4) symmetric shell. (In addition, AU is increased at
the pole and remains unchanged at the equator, amplify-
ing the curvature change between the poles and equator. )
Consequently, the O(4) symmetric wall would be shrunk
at the equator. We take a liberty in choosing this mall
cou6guration to be an ellipsoid:

(4 9)

The growth of tension or the energy density of wall per
unit area can be understood by considering the phase
variable 8. While the charge density f; 8 inside the bub-
ble is larger than the charge density f, 8 outside, it is not
large enough to keep the phase variable space indepen-
dent since f; )) f, The ph. ase increases by mt outside
the bubble and more slowly inside the bubble, leading to
an increase of its space gradient at the bubble wall. This
is what we think is the source of the increasing tension
or energy density at the bubble wall.

Let us now remind ourselves that the sound speed
(2.15) in the symmetric phase is much smaller than the
terminal speed (4.9) when the initial charge density is
small. Thus the bubble wall forms a sort of supersonic
&oat in the symmetric phase. However, our analysis is
not accurate enough to compare the terminal speed and
the sound speed (2.17) at the inside asymmetric phase.
(When the initial charge density is large enough, there is
a possibility that the terminal speed is less than the sound
speed in the symmetric phase. ) The thin wall approxi-
mation mould fail eventually, because there is not enough
charge lying outside the expanding bubble to keep the
charge density inside the bubble to be 4 times larger than
the initial value. The charge density pro6le around the
expanding bubble should become more smoothly chang-
ing.
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B. Case (B):from the asymmetric phase to the
symmetric phase

Let us now consider the case where the initial state
is the broken phase which has the higher potential en-
ergy than that of the symmetric phase. When there is
no initial charge density, there will be an O(4) symmet-
ric bounce solution, inside which the scalar field takes a
value near the sy~~etric phase, f; && f, Ag. ain, we ask
what is the consequence of the small initial charge den-
sity. Equation (4.3) implies how the current 6ows around
this bounce solution. The charge density at the moment
of bubble nucleation would be given by

a4 'I

exterior + 4 PO i")
y0~ interior

(4.10)

b

l a '

I

I
I

I

FIG. 5. Bounce solution for case (B). The dashed circle is
the wall of the O(4) symmetric bounce solution. The dotted
lines indicate the charge Soar. The solid ellipse is the +rail of
the deformed bounce.

when f; « f, The .charge is excluded from the sym-
metric vacuum region. Figure 5 shows the charge Bow
around the O(4) symmetric bounce solution.

The effect of the charge now on the f Seld is given
by the centrifugal term Jz/2 f2 as in Eq. (4.5). We can
calculate Jz for our bounce solution. Since f, » f;,
Eq. (4.3) implies that at the north and south poles J„D
both inside and outside and that at the equator Jz 0
inside and J2 16pzo/9 outside. This raises the energy
density of the false vacuum at the equator, lowering the
barrier energy and increasing LU. This in turn lowers
the tension of wall at the equator. The tension at the

poles would remain unchanged and so the bounce solu-
tion would be elongated at the equator. Now for the
sake of the arg»ment, we again approximate the wall as
an ellipsoid:

T T—+ —=1
ab b2

(4.11)

where b ( a is a complicated function of po. The de-
formed bounce solution is shown in Fig. 5.

In Minkowski time, the bubble wall trajectory is given
by R(t) = ga/bpt2+ bs, with the terminal velocity
ut ——ga/5 & 1, which clearly violates the causality.
Something should happen before the wall speed becomes
the light speed. When there is a tachyonic mode, we
say there is an unstable or exponentially growing mode.
There are many possibilities. Since the charge is pushed
out &om the bubble and is accumulated at the wall, the
wall could stop expanding. Or the thin wall approxima-
tion could break down before the wall reaches the light
speed.

In case (B) the charge is pushed way from the bubbles
and accumulated at the initial asyxnmetric phase. At the
end of the phase transition, we would be left with the
islands of the original phase with a high charge density,
which are exactly Q balls floating in the symmetric phase.

C. Case (C): forming q balls by quantum tunneling

If the minimum of /2U/f2 is lower than the mass
of the charged particles in the symmetric phase, the
charge tends to clnmp into Q balls. Suppose the initial
configuration lies at the symmetric phase with a very
small charge density and is stable under local Buctua-
tions. Since the minixnum of the potential is chosen to
be the symmetric phase, the initial configuration would
be stable if there is no charge density. After a small
un~form charge density is introduced, the initial config-
uration, however, becomes gustable under the quantum
mechanical tunneling transition to form Q balls. Since
we start &om the minimum of the potential, we do not
have the bounce solution at zero charge density. How-
ever, we can still gain some understanding of the general
features of the bounce solution &om what we learned in
case (A).

First, the bubble at the moment of nucleation would
be a Q ball of the minimum size, where the surface en-
ergy is as important as the volume energy. The charge
density p, inside the Q ball would be much larger than
the initial charge density po. The minimum size of a Q
ball could be rather large if ~, is very close to m so that
the energy gain by the charge is sxnall and a lot of charge
is needed to compensate the surface energy. We know
that a large current will Bow into the bounce wall &oxn
outside in this case because the interior charge density
p; = f~ur2 is much larger than po. With a similar argu-
ment given for case (A), the current would be large inside
and outside the wall at the poles and would be zero out-
side and large inside the equator. The energy density
outside the bounce wall at the poles is larger than that
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V. DISCUSSION

FIG. 6. Bounce solution for case (C). The dotted lines in-
dicate the charge Sow. The solid ellipse is the wall of the
bounce for Q-ball nucleation.

outside the bounce wall at the equator. The barrier en-
ergy at the poles would in turn be lower than that at the
equator, and so the wall tension at the poles will be lower
than that at the equator. Thus the bounce solution in
case (C) would also be elongated along the v direction
as in case (A). Figure 6 shows such a bounce solution for
Q-ball nucleation.

Once a Q ball is nucleated, it will grow very slowly.
The reason is that a q ball can grow only when it absorbs
the charge from outside and that there is not much charge
around it because the formation itself has already diluted
the initial charge density around its neighborhood. This
is consistent with the picture that the bounce solution
is elongated along the 7 direction, which also implies a
slow terminal velocity as argued after Eq. (4.9). The
explicit nature of the Q-ball nucleation and expansion
will however, require a better analysis and will not be
attempted here.

We have studied the phase transitions in the theory
of a complex scalar field with a global U(l) symmetry
when there is nonzero initial charge density. We have
discussed the metastability condition on the possible ini-
tial configurations and the possible inhomogeneous final
configurations. We argued that there are many cases of
the phase transitions to be studied in the theory. We
have set the Euclidean formalism of the bubble nucle-
ation when there is nonzero charge density. We applied
our formalism to the case when the initial charge density
is small and when the phase transitions involve the sym-
metric phase as the initial configuration or a part of the
final configuration. Here we studied the characteristics
of the bounce solutions and the bubble evolution. Our
system is shown to have a rich variety of possible phase
transitions and could be a good simple toy model of the
phase transition involving charges, the supersonic bubble
wall, and the sound wave.

However, there are still many loose ends and questions
we have not attempted here. One of the interesting ques-
tions seems to concern the later development of the bub-
bles. Depending on the cases of the phase transitions,
there is a possibilty of rich dynamics. Additional inter-
esting questions to be explored are concerned with the
phase transition between the asymmetric phases and the
phase transition when the initial charge density is not
small. Finally, we note that it is rather straightforward
to extend our formalism in Sec. III to the case involving
nonzero local gauge charges.
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