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Two-dimensional SU(N) gauge theory is accurately analyzed with the light-front Tamm-Dancoff
approximation, both numerically and analytically. The light-front Einstein-Schrodinger equation for
the mesonic mass is reduced to the 't Hooft equation in the large N limit with g N fixed, where g is
the coupling constant. Two mesonic and one baryonic bound states are obtained numerically in the
region of 9 N )) m for small N, where m is the bare quark (q) mass. The lightest meson and the
baryon consist predominantly of valence quarks. The second mesonic state is highly relativistic in
the sense that it has a large four-body (qqq q) component in addition to the valence (qq) one. Our
results are consistent with results of the lattice calculation for SU(2) and also with the prediction of
bosonization for ratios of the two mesonic masses to the baryonic one in the strong coupling limit.
Analytic solutions to the lightest hadronic masses are obtained, with a reasonable approximation,
as /2Cm(1 —1/N ) i for the meson and QCmN(N —l)(1 —1/N ) for the baryon, where

C = (g Nvr/6) . The solutions well reproduce the numerical ones. The N and m dependences of
the hadronic masses are explicitly shown by the analytical solutions.

PACS number(s): 11.10.Kk, 11.15.Pg, 11.15.Tk

I. INTRODUCTION AND SUMMARY

Two-dimensional SU(N) quantuin chromodynamics
[QCD(N) 2] is a good model for studying ideas and tools,
which are expected to be feasible in analyses of QCD in
3+1 dimensions. 't Hooft introduced the model to test
the power of the 1/N expansion [1]. He summed planar
diagrams, which dominate the leading order in the ex-
pansion and derived an equation. . The 't Hooft equation
is valid in the large N limit with g2N fixed, where g is the
coupling constant. The mass spectrum of the equation
reveals a nearly straight "Regge trajectory. "

The large N limit corresponds to the weak coupling
one, since g2N is fixed. The 1/N expansion then works
in the weak coupling regime (g « m, m being the bare
quark mass), but not in the strong coupling one because
it is almost impossible to calculate higher-order terms in
the expansion. For this reason, QCD(N)2 in the strong
coupling regime has been studied with some other meth-
ods so far. Nevertheless, the dynamics is not understood
well in the region. The bosonization predicts ratios of
meson masses to a baryon mass [2], but they are valid
only in the strong coupling limit. The lattice calcula-
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tion has given a low-energy spectrum of SU(2), but their
accuracy is poor [3,4].

The discretized light-cone quantization (DLCQ) has
been proposed as a useful tool for computing hadronic
masses [5—9]. The mass obtained with DLCQ is a func-
tion of K, the parameter, which characterizes the dis-
cretization of the total light-cone moment»m 7. One
then has to take the large K limit to get physical masses
containing no unphysical parameter, but the convergence
is very slow for large g [6]. Increasing IC demands a lot of
numerical efForts, so that a reasonably large K was not
taken in calculations done so far for strong coupling [7].

Recently the light-front Tamm-Dancoff (LFTD) ap-
proximation [10] has been proposed as one of the alter-
native nonperturbative tools to lattice gauge theory. In
the standard equal-time field theory the vacuum state
is an infinite sea of constituents [quarks (q) and gluons
in QCD] and hadrons arise as excitations of the sea. It
is then imtikely that the vacuum and the hadrons are
well described with a finite number of constituents. In
fact, such a truncation of the Fock space, i.e., the Tamm-
Dancoff approximation [ll], causes soine serious prob-
lems [10]. Such problems do not appear in light-front field
theory [12], owing to the fact that the vacuum is trivial
on the light cone [10]. The LFTD approximation is the
Tamm-DancofF approximation applied to light-front field
theory. Both LFTD and DLCQ are based on light-front
field theory, but LFTD seems more reliable than DLCQ
at strong coupling [13].

On the other hand, LFTD has its own problems: (a)
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nonperturbative renormalization, (b) the relation be-
tween spontaneous symmetry breaking and the triviality
of the vacuum (what is called, the "zero-mode" problem),
and (c) recovery of rotational syrometry. These essential
problems have not been settled yet. However, they would
not appear in two-dimensional models such as /CD(N) z.
Coleman's theorem [14] says that any breaking of global
continuous symmetry does not occur in two dixnensions.
We then do not face the problem (b). The problems (a)
and (c) do not exist, from the outset, in two dimensions.

In this paper, we study /CD(N)z in the region of
g N y& m with LFTD; the region corresponds to the
strong coupling region (g » m) for small N, and for large
N it covers not only the strong coupling region but also
the medi»m and weak coupling ones. We first derive the
light-cone Hamiltonian P and the Einstein-Schrodinger
(ES) equation K P ~%) = M ~@) for hadronic mass and
wave function M and ~4') in the framework of the light-
front field theory [12]. As the Tamm-Dancoff approxima-
tion, the mesonic SU(N) wave function is described with
two-body (qq) and four-body (qqq q) states, and the bary-
onic wave function with the N-body (q+) state. Inclusion
of the four-body state is essential to obtain results (ii) and
(iii) mentioned in the next paragraph. The ES equation is
numerically solved by diagonalizing P within the space
spanned by a Bnite number of basis functions. All tools
needed for this calculation are prepared by our previous
work [15] for the massive Schwinger model.

Our main results are s»mmarized as follows.

(i) P involves a term proportional to Q /g, where Q2
is the Casimir operator of SU(N) and g is an infinitesi-
mal constant. The term enforces confinement, restricting
finite-energy solutions to color singlets. This is a well-
known property of /CD(N)2.

(ii) In the ES equation the two-body sector is coupled
with the four-body one through couplings of order 1/~1V,
so that the two-body sector is decoupled &om the four-
body one in the large N limit. The two-body sector, as
expected, tends to the 't Hooft equation in the limit. The
four-body sector does not produce any bound state in the
limit.

(iii) Two mesonic and one baryonic bound states are
obtained numerically for small N. Masses of the three
states behave as m /' at small m, as expected from
the partially conserved axial-vector current (PCAC) [15].
The lightest mesonic mass is consistent with the corre-
sponding result of lattice calculations for SU(2), although
the calculations contain xnuch larger errors than ours.
The lightest meson and the baryon consist predominantly
of valence quarks. The second mesonic state is highly rel-
ativistic in the sense that it has the qq and qqq q compo-
nents with almost the same magnitude. The existence of
such a relativistic state is unpredictable from the diagra-
matic consideration based on 1/N expansion, since the 't
Hooft equation as a result of the consideration generates
only two-body states. Ratios of the two mesonic masses
to the baryonic one at small m agree with the prediction
[2] of the bosonization within 7% error.

(iv) Assuming that the lightest meson and the baryon
consist only of valence quarks, we can obtain approxi-
mate solutions to their masses as

II. LIGHT-FRONT TAMM-DANCOFF
APPROXIMATION

A. Light-cone Hamiltonian

The Lagrangian density of /CD(N)z for interacting
quark and gauge fields, Q and A (a = 1 to N2 —1), is

4F„„F""+—vP(ip"D„—m)g, (2.1)

where D„= 8„—igA„T and F„„=B„A„—B„A.„+
gf b,A„A'„ for the generator T and the structure con-
stant f b, of SU(N). Light-front Beld theory [12] starts
with the introduction of light-cone coordinates:

" = (*+ * ) = ((*'+*')/v 2 (*' — ')/~2);

for any other vector, V+ = (Vo + Vi)/~2. (We take
the same notation and conventions as in Ref. [15].) The
equations of motion are

i y 28 QL, = m@R,

iv 28+JR= mal, —v 2gA @R

8'A = ~29$RT @R~

—8-8+A = ~441,T 41. + gfob. A' 8 A-(2.2)

for the light-cone gauge, A + = 0, where @ = (@R,$1,)+.
The first and third equations do not involve the time
derivative (8+) and are therefore just constraints, which
determine @L, and A in terms of @R. Thus, @I, and
A are not independent variables and not subject to a
quantization condition. The constraints are then solved
with the inverse derivative operator 0

V'2C (1 —1/N')'~'
for meson and

QCmN(N —1)(l —1/N ) ~

for baryon, where C = (gzNx/6) ~ . The approximate
solutions are accurate in the region of g N )& m, since
the assumption is quite reliable there. They show the N
dependence of the xnasses explicitly in the whole range
of N. The leading in 1/N is O(N ) for the mesonic mass
and O(N) for the baryonic one, as expected from topo-
logical considerations [16—18] based on the expansion. A
theoretical surprise is that the next-to-leading order is
not O(N i) but O(N z) for the mesonic mass, since the
xnass is a function of N2. This makes the 't Hooft solu-
tion more reliable for the lightest mesonic mass.

We derive the light-cone Hamiltonian and result (i) in
Sec. II A and the ES equation for hadronic mass and re-
sult (ii) in Sec. II C. In Sec. II B the color-singlet states of
xneson and baryon are constructed within the truncated
Fock space. We first present, in Sec. IID, the approxi-
xnate solutions to the lightest hadronic masses and result
(iv). The approximate but analytic solutions are conve-
nient to see the N and m dependences of the masses ex-
plicitly. Accuracy of the approximate solutions are tested
in Sec. III. Numerical methods and result (iii) are also
presented there. Section IV is devoted to discussions.
Appendices are collections of lengthy expressions.
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-

(2.3)

(2.4)

P+=Ivafd SSI( )S QR(z ) (2 7)

2w k+

The field @~ is expanded at z+ = 0 in terms of &ee waves

[19],each with momentum k+:

where e(z) is 1 for z & 0 and —1 for z & 0. The only
independent variable QR is quantized by an anticomrnu-
tation relation at the equal light-cone time z+ = y+,

1
(*) @,'a(y)) += + = b' b(* —y ) (25)

with

+dt(k+)esA, 'H
]

= 2xk+b;, b(k+ —l+).

(2.8)

(2.9)

2

P = — dz dy Qz(z )e(z —y )QR(y )
2 2

2 . 1
d* j+( ) j'(* )

2 82

and the spatial one (light-cone momentum) is

(2.6)

Adopting the light-cone coordinates and light-cone gauge
thus reduces a number of independent variables. This
is an advantage of light-kont field theory. The energy-
momentum vectors commute mutually and are therefore
constants of motion. The time component (light-cone
Hamiltonian) is

The color current j +:—v 2:g&T~g&. is normal ordered
with respect to the creation and annihilation operators.
The charge is then

Q =/dx j+
N

= ).(T )V 2 k
[b,'(k')bg(k+)

—d,'(k+)d (k+)] (2.10)

The last term in P can be rewritten with the standard
Fourier transform [20],

1 . + 1
dzi j +(zi ) 2 j +(zi )= — dzi dz2 dy j +(zi )e(zi —y )e(y —z2 )j +(z2 )

(*;)I*; z;Ij.+(z,-) ——) & q + o(~),
a=1

where use has been made of

(2.11)

(2.12)2si qk+iq k —ig&
OO

(2.13)2+i' &+i I
2 k —i I

'
The term Q2/4g(Q2:— PQ Q ) enforces confinement, restricting finite eigenvalues to the color-singlet (Q2 = 0)
subspace.

The Hamiltonian is expressed with the creation and annihilation operators,

free

self

I0

Pr„, + P. lf + PO + P2
N

) —,[St(k)b;(k) dt(k)d, (a)],
0

1 1) ) (T );~(T )si bis[b, (ki)bi(ki) + di(ki)d;(ki)] dk2 2
— 2, (2.14)8+2 0

N —1 N ~ 4

) ) (T );,(T )i,i b(k, + k2 —ks —k4)

1x, [S; (ki)bJ, (k2)bi(ks)b, -(k4) + d~(ki)di (k2)ds(ks)d;(k4)]

I'(ki)dt(kg)da(ks)k—, (k4) + I;(k, )d, (k~)dg(k~)ki(ki) ),i 4 ki+k2 2

N —1 N
dI b I +k k —kg ). ) — —— dk b(ki+ k2+ ks —k4)

8'xs -, .
'

()
."~ v'k (ki —k4)2a=1 i jk l m, =1

x[b,. (ki)b„(k2)d, (ks)b, (k4) + b, (k4)di (ks)bi(k2)b, (ki) + d, (k, )d, (k2)b„(ks)d;(k4) + d,. (k4)bi(ks)ds(k2)d, (k, )],
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where the integration stands for the Cauchy s principal-value one. The Hamiltonian does not involve any term having
the creation operators only or the a~~ihilation ones only. This indicates that the Fock vacu»m is an eigenstate of P
i.e., a true vacu»m. The property of the Hamiltonian stems from the conservation of the total light-cone moment»m.
Each particle must have either zero or a positive momentum, as shown in Eq. (2.8). The creation or the a~~ihilation
of particles, each with positive k+, breaks the conservation. An exception is the zero mode (k+ = 0): Only the mode
can make the true vacuum nontrivial without breaking the conservation. The mode is thus responsible for nontrivial
structure of vacua such as spontaneous symmetry breaking. In the present model, however, the mode is prohibited
as long as m g 0, because the mass term in P&, enforces the eigenstate of P to vanish at k+ = 0 [21].

There appears a force, b,. (k1)d,. (k2) b~ (ks)d~ (k4), in Pp, after the summation is made over a. The force is considered
to be induced by the so-called a~~ihilation diagrams where a q-q pair an~ihilates into an instantaneous gluon at a
vertex, while another pair is created at the second vertex. Further discussion will be made in Sec. IV.

B. Hadronic color-singlet states

The conserved color charges Q (a = 1,2, . . . , N2 —1) are generators of SU(N). These can be recombined into
N —1 operators being mutually commutable and N(N —1)/2 pairs of raising and lowering operators. Whenever
these operators act on color-singlet states, the value is always zero. Using the condition, one can easily construct
color-singlet states of the meson and baryon:

[%m„~n) = [meson)2+ [meson)4, (2.i5)

~meson) 2 —— h(p —k1 —k2) @2(k1,k2) ) b (k1)d (k2) ~0),
dk1dk2 t

N p 2z gk1k2
(2.i6)

1 — dk,
meson 4 —— 'b P-)k,

/2N(N + 1) p

N

x 1/A(kl) k2) k3) k4) ) b~(k1)d~(k2)b~(ks)d~(k4)

EN+11+ QA(kl& k2&ik3&ik4) +
~ N ~

QS(kl& k2& k3& k4)iN —1)
N

) b (k1)dfg4 (k2) b (k3~) d~ (k4) [0) )1

fngn
(2.i7)

[4'b~„~~) = b P —) k; vPb(k1) k2). . . , kN)
'

b, (k1) b~(kN)~0), (2.iS)

@A(kl~ k2~ k3~ k4) @A(ksi k2~ kl 1 k4)
= —@A(k1,k4, ks, k2), (2.19)

where each wave function has a symmetry for an inter-
change of two momenta,

l

state. The q 's do not couple a truncated space with
the remainder, so they keep proper commutation rela-
tions between them within the truncated space. The
truncation, i.e., the Tamm-Dancoff approximation [ll],
thus does not break SU(N) symmetry.

(l'S(kl k2 k3 k4) —O'S(k3 k2 kl k4)
= @S(k1,k4, ks, k2), (2.20) C. Light-front Einstein-Schrodinger (ES) equation

for hadronic mass

@b(.. . , k;, . . . , k, , ) =Nb(. . . , k, , , k;, . . .) (2.21)

for any i and j. The color-singlet states are expanded
in terms of the n»mber of quarks and antiquarks, and
truncated to the two- and four-body components for the
mesonic state and to the N-body one for the baryonic

The ES equation for hadronic mass is 2PP ~@)
M [4) in the light-front forin, where P+ has been
replaced by its eigenvalue 7 as a constant of mo-
tion. In the equation, $ can be scaled out by chang-
ing variables k; into their fractions x,. = k;/P: The
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two- and four-body wave functions, $2(ki, k2) and
@4(ki, k2, ks, k4), are also replaced by @2(xi, x2) and
&4(x»x»x»x4)/& in I@'~~a ), while Qs(ki, . . . , k~) by
QQ(xi ~ ~ ~ x~)/'P ' in [@b~„~„). Left multiplying
the rescaled equation by individual bases of the trun-
cated Fock space leads to a set of coupled equations for
the wave functions. In the mesonic case, the equations
are lengthy and then presented in Appendix A. Couplings
between the two- and four-body sectors of the equations
are of order I/~N in 1/N, where g2N is fixed. In the
large N limit, the two-body sector is then decoupled &om
the four-body one, and the two-body sector tends to the
't Hooft equation. (This discussion is even clearer in the
matrix representation of the coupled equations in Ap-
pendix C.) This conclusion is not changed by further in-
clusion of six-body states, since the resultant equations
involve no direct coupling between the two- and six-body
sectors. According to numerical calculations done in Sec.
III, the decoupled four-body sector does not produce any
bound state. All the bound states in the large N limit
thus appear as two-body states.

To see the behavior of mesonic mass in the massless

limit (m/g -+ 0), we integrate Eq. (Al) over x,

fiM' dx@2(z, 1 —x) = m' dx
~

—+
0 p x 1 —xj

x g~ (x, 1 —x), (2.22)

where all interaction terms have been completely can-
celed to each other. The equation shows that M = 0
and/or J'@q dx = 0 at m = 0. The first condition says
that the ground-state mass is zero because M must be
equivalent to or larger than 0, and the second one that
all excited states giving positive M are orthogonal to 1.
Only a state orthogonal to all excited states is the ground
state, so g2 ——1 for the ground state. When Q2 ——1, all
couplings between the two- and four-body sectors of Eq.
(Al) vanish, so that @~ = @s = 0. It turns out that
M = 0 and @2 = 1 and g~ ——@s = 0 for the ground
state. This fact suggests that the ground state has small
four-body components in the region of m (& g2N. This
will be supported by numerical tests in Sec. III.

The equation for the baryonic wave function @t, is

(, N' —ig'i /". »M gs(xi, xg, . . . , x~) =
~

m — —
~ ) — Qt, (xi, x2, . . . , xN)2N vr) ( -x)

N+ 1 g - ~(x* + x~ —» —y2)
dyl dy2 ). *, ', , g~(», . . . , yi, . . . , y2, . . . , zN),

2 7c o (&' —V~)i)j
(2.23)

where P,. i x; = 1 and the ith and jth arguments of
vga in the second term have been replaced by yi and y2,
respectively. The equation is reduced to a form similar
to Eq. (2.22), when it is integrated over all x;. The
same form is still derivable, even if the truncated space
is extended up to the (N + 2)-body state /~+2, this is
shown explicitly in Appendix A for the case of SU(2).
The baryonic mass as well as the mesonic one thus van-
ishes in the massless limit, as far as the ground state is
concerned. The baryonic wave function is then @b = 1
and /~+2 ——0. Just like the inesonic case, this implies
that &(~+2 nearly equals to 0 in the region of m (( g N.
For this reason, only the valence (N-body) state will be
taken into account in numerical calculations done in Sec.
III.

Burkardt calculated structure functions of the lightest
SU(2) meson and baryon with LFTD retaining only of
valence quarks [22]. This valence quark approximation is
considered to be good for small m2/g2N from the consid-
eration mentioned above on the behavior of the lightest
mesonic and baryonic states near the massless limit (the
strong coupling limit). This is justified also by numerical
calculations retaining not only the valence state but also
the higher Fock state, as shown in Sec. III B.

D. Approximate solutions to the lightest hadronic
Inasses

I

one in the massive Schwinger model, except for a factor
N(1 —1/N2) and a term f dxg(x, 1 —x) irrelevant to
the following statement. Bergknoff [21] showed in the
massive Schwinger model that the term in P involving
m enforces $2(0) = $2(1) = 0. Following his analysis,
we can determine the behavior of g2 near x = 0 and 1 as
[x(1 —x)]~ with

2vrm /[g N(1 —1/N )] —1+ mP cot(xP) = 0, (2.24)

where it is assumed that

g/2- ~/2

2Cm/ 1—(
(2.25)

where C = (g2Nvr/6)i~ . A mass of the lightest baryon
is also obtained in a similar way as

27rm /[rl N(1 —1/N )] « 1.

In the massless limit [x(1 —x)]~ tends to 1, that is, the
exact solution at m = 0, because of P = 0 there. This
strongly implies that [x(l —x)]~ is a good approximation
to v(2(x) at all x, as long as 2n.m2/[g2N(l —1/N )] « l.
This will be supported by numerical tests in Sec. III.
The same discussion can be made for baryon. Inserting
$2(x) = [x(1 —x)]~ into Eq. (2.22), one can obtain a
mass of the lightest meson approximately as

The two-body sector of the coupled equations for
mesonic wave functions coincides with the corresponding

1/2 /

CmN(N —1)
~

1—¹) (2.26)
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The approximate solutions show m- and N dependences
of M explicitly.

In a 1/N expansion of the solutions, the leading order
is O(NO) for the mesonic mass and O(N) for the bary-
onic mass, as expected from topological considerations
[16—18]. As an interesting result, the next-to-leading or-
der is not O(N ) but O(N 2) for the mesonic mass
because the mass is an even function of N. This makes
the 1/N expansion more reliable especially for the light-
est mesonic mass. This is not the case for other mesonic
states and the baryonic one.

The approximate solutions also indicate that the
hadronic masses behave like m /' at small m. This be-
havior is also seen in the massive Schwinger model with
two favors [15]. As a result of the behavior, the "pion"
decay constant becomes really a constant, indicating that
PCAC is a valid concept even for the toy model. This is
true also for the present model.

III. NUMERICAL METHOD AND RESULTS

A. Basis functions

The truncated ES equations for hadron masses are nu-
merically solved with the variational method: The wave
functions are expanded in terms of basis functions, and
the coefficients of expansion are determined by diagonal-
izing P in the space spanned by the basis functions. All
tools needed for computations are shown in Ref. [15].

A reasonable choice of the basis functions is

F„(*,1 —z) = [z(1 —z)]~+" (3.7)

for SU(2) and

which obviously forms a complete set. First, it is trans-
formed into

13 13 24 24

Next, a factor (z+13)"'(z2+4)"' in the set is expanded in

(z13z24) and (z13z24) z13 where z13+z24 —1;
see Appendix B for the expansion. The 6nal form is
Eq. (3.6), in which the number of summations has been
reduced from 4 to 3. This is a merit of this form. Another
merit is that the symmetry for an interchange of x1 and
z3 (z2 and z4) is easily imposed on g4 by taking either
even or odd n1 (n3). Similar consideration is made for
f„and F„.

(Z1Z2Z3) ~[(Z12) (Z12) Z3

(3.8)

for SU(3), where P z; = 1 for each basis function, z,+. . =
x; 6 x~ and 8 is the symmetrizer. The subscript n of
G„stands for a set (n1, n2, n3), and for other functions
analogously. As already discussed in Sec. II D, fo (Fo) is
a good approximation to the exact @2 (Qs). Each type
of basis functions forms a complete set, when an upper
limit N„(n = 2, 4, b) of the summation is infinite. The
G„'s are constructed from the set

$2(z, 1 —z) = ) a„f„(z),
n=o

(3.1) B. Numerical results

N4

QA(zl) z2) z3) z4) = ) 'KGB(zlzz z2& zs) z4))
n=o

(3.2)

N4

@s(z1,z2, zs, z4) = ).c G (*1,*2,*3 z4), (3.3)

Ng

A(z1, , z1V) = ).d F ( 1, .",zan)
n=o

(3.4)

with

[*(1—z)]~+",
[z(1 —z)]P+"(2z —1),

(3.5)

for all N and

G — ( 1 2 3 4) ( 13) ( 13 24) ( 24)
4 13 13 24 +24 13~

(3.6)

In general, M calculated with the variational method
depends on N (n = 2, 4, b), which characterizes the size
of the space spanned by the basis functions, unless the
space is large enough to yield an accurate M. In the
present calculation, the space would be sufficiently large,
since the dependence is very weak, owing to the effective
choice of basis functions. This is shown in Fig. 1 for
SU(2) meson. Figure 1(a) represents N2 dependences of
the lightest mass (M1) and the second lightest one (M2),
while Fig. 1(b) does their N4 dependences. Hereafter, m
and M are presented in units of gg2N/2m. In the case
of m = 10,M1 and M2 converge at (N2, N4) = (4, 4),
while the baryonic mass (Ms) does at Ns = 2. Our full-
Hedged calculations are then done with (Nz, N4) = (4, 4)
for meson and with N~ ——2 for baryon.

The m dependence of hadron masses obtained with
full-Hedged calculations is shown in Table I and Fig. 2 for
both SU(2) and SU(3). There are two xnesonic and one
baryonic bound states in the range m ( 0.1. The lightest
meson is composed predominantly of valence quarks; in
the case of SU(2), for example, P2 ——98.3% and P4 ——

1 T%%uo at m .= 10, where P2 (P4) is a probability of
being in the qq (qqqq) state. The lightest mesonic state
is odd under charge conjugation, because the two-body
(qq) component is symmetric under z1 m z2. The second
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FIG. 1. Masses of the lightest (Mi) and the second lightest
(M2) SU(2) mesons are shown as a function of one of the
parameters, which characterize the size of the space spanned
by the basis functions [see Eqs. (3.1)—(3.3)j; (a) N2 is varied,
while N4 is fixed, and (b) N4 is varied, while N2 is fixed. Here

the masses are presented in units of gg2N/2m. The lines are
intended to guide the eye.

FIG. 2. Masses of the lowest two mesonic (Mi and M2)
and one baryonic (Mb) bound states, obtained with the
full-fiedged calculations, are presented in units of gg2N/27r
as a function of the quark mass m, (a) for SU(2) and (b) for
SU(3). They are shown as points and the solid line guides the
eye. The two-body decay threshold 2M' is also shown by the
dashed line.

TABLE I. Calculated masses of the SU(2) and SU(3) hadronic bound states Mi, M2, and Mb
are tabulated for various values of the quark mass m. Here all the masses are given in units of
Qg2N/2m

0.0001
0.0005
0.0010
0.0050
0.0100
0.0500
0.1000

Mg
0.016 26
0.036 35
0.051 41
0.11512
0.163 17
0.374 14
0.549 15

N=2
M2

0.028 80
0.064 14
0.090 67
0.203 25
0.288 58
0.665 80
0.974 61

Mg
0.01773
0.039 64
0.056 08
0.125 69
0.17825
0.407 48
0.591 64

Mg
0.01849
0.041 34
0.058 46
0.13053
0.184 43
0.414 86
0.598 95

N=3
Mg

0.036 66
0.081 42
0.11495
0.256 74
0.363 36
0.81963
1 ~ 174 76

Mg
0.032 03
0.071 62
0.10130
0.22660
0.320 62
0.721 06
1.030 14
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SU(2)MESONS
I I I I I I

----. BOSONIZATION
~ LATTICE

0 0.5

FIG. 3. Some theoretical results for a mass of the lowest
SU(2) meson are presented in units of gg2N/2m as a func-
tion of m; the result of our full-Hedged calculation are shown
by open circles, the DLCQ result [7] by diamonds and the
bosonization result [2,4] by a dashed line. The lattice esti-
mates [4] are shown as points with error bars.

lightest state is, on the other hand, highly relativistic in
the sense that P2 P4, in the case of SU(2), for example
P2 ——42.9% and P4 ——57.1% at m = 10 4. This state is
even under charge conjugation, since the two-body piece
is antisymmetric under xz ~ x2.

The lightest mesonic mass is calculated also with the
bosonization [2,4], the lattice theory [3,4], and the DLCQ
method [7]. These results are compared with ours, in
Fig. 3, for SU(2). The lattice calculation has much larger
errors than ours, but both are consistent with each other
within the errors. The DLCQ result matches well to ours
at m ) 0.3, but it lies too low at m & 0.2; for example the
discrepancy is about 30% at m = 0.088. The substantial
discrepancy at strong coupling may be because the reso-
lution parameter K 10 taken in the DLCQ calculation
is too small; note that the DLCQ result shown in Fig. 3 is
the physical mass (Mq at K = oo) extrapolated from Mq
computed at some difFerent K around 10. In the strong
coupling region such as m ( 0.2, Qz (z) rapidly goes down
&om 1 to 0 as z approaches 0 or 1. The strong z depen-
dence near the ends cannot be reproduced by the DLCQ
wave function computed at the small K; Hornbostel [23]
estimates &om the x dependence that K should be larger
than 10 at m = 0.088. Thus M~ measured at the small
K is considered to contain large errors. The errors, how-
ever, seems to be reduced to a considerable extent by the
extrapolation.

The result of the bosonization overshoots not only ours
but also the one of the lattice calculation in Fig. 3. Our
result behaves as m /, while the result of the bosoniza-
tion as m /' . The lattice calculation seems to support
m / . The result of the bosonization is derived with a
method of Dashen, Hasslacher, and Neveu [24] based on
the WEB approximation. For ratios of mesonic masses
to a baryonic mass, Dashen, Hasslacher, and Neveu have
checked their result against several nontrivial orders of

perturbation and conjecture that it is exact, but they do
not claim to be able to compute hadronic masses them-
selves exactly. The result of the bosonization in Fig. 3
is thus not expected to be exact. Therefore we may con-
clude that the correct m dependence of the xnesonic xnass

is m ~, although the m dependence has been believed to
be m /' so far. On the other hand, we xnay assuxne that
the result of Dashen, Hasslacher, and Neveu is indeed
correct for the ratios. This assumption was Grst made by
Coleman [25], when he analyzed the massive Schwinger
model by applying the result of Dashen, Hasslacher, and
Neveu to the bosonic form of the theory.

Figure 2 shows that all hadronic masses calculated
with LFTD behave like m ~ as m ~ 0. Ratios Mq/2M~
and M2/2M' at small m, say m = 10 4, are 0.4585 and
0.8122 for SU(2) and 0.2886 and 0.5722 for SU(3), while

the corresponding results, sin (mn/2(2N —1)) (n = 1, 2),
of the bosonization [2] in the massless limit are 0.5000
and 0.8660 for SU(2) and 0.3090 and 0.5877 for SU(3).
The two types of results are identical within an error of

10% for SU(2) and of 5%%uo for SU(3). In general,
our calculation of the baryonic mass is relatively inac-
curate compared with that of the xnesonic masses, since
the truncated Fock space is smaller in the baryonic case
than in the mesonic one; to be precise, only the valence
(N-body) state is included in the baryonic Fock space,
while the xnesonic Fock space is composed of both the
two-body (qq) and the four-body (qqqq) state. Accord-
ing to numerical calculations for SU(2), Mq is reduced by

10%, when the Fock space is extended from the two-
body subspace to the two-body plus four-body one. It is
very likely that such a reduction takes place also for Mp,
since the ES equation for Mp is very sixnilar to that for
Mq in the SU(2) case. Thus, the 10% error for SU(2)
is considered to come from the fact that the (N + 2)-
body state is not included in the baryonic Fock space.
For the SU(3) case, on the other hand, it is confirmed
nuxnerically that Mq is little changed by the extension of
the two-body subspace to the two-body plus four-body
subspace. This is because g is decreased as N increases.
It is then likely that Mp is also unchanged by a similar
extension of the baryonic Fock space &om the N-body
subspace to the N-body plus (N + 2)-body one. There-
fore, we may conclude that our full-Hedged calculations
for SU(3) are accurate for Ms as well as Mq. An unset-
tled problem is what causes the 5%%uo error for SU(3).
This will be discussed in Sec. IV.

The approximate solutions [Eqs. (2.25) and (2.26)] to
M~ and Mg are compared with numerical ones obtained
with the full-fledged calculations, in two cases of SU(2)
and SU(3). For SU(2), the approximate Mq is exactly
equal to the approximate Ms, as shown in Eqs. (2.25)
and (2.26). They are depicted by a single dashed line
in Fig. 4(a), and compared with the numerical solutions
for Mq (solid line) and for Ms (dot-dashed line). The ap-
proxixnate solution matches well to the numerical results
for both Mq and Ms. For SU(3) in Fig. 4(b), the ap-
proximate solutions well reproduce the nuxnerical ones,
for both Mq and Mg, at m ( 0.1. The agreement would
be seen also at N larger than 3; this is true at least for
Mq [see Fig. 5(a)]. The N dependence of Mq and Mg is
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FIG. 4. Numerical and approximate masses of the lowest
mesonic (Mz) snd baryonic (Mq) states are shown in units
of ggsN/27r as s function of the quark mass m. (s) For the
SU(2) case, the numerical solutions to Mq snd Mb are graphed
with the solid and dot-dashed lines, respectively, while the ap-
proximate ones to both of them are degenerate and therefore
graphed with s dashed line. (b) For the SU(3) case, the nu-

merical and the approximate solutions are graphed with the
solid and dashed lines, respectively, for both M& and M&.

FIG 5. Nu. merical solutions to (s) the second lightest
mesonic snd (b) the lightest bsryonic masses, calculated for
SU(N) by adopting s quark mass m = 10, are shown by
the solid lines as a function of N in comparison to that of the
lightest meson. The approximate solutions, which are avail-
able only for the lightest meson and baryon, are shown by the
dashed lines in (a) snd (b), respectively. The two-body decay
threshold, 2M', is also shown by the dot-dashed line in (s).
Here sll the masses are given in units of ggsN/2rr.

thus obtained accurately with the approximate solutions,
as long as m (( 1.

The N-dependence of Mq and M2 is shown at m =
10, in Fig. 5(a), where N is varied widely from 2 to
oo. The approximate solution to Mq (dashed line) well
simulates the numerical solution (solid line). As expected
&om the weak N dependence of the approximate Mq,
Mq at small N is close to that at N ~ oo (the lightest
't Hooft mass). The second mass is below the threshold
(2M') for N = 2 and 3 but not for N ) 4. The sec-
ond mesonic state is thus bound only for such small ¹

The existence of the second bound state at small N is
unpredictable from the leading order in 1/N, since the
state becomes unbound at N -+ oo. The 1/N expansion
thus works well for the 6rst mesonic mass, but not for

the second mass.
The N dependence of Ms is shown in Fig. 5(b). The

approximate solution to Ms (solid line) well reproduces
the numerical result (dashed line) for N = 2 and 3. In
a 1/N expansion of Ms the leading is O(N) [16—18]. A
ratio of Mg at N = 3 to that at N = 2 is, however, 1.807
and larger than 2. This indicates that the higher-order
terms are not negligible for such small ¹

Figure 6 shows the m-dependence of mesonic masses
in the large N limit. In this limit, the two- and four-
body sectors of the ES equations are decoupled &om each
other so that all states appear as either two- or four-body
states. Obviously, all the two-body states (the 't Hooft
solutions) are bound. In Fig. 6, on the other hand, the
lightest four-body state is above the threshold (2M&),
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MESONS(N ~)

2-body

4-body M2

0.5 1.0

FIG. 6. Masses of the lowest four two-body and a four-body
SU(N) mesonic states in the large N limit are shown as a func-
tion of the quark mass m by the solid lines and the dot-dashed
line, respectively. The two-body decay threshold, 2M&, is also
shown by the dashed line. Note that all the masses are given
in units of ggsN/2w.

where Mq is the mass of the lightest two-body bound
state. All the four-body states are thus unbound. This
is understandable &om the statement [14] based on the
1/N expansion that two mesons (two q-q pairs) do not
interact in the limit.

IV. DISCUSSIONS

Some unsettled problems are discussed. (1) As shown
in Sec. IIIB, our results for Mq/2M' and M2/2M' devi-
ate &om the prediction of the bosonization [2] by ~ 5%
in the case of SU(3). A problem in the comparison is that
the two types of results are obtained at different m; the
results of the bosonization are done at m = 0 and ours at
m = 10 . In the bosonization, the color-singlet bosonic
field is coupled with the nonsinglet fields. The nonsin-
glet fields are, however, neglected in the bosonic form of
the Hamiltonian. The neglect seems to induce an error
of O(Mz/M~s), where Ms (Mgs) is a mass of the low-
est state produced by the singlet (nonsinglet) field. We
intuitively think that the nonsinglet fields can generate
singlet states as a result of their superposition, but it
is not clear &om the bosonic form of the Hamiltonian,
which does not possess the SU(N) symmetry explicitly.
The M~s seems to be of order 1 independently of m/g,
since the nonsinglet fields have mass terms of order 1.
The Ms, on the other hand, tends to zero in the massless
limit (m/g ~ 0). The result of the bosonization is then
correct in the massless limit. At m = 10 4, it has an
error of O(Ms/M~s) O(Mq/Mgs) 10 2. This error
is a possible origin of the discrepancy between the two
types of results.

(2) A natural expectation for the Tamm-Dancoff ap-

proximation is that it works best at weak coupling rather
than strong coupling. The present work, however, points
out that it works in both the regions. As an evidence, the
lightest meson consists only of a q-q pair in the limit of
strong coupling, so that the meson has small four-body
components even for large but finite g. Similar results
are seen in the massive Schwinger model [13,15]. It is not
obvious whether the approximation still works in four di-
mensions, since the four-dimensional /CD Hamiltonian
is much more complicated than the two-dimensional one.

(3) Our truncated Fock space consists of the two- and
four-body states in the mesonic case. Further inclusion of
six-body states would produce the third mesonic bound
state at strong coupling. This may be expected &om the
following considerations in the limit of strong coupling:
The bosonization [2] predicts for SU(N) meson that there
appear 2N 1mas—sless bound states, and DLCQ [7] does
that there are many massless mesonic states and the nth
state consists of n components &om two body to 2n body.

(4) In the massive Schwinger model, the axial symme-
try is anomalous and the light-cone Hamiltonian involves
a force induced by the so-called annihilation diagrams
where a q-q pair annihilates into an instantaneous gluon
at a vertex, while another pair is created at the second
vertex [15]. The force generates a term 2 I dx g(z, 1 —z)
in the ES equation for "q" (isosinglet) mass, but not for
"z" (isotriplets) mass. The term splits the q mass &om
the x mass; especially in the chiral limit, the g mass
keeps a finite value, but the x mass vanishes. In the
present model, on the other hand, the axial symmetry is
not anomalous, but the annihilation force is still in P
In this case, the force does not generate any term that
makes g massive in the chiral limit. Thus, the g-x split-
ting [the U(1) problem] may not be resolved simply as a
matter of the annihilation force.

Throughout this work, we conclude that LFTD is a
powerful tool for computing nonperturbative quantities
such as hadronic masses. We believe that LFTD is more
useful than the 1/N expansion and the bosonization,
which are valid only in a particular situation such as the
large N limit or the large g/m limit.
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APPENDIX A: EINSTEIN-SCHRODINGER
EQUATIONS

A set of coupled integral equations is obtained by ap-
plying the Hamiltonian (2.14) to the states (2.15) and
(2.18). For four-body wave functions, P,. ~ x; = 1. It
reads, for SU(N) mesons,
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(A3)

The baryonic Fock space has been described only with the N-body component so far in this paper. To study a role
of the higher Fock components, we then add a (N + 2)-body component to the space. The component is constructed,
for SU(2), as

~baryon)~+2 ——— '
h 'P —) k; QM(ki, k2, k3 k4)

2 e "./2~k; ( . )
X [bi (ki) b2 (k2) bi (k3)di (k4) —b2 (ki) bi (k2) b2 (k3)d2 (k4) 1 ~0),

with the symmetry

@M(kly k21 k31 k4) — QM(ksy k2& kll k4) ~

(A4)

(A5)

In the derivation of Eq. (A4), the (N + 2)-body wave function tp(ki, k2, k3, k4) has been classified with irreducible
representations of the symmetric group:

4 (kl) k2y k3& k4) Qsym(kly k2y k3) k4) + @ant(klg k2& k3y k4) + VM(kl) k2y k3) k4))

where
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Here 8123 is the symmetrizer of lnomenta kl, k2, and k3, while A123 is the antisymmetrizer. Only the inixed symmetry
QM can survive under the condition that Q2]4') = 0 and then appears in Eq. (A4). The (N + 2)-body wave function
can be constructed straightforwardly for arbitrary N. The coupled equations are then, for the SU(2) baryon,
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QM(zl x2 x3 x4) =

i
m —

~ ).— As(» x2» x4) +
4 ) ( -,)

'
2 2 ( 3+ 4)'

1 1+y(zs+zs —ys —ys), + SM(*"y" '"*))'4 x3+ z4 z3 yl)
(A9)

Again, integrating Eq. (A8) over z leads to Eq. (2 22).

APPENDIX B:BASIS FUNCTIONS

The function x (1 —x) can be expanded in terms of [x(1 —z)]" and [x(1 —x)] (1 —2x):

l~ —nl i/2
xyn

(1 x)ys 2
—isss —ssi ) ~ ) Q ( 4)J [ (1 )]nsin(yn, ys)+J

i=0(even) j=o
lm —

l fi/2l
—s(m —ss) ) i

i+; ) fysiCS( —S) Iz(l —z)) ' '" + (l —lz)).
i=1(odd) j=o
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APPENDIX C: MATRIX EIGENVALUE EQUATIONS

The following eigenvalue equations of matrix form are obtained from the coupled equations [Eqs. (Al) —(AS)] by
sandwiching them with individual two- and four-body basis functions:

(X(') O O ) (a) (H„H„H„) (a)
~21 022 ~23 b )

0 0 B(') &
~ ) &H» H32 Hss) &

~ )

(C1)

(N —1)/2(N+ 1) g
(

(1) (2))
2N 7r

(N+ 1)/2(N —1) g
(

(1) (2))
2N 7r

HT V (N + 1)(N —1) g (B(4) + NB(s)),
N 7r

T
12 ~21

T
13 ~31

where

( 2 N —1g l (2) N —1g (3)H„=
I

m'—
2N s'J 2N s
N2 —1

H22 ——2
l

m' — —
l

(B(') + B(")
2N

N —1 g (4) (N —1)(N+ 2) g2 (3)
N x N

N —1 '
(B(6) + B(7))

2N x
N2 —1 —

l

(B'"+B"')
2N

N+ 1 gs (4) (N+ 1)(N —2) g2 (3)
N x N

N+1+ g (B(s) + B(7))
2N x

B kl Gle(zl) Z2) Z3, Z4)(4)

(e)
1

X, ,2Gl(y1, y2) *3,*4),
(X1 + X2)

B kl Gk(Z1) Z2) Z3) Z4)(5)

(e)
1x, , Gl (y1, y2, zs, Z4)

(&1 —y1)

B sl = Gl, (zr) Z2) zs) Z4)(e)

(e)'
1x, , Gl(yl Z2 y2)Z4))

(&1 —y1)

B sl = Gl, (zr, zs xs, x4)(7)

(e)"
1

Gl (Z1 Jll) Z3 g2)
(2 —y1)

1
Ll = fk(zl) 2 Gl(zl) Z2) Z3) Z4))

(4) Z2 + zs

kl = fl)(1 —*4),Gr(*1) Z2) Z3) Z4))(2) 1

(4) Z2 + Z3

4

dzb ) x; —1

f
1

dzfs(z) fl (*)
0

f'd fa(z)fl(z)
x(l —z)

'

'd
d fa(z)fl(y)

o (*—y)' '

f Gs(zl) Z2) Z3) Z4) Gl(zl ) Z2) Z3) Z4) )

(4)

1
Gk(zl) Z2) zs) Z4) Gl(zl) Z2) Z3) Z4))

(4)

f 1
Gle(zl) Z2) Z3) Z4) Gl(Z1) Z2) Z3) Z4))

(4)

(C2)

4

d~; dy1 dy2 b
(e) o

( 4

) *;—1

xb(zl + Z2 —'Jll y2)

f
4 4

dz; dy1 dysb ) z; —1
(e) o

xb(zl + Z3 yl y2)
4 4

dx; dy1dy2 b ) z; —1
(e)" o

xh(x2 + x4 —y1 —y2).

(CS)

These integrals with no N dependence can be calculated
analytically with the formulas collected in Ref. [15].
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