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Strings in plane wave backgrounds reexamined
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String theory in an exact plane wave background is explored. The four-tachyon scattering ampli-
tude is constructed. The spectrum of states found from the poles in the factorization turns out to
be equivalent to that of the theory in Bat space-time. The massless vertex operator is obtained from
the residue of the 6rst order pole. It exhibits nontrivial modi6cations with respect to the Bat space
case.
PACS number(s): 11.25.Db

I. INTRODUCTION

As a fundamental generalization of Einstein gravity
and Yang-Mills theory, the concepts behind string the-
ory remain quite mysterious. Although nonperturbative
effects are being slowly discovered, at the moment we
only have a perturbative formulation of a yet unknown
full quantum theory. In the present &amework, grav-
ity appears at different levels. The string spectrum in
Hat Minkowski space-time contains gravitons whose in-
teractions determine the classical backgrounds consistent
with the string dynamics. The appearance of a nontrivial
curved geometry as an infinite genus effect was realized
by Amati and Klimcik [1]. They showed the coincidence
between the summation of string loop diagrams of high
energy graviton scattering in Hat space-time performed
in [2] with the S matrix relating in and out free exci-
tations of a string in a shock wave background metric.
The interplay between the different hierarchies assumed
by gravity in these schemes is still unclear.

In the absence of an adequate understanding of the
string picture, a classification of the specific symmetries
is a useful tool in the search for the definite theory. The
possible geometries compatible with compactification to
four dimensions provide information about these symme-
tries (for instance, the classification of acceptable string
vacua has made manifest the existence of mirror symme-
try) and allow identification of phenomenologically viable
models. A deeper insight has been gained by formulat-
ing the 10- or 26-dimensional theory in background fields.
Duality symmetry, first discovered in toroidal compactifi-
cation [3], was generalized to any nonlinear o model with
an isometry in [4] and is considered a potential string an-
swer to the occurrence of space-time singularities and the
problem of the cosmological constant in general relativ-
ity [5]. Target space duality provides novel features in
string theory as compared to point particle theory. The
impossibility of performing experiments permitting one
to distinguish the geometry in which the string is liv-

ing, a nonsingular Planckian region in string cosmology
[6), and a plausible mechanism for the selection of four

macroscopic space-time dimensions, suggested in [7], are
among the most distinctive characteristics.

Many interesting string backgrounds have been iden-
tified starting f'rom the Wess-Zumino-Witten (WZW)
model. The requirement that the theory be conformal in-
variant at the quantum level amounts to the vanishing of
the P functions of the couplings of the nonlinear o model.
WZW models are exactly solvable conformal field the-
ory (CFT) and thus exact solutions to these equations.
Gauging a one-dimensional subgroup of SL(2, R) Wit-
ten [8] found an exact two-dimensional (2D) black hole.
The 3D black hole background was recently obtained in
Ref. [5]. The discrete symmetries referred to above al-
low one to identify mathematically equivalent vacua with
radically different geometries. Even though not conclu-
sive, the existence of candidates for dual 2D and 3D black
hole backgrounds without curvature singularities [9—12]
as well as the equivalence between string propagation on
SL(2)/U(l) with appropriate twists [13] (corresponding
to a geometrical background with the same singularity
structure as 4D black holes), and on a nonsingular cir-
cle of radius 1, are indications of the possible ways in
which string theory could cure the singularities of Ein-
stein's gravity. Even when the physical and geometrical
meanings of these stringy features are not completely un-

derstood, they undoubtedly open new paths in the com-
prehension of the string theory of gravity.

The computation of scattering amplitudes is the main
physical task in string theory which is basically an S-
matrix theory. Particles of various masses and spins are
exchanged in the different channels of a scattering pro-
cess. They appear as poles in the square momentum
when the points where some of the external vertices are
attached coincide. However, when the theory is formu-
lated in background fields other divergences could appear
in physical operators [14—16] and in the partition func-
tion [17]. Furthermore, the spectrum of string states can
be modified as compared with the flat space theory [17].
The interpretation of these features is still unclear and
probably has to await the emergence of a nonperturba-
tive formulation but is essential to properly understand
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the predictions of string theory for the structure of space-
time at the Planck scale. Indeed, the perturbative expan-
sion might be performed around the incorrect vacu»m.

Thus, our aim in this paper is to further explore the
consequences of string theory in nontrivial backgrounds.
We consider the bosonic string in exact plane wave met-
rics. These metrics are solutions to all orders of the con-
formal invariance conditions of the bosonic string theory
(the P functions of the nonlinear o model) in an a' expan-
sion and even nonperturbatively [18]. String theory in
gravitational waves has been extensively discussed in the
literature [1,18, 14]. A monochromatic plane wave back-
ground was recently constructed by Nappi and Witten
[19] from an ungauged WZW model based on a central
extension of the 2D Poincare algebra. The conformal field
theory description of such algebra and its cosets was con-
sidered in Ref. [20]. Plane waves are interesting because
the existence of a covariantly constant null vector leads
to a definition of &equency which is conserved, and there-
fore there is no analogue of the particle creation mecha-
nism of semiclassical theories in curved space-times. This
is not true in a general time-dependent background where
"string creation" should be considered in the context of
second quantization.

The paper is organized as follows. In Sec. II we in-
troduce the notation and review the previous relevant
literature. We present new exact results for the string
mass operator in certain shapes of the gravitational wave.
In Sec.' III we construct the scattering amplitude of
tachyons in this background. Physical amplitudes pro-
vide further evidence on the structure of the theory, the
spectrum of states, and its symmetries in nontrivial back-
grounds. They are thus other elements to be consid-
ered in this search for the string theory of gravity. The
spectrum of states obtained &om the poles of the am-
plitude upon factorization is shown to be equivalent to
that of the Hat space-time theory. From Taylor expand-
ing this residue the vertex operators of the corresponding
exchanged states can be extracted. Indeed, the residue
corresponds to the scattering amplitude of the intermedi-
ate higher mass states with the remaining tachyons. The
factorization and Taylor expansion are performed in Sec.
IV where the massless vertex operator is obtained. Final
conclusions and a discussion of the results are contained
in Sec. V.

Similar issues have been recently addressed in Ref. [20]
&om the current algebra giving rise to certain gravita-
tional waves different &om those considered here. We
comment on the relation of these results with ours in
Sec. V.

Gravitational plane waves are a particular case of
(1) in which F is quadratic in X, i.e., F(U, X )
W s(U)X Xs, and the only nonvanishing component of
the Ricci tensor is Rp~ ———W . In the so-called ex-
act plane waves, W g is a traceless matrix and thus the
metric is Ricci Hat. For later convenience we restrict at-
tention to a function W p nonvanishing only in a finite
range of U, i.e., W s(U) g 0 for 0 & U & Uo. In this way
asymptotic "in" and "out" string states can be defined
in the Bat space-time regions U ( 0 and U & Up.

The action of the bosonic string moving in a plane
&onted wave background is

8= — do[—BUB V+BXBX
2

+F(U, X )B UB U] (2)

X(rr, r) = ) X„(r)e'", (4)

Y(o, r) = ) Y„(r)e'

Eq. (3) decouples and reads, for each coordinate,

X„+nX„—WpP X„=0, (6)

Y„+n Y„+WpP Y„=Q.

In terms of right and left oscillators, each mode can be
written as

Z

2 n

(with o.' = 1 j2n).
The classical equations of motion for the transverse

fields X are

88 X + —BFP =0,1

2

where the light cone gauge U = P~ was chosen. Trans-
verse coordinates solving (3) automatically satisfy the
constraint equations T p

——0.
Without loss of generality we assume the background

space to be a tensor product of a four-dimensional plane
wave with a c = 22 conformal field theory. In the case
of exact plane waves with W (U) = —W„„(U)= Wo ——

const for 0 & U & Up, decomposing the two transverse
coordinates into modes as

II. STRINGS IN PLANE WAVE BACKGROUNDS

In order to introduce the notation and to be self-
contained, this section reviews previous relevant litera-
ture and at the end we present new results.

The so-called plane-fronted waves in D dimensions are
given by

ds = —dUdV+ dX dX + F(U, X )dU, (1)
with U = T—X, V = T+X, and X, a = 1, 2, ..., D—
2, transverse coordinates.

where u„(u„)are solutions of Eq. (6) for U & 0, i.e., "in"
modes of the form e '" (e*" ). Similarly, "out" modes
v„(v„)can be used for U ) Uo with the corresponding
b*„,b oscillators.

A linear Bogoliubov transformation relates "in" and
"out" oscillators:

(9)
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(The oscillators for Y are obtained from those for X
changing Wo -+ —Wo. )

The expectation value of the "out" number operator of
the nth right and left modes of a string that was initially
in the ground state can be found from these transforma-
tions as

0;„l~„*"'lo;„)= (0;„lb„*b„*lo;„)= la„
This can be used to compute the expectation value of the
"out" mass-squared operator in the "in" region. Since

Each of the oscillatory modes of the string gets excited
as it passes through the gravitational wave but the ex-
pectation value of the mass-squared operator remains 6-
nite; i.e. , the sum in (15) is convergent for Wo finite.
Some interesting limits can be taken. When Up M 0,
(M ) i —8, which is the tachyon mass, the state of the
string before the gravitational wave reached it. If R'p in-
creases while Uo decreases (Wo ~ oo, Uo ~ 0), keeping
WOUO ——1, then the profile W(U) tends to a b function
[W(U) ~ 8(U)] and the expectation value of the number
operator yields

M „,= 4) n(b„b„+b„b„)—8,
n=1 (16)

then

(M „,) = 4) n(N„)—8.
n, a

The absence in string theory of singularity theorems such
as those of Penrose and Hawking [21] led Horowitz and
Steif [14] to suggest the convergence of this series as a cri-
terion to decide whether a solution is singular or not in
the sense of string theory. It was shown that a string try-
ing to propagate through certain singular plane-fronted
waves becomes in6nitely excited. Shock wave metrics,
i.e. , F(U) = h(U) f(X ), were considered in [14, 22—24].
It was found that the string mass-squared operator di-
verges for certain functions f (X ) whereas it is finite in
some particular cases. OCher divergent pro61es of the
form W(U)~~0 lUl ~ were shown in [16] to lead to
a divergent (Mz) when 1 ( P ( 2. The origin of the
divergences in the mass operator was assigned in [16] to
the infinite transverse size of the wave. However, as wi.ll
be shown in the forthcoming Eqs. (15) and (20), the
presence of a singular profile W(U) is necessary in addi-
tion in order to get a divergent (M2). Another example
of singular string state was found in [15] by considering
an antisymmetric tensor field background, i.e. , adding a
discontinuous axion 6eld. These conclusions neglect back
reaction efFects which could drastically modify them.

Since a careful analysis is needed for divergent pro-
files [23, 24] we consider functions W(U) parametrized in
such a way that the limit W(U) i 6'(U) can be unam-

bigously taken. The Bogoliubov coefficient B„canbe ex-
actly computed for the profile considered above [namely,
W(U) = Wo for 0 ( U ( Uo and W(U) = 0 otherwise].
It turns out to be

W' p2

cosli (cx'r)

and this can be solved exactly in terms of a hypergeo-
metric function F(a, b, c; z):

'n+s+ 1) ——+ 1)
(x 2

(18)

where ( = tanh(nv) and s = —
l

—1 + 1—
2 a

The asymptotic expansion of (18) for ~ -+ oo is

Therefore the mass-squared operator (M2„,)
= 2P4 P„i ——8 diverges and the string gets infinitely
excited. In this case it is necessary to consider back re-
action effects before extracting any de6nite conclusions.

Let us now consider a more complicated (continuum)
profile W(U) = „,' ~ . In this case the classical equa-

tions of motion (3) read

t'1 P2W 2

(14)

with n~ = gn2 + WOP2. Note that the WEB approx-
imation performed in [15] cannot be used in this case.
Therefore

2

n=l

(1 P2W0
+

l

— sin(n+Uo)
l

—8.
(2 n+

The Bogoliubov coefficient B can be easily read from the
expression above since it is the coefficient of the negative
&equency solution at late times e', i.e.,

t'coo(col —;') )
sinh( —")

(2o)
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III. TACH%ON SCATTERING AND STRING
SPECTRUM

We now consider the scattering of tachyons in this
plane wave metrics.

The set of coordinates used in the preceding section,
i.e., (U, V, X ), called harmonic coordinates, is physically
convenient since a single chart can be used to cover the
whole plane wave space-time and the curvature depends
only on one component of the metric tensor. However,
in order to fully display the symmetries of the geometry
and for computational convenience, the so-called "group
coordinates" are more suitable. In these coordinates the
metric takes the form

ds = —dudv+g s(u)dx dx . (21)

and ~Bs~ is the same expression changing Ws ~ —Wo.
In this case the sum in (M2) is always convergent for Ws
and o. finite. Taking Wo -+ oo, o. —+ oo while keeping
Wo ——2, then W(U) ~ b(U) and we recover the result
of Eq. (16). This provides an example of a singularity in
the sense of string theory as defined in [14, 15] whereas
space-time is nonsingular in the sense of general relativity
(the geodesics are complete though discontinous). If the

4W F'same limits are taken but now keeping ', = 1, the
expectation values of both the number and square mass
operators become divergent. In this case there is an infi-
nite discontinuity in the geodesics. Notice that this is a
quantum efFect. Classically the masses of the states re-

main finite since the oscillators are decoupled [Eqs. (6),
(7)].

As advanced above Eqs. (15) and (20) show that a
finite (M2) is obtained even in the presence of an infi-

nite transverse size of the wave as long as its height is

finite. These results indicate that there is no conclusive
evidence to assign a unique origin and/or definition to
string singularities. In any case, since the essential issue
is the resolution given by string theory, as a candidate to
provide a full theory of quantum gravity, to the problem
of the singularities inherent in general relativity, the spe-
cific symmetries should be further explored. With this

goal, in the next section we consider the scattering of
tachyons in plane wave metrics.

Both sets of coordinates are related by

U=u,

V =v+ —g s(u)x x,a
2

(22)

X = Ps (u)gs,

where g s(u) = P'(u)P&(u) and the matrix PP(u) is de-

termined by

~ ~

P~ ——W,P~,

which must be solved with the initial conditions

P'P~ —P~ P' = 0.

A possible solution is

Pi'(u) =p (u) =e

P2(u) =p, (u) = e'

P'(u) = Pi'(u) = o.

(24)

(25)

The constraint (24) is automatically satisfied by the exact
plane waves. Note that with this choice the metric and
coordinates are complex and thus unphysical. Therefore
we will consider physical operators those expressed in
harmonic coordinates.

In order to compute scattering amplitudes of the low-
est energy states in this metric, the vertex operator re-
sponsible for the emission of a tachyon is needed. As is
well known these vertices must be conformal operators
of anomalous dimension 2 and the conditions they must
satisfy in an arbitrary curved background were given by
Callan and Gan [25]. To first order in an n' expansion,
the tachyon vertex Vz must be a solution of a Klein-
Gordon equation

o,"AVf (k, u, v, x ) = k Vf (k, u v, z ), (26)

where we take b, as the Laplacian in the plane wave (PW)
metric (21) with k2 = —m~ = 8 the mass of the tachyon.

Garriga and Verdaguer [26] found a solution that in
this metric reads

V~ (k, u, v, x ) =:exp i
~

k x —k v — du(g k kg+ m ) + —QWO(1+ i)u
~4k 0 2

(27)

Vgw -+: exp [i (k x —k v —k~u)]: (28)

It is.useful to define a shifted momentum in the direction
ofuas

where k, k are the separation constants and play the
role of components of the momentum of the tachyon [27].
It reduces to the usual vertex operator in Bat space when
the limit Wo —+ 0 is taken:

k+(u) = [g (u)k kg+ m ——QWO(1+ &).

(29)
The four-tachyon scattering amplitude on the sphere

is defined through
4 4A„fa*.,f v n.v*.=~&~ v,'"(~;,*;)

i=1 i=1

(30)
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where the vertex Pgw(k;, z,.) is placed at the point z; of
the complex plane; ]J] is the determinant of the Jacobian
of the transformation between the harmonic and group
coordinates (it is included because the physical vertices
are assumed to be those in harmonic coordinates, but we

shall see that it does not contribute to the amplitude due
to momentum conservation), and S[u, e, x] is the action
expressed in group coordinates:

S[u, v, x ] = — d (r BuB—v+g s(u)a x a z' .-=1 2

kc'~ =0, ~=2, 3,

k" PQ,
Of course this transformation is not a symmetry of the
metric. However, this loss of generality is irrelevant for
our purposes, as we shall see. With this choice the ver-
tices V2 and V3 have the same form as the Minkowski
space vertices (with k = 0), because Eq. (26) only de-

pends on the transverse coordinates. This independence
of v means that these two tachyons travel in the same diuu

rection as the gravitational wave and never collide with
it:

It is possible to simplify the calculations by making a
Lorentz transformation so that all k

'
vanish, except two

of them. We then consider

—ik+ u+i jc
&2,3 —&

Putting everything together in the functional integral,
the amplitude A4T in Eq. (30) reads

4 4

e(ee = f 17uVeDe (J( ezp'~ i $ k~'~e'(z) —) k
' e(z) —$ f du ke (u(z)( —) k„u(z) ~e''

( -'=i i=1,4 i=1 2/3

The Jacobian J( & „)can be easily evaluated because it depends only on u; then

pl(u)P2(u) = exp
~

gW (1 +i) d z u(z) (34)

Now integrating the action by parts and collecting all the pieces under the same integral symbol in the exponentia
by introducing the delta functions b (z —z;), ~2. can be expressed as

where

4

azz; fVuneVe r 'el'""e
E ~ u

i=1

S= dz v —88 u — k' z —zi — k'uzib z —z;
i=1)4 i=2,3

4

du QWO(1+i) —) k+ (u)b'(z —z;) + z
~

——(9~gas(9
I
* + ) k~(*l* ~'(z —z, )

Because of the linear dependence, the integral on v can be evaluated, giving the b function

b 08 u —)-k~'ib (z —z;)
i=1,4

where 20 0 = 28,8-. Integrating u therefore simply implies replacing it by

u(z) = ) k~'iln]z —z;i
i=1,4

and inserting the factor det (8 8 ), irrelevant for our calculations.
We are then left with
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s(s)
zi exp du —) k~~'lb (z —z;) —) k~~'lh (z —z;)

i=1,4

x Px exp dz x ——i9 ggO x + k'x zb z —zi
)

Note that the contribution &om the Jacobian vanishes due to momentum conservation. Finally, one can integrate
over x since the action is quadratic in those fields. This yields, for the amplitude,

4 a(Z1) G(s4)
d z, exp —k+ u(zq) —k+ u(zs)—2 (2) — (3)— du k+

-(1)

i=1 0 0

4 4

x exp — d z d z' k(') z —z; A z, z' kq z' —z~
i=1 2=a

(40)

where A s(z, z') is the Green function of the quadratic operator 28 g —s8: i.e.,

2
——8 g s[u(z)]8 A (z, z') = b (z, z').

Using expression (21) for u(z), we may write

(41)

—k I(: I (s) ~(4)
d z; Iz2 —

zeal
+ Iz2 —z41 + Izs —z&l + lzs z41 +

6(S1) ~(~ )
x exp d~ k+

-(1)
0 0

du k+ exp —) k '
ks A (z;, z~)

i&j
(42)

A(z) = ——8 g s8 =' —p (&o+~&)
2

where

(48)

Since the vertices are normal ordered, self-contractions

are not considered. Note that the shift in k+ and k+
-(1) -(4)

can be dropped in this case because of momentum con-

servation in k (i.e., [u(zq) + u(z4)] = 0); then we can

replace fp" du k+~'l -+ fp" du k+~'l. Therefore nontrivial in-

teractions take place in the transverse space.
The next step is to compute the Green function (41)

writing the operator —20 g gO in the form

Ap ———8 8 = 28,8~,
1
2

b6 = 8, ln p 8z + 8; ln p~8„
(44)

(45)

A(z) = —y Ap 4+ f 4 tzdz'(z —ru)44(tz), (46)

( z —~) = —21nlz —(ul. (47)

Thea, to first order in QWp,

and p is either pq(u) or p2(u). Note that bb is propor-
tional to QWo, and so if we consider b'b, as a perturbation
to the Minkowskian Green function A0, formally,

(z, z') —Ez'(z —z'}y (z') 4. y (z') f 4 ~dz (z —zI)46(tz)dz'(tz —z'). (48)

Therefore A (z, z') E (z, z'), with p2 = pzz(u) for
a = b = 1 and p = p22(u) for a = 6 = 2. Ofcourse
in the limit W0 ~ 0 we recover the Minkowskian Green
function.

IV. FACTORIZATION AND GRAVITON
VERTEX OPERATOR

%e now discuss the factorization of this amplitude
(A4T ) when two of the external vertices are placed at the

I

same point. In this way the mass spectr»m of the theory
can be found &om the physical poles corresponding to the
particles interchanged in the process. The residues give
rise to the scattering amplitude of the intermediate state
with the remaining tachyons. From them, applying the
procedure introduced in Ref. [28], the vertex operators
of the exchanged states can be read.

An N-tachyon amplitude A~(ki~&, ..., ki~&), factorizes
when r vertices collide to the same point, i.e., taking the
limit zi ~ z„for i = 1, ..., r —1, as
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~+,(k('), ..., k("), -K)X~ „+,(K, k("+'), ..., k(")),
4

where K„=g,".
i

k(') is the inomentum of the interinediate state, and the pole occurs at the physical mass mz = —8;
i.e., the particle exchanged is a tachyon. Taylor expanding the residue, new poles corresponding to higher mass
intermediate particles are found.

In fact, given a function 4(«, «), regular for ««M 0, a Taylor expansion leads to
l 6~ A

—2v+2n+2 1
d e~~e~~ 4(E, E} = f E~~e~~ ) 8 8 4~~0 e E = ) (88} 4 ~a (»)

l, rn n

where angular integration in polar coordinates implies I, = m = n and A is an arbitrary cutoff, irrelevant for v m n+1.
Taking the limit zi -+ zz, (« = zi —zz) from the amplitude (42), the momenta of the colliding tachyons are k P 0(~)

and k = 0 so that the momentum of the intermediate state K„is general, i.e. , k + k g 0. It is possible to(2) ~ ~ ~ ~ (~) (2) ~

isolate the divergent part of the amplitude (replacing zi by zz + «), as

&4T-
4

-'g( ) Jg(')
d z; d «I«l' Izqs + «I + Iz241 + Iz34I +

i=2

( 6(zg+E}6) G(z4}E)

x exp du k+ (u) — du k+
-(x3 -(43

0 0

xexp —) k k& A (zz+«;z~", «)+ — ) k' k& A (z;, z~;«)
j)2 2(i(j

(51)

and therefore identify v = ——k( ) k( 3. Integrating
e after Taylor expanding the regular part, the poles at
v = n+ 1 correspond to Kz = (k(i) + k(z)) z = —8(n —1);
i.e., the interaction with the gravitational wave does not
change the mass spectrum of the theory with respect to
the Minkowskian case. This need not be true in the pres-
ence of a nontrivial dilaton background. As shown in Ref.
[17] in this case the graviton acquires a (tachyonic) mass
proportional to the derivative of the dilaton.

We now turn to analyze the residues. For n = 0 we

l

l

find the tachyon pole [k(i) . k(z) = —4 or equivalently
(k + k( )) = —m = 8] and the residue corresponds
to the product of two three-tachyon amplitudes [one of
them is already divided by the (infinite) volume of the
conformal group, leaving only a constant as a result].

For n = 1, i.e., the massless pole K2 = 0, the deriva-
tives 8,«}),e'(«, «) lead to a residue corresponding to the
scattering of a massless vertex with two tachyons. We
find

pw 1 k+ k 1 k+(i [u(zz)] k 1 k+ [&(z4)] k 1 ~ . (i) (;)-+—
2 Z23 2 Z24 2 Z24 2'=-' ' '' '

2
1 ~W k

i k(s)k(4) A (z»z4) ( 4, s) ~ }K k(s) k(4)qV o — a + 3T((, & ) J)
Z24 Z23

(52)

where AsT is the three-tachyon amplitude for states of
momentum K„=k„+k„,k„,and k„(z,~ = z; —z~).(&) (2) (3) (4)

Note that the shifts in k+ and k+ [k+ ——k+—-(X) -(4)

z QWp(1+ i)] decouple from the physical processes if mo-

mentum conservation k( ) + k( ) = 0 is used [recall Eq.(&) (4)

(42)]. However, this is a consequence of the particular
choice A;~ = k = 0 we made, and in general this will

not happen. The Minkowskian limit A&(&)& is recovered
when Wp —+ 0.

Since the information on the plane wave background is
contained in the contribution &om the transverse coordi-
nates and in the shiR in k+, when the transverse momen-

I

turn of the particles vanishes, AGPwT, z, reduces to A&&T if
conservation of k is used. This means that the particles
collide normally to the gravitational wave and they do
not "feel" the background. Nontrivial interactions take
place in the transverse space. On the other hand if all
the k components vanish, again A&&T, is recovered.

From this amplitude it is possible to obtain the mass-
less vertex operator. A generic operator of naive con-
formal dimension 2 on a Hat world sheet is of the form
8 X"8 X"I'„„(X).Translation invariance implies an
exponential of the same form as the tachyon vertices.
With these considerations we can read from Eq. (52) the
operator responsible for the emission or absorption of a
massless state as
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1
yGpw = &„„(k):~X~DX"exp

I

—iK v+ iK;X' — &uK+(u) l:,
)4K o

(5a)

2/Wo(1+ i)h„",and e„=k„'.
Indeed by computing the scattering amplitude of this

vertex operator with two tachyons it can be checked that
A&&& in Eq. (52) is recovered. (Recall that A&&2 was
obtained by factorizing A4PP. ) The polarization ten-
sors obtained in this way are of course particular ones.
They depend only on k~~ because of the particular ver-
tices that were made to coincide and the way the limit
zq ~ z2 was taken. However, once the conditions to be
satisfied by the polarization tensors are imposed, namely,
transversality K"e„„=0, the form of the vertex operator
is completely general. Notice that the polarization tensor
can be decomposed into a traceless part (graviton) and

V = F„„BX"8X"+ a' ~'lRF(x), (54)

where the second term is unavoidable when studying
string theory on a world sheet of curvature ~ )R. Setting
the dilaton to zero on a Bat world sheet the equations to
be satisfied by the massless vertex operators are

a trace part (dilaton). The antisymmetric tensor can-
not be produced in this way since it does not couple to
tachyons.

Callan and Gan [25] deduced the conditions that a
massless vertex must satisfy in order to be an eigenopera-
tor with eigenvalue 2 of the anomalous dimension matrix
in a general 0-model background. They define a general
operator of naive dimension 2 as

'7 ~~ —'7p '7u Fz +&„v+an + 2 'P„~"Fp~ + 2 ~„g"Fp„+~„p„F= 0,
1

Fp ——&" P Fp +-R" Fp —~ F=0.
4 4 cT

4 4f o (55)

a ac1I ~= —g gg I g=gg (56)

(57)

these equations are satisfied by

F„„(z)= e„„exp~—iK v+iK z

du K+4K (58)

with e„„givenby Eq. (53). This can be verified using
that K2 = 0 and the transversality condition K„d'"= 0.
Notice that even though the shift in k+ can be elim-
inated from the physical amplitude (52) using momen-
tum conservation, it is unavoidable in order to satisfy
Eqs. (55). The function F(x) is a tachyonlike oper-
ator with momentum K~, and so ~ F = K F = 0.
Similarly F„"= e„l' = (k~ &) + 2ik QWo(1 + i)
—m +2ik QWo(1+ i), m being the tachyon mass. Then
~'F„&= [ m' + 2ik QW, (1—y i)]K'F = 0.

V. CONCLUSIONS

We considered string theory in plane wave back-
grounds. Profiles of the gravitational wave where the
Bogoliubov transformation can be exactly solved were
found. The mass-squared operator remains convergent
as long as the "height" of the wave is finite. The limit
of a b-like wave was unambigously taken, leading to a

Using the Ricci fiat metric (21) whose nonvanishing
Christoffel symbols and Riemann tensor reduce to

divergent mass-squared operator.
Tachyon scattering amplitudes were constructed and

solved to first order in a perturbative expansion in QWo.
The information about the gravitational wave is con-
tained both in the transverse coordinates and in the
shift in k+. Two particular situations can be distin-

guished: (a) If all k ' = 0, i.e., none of the tachyons col-(') =
lide with the wave, then the interaction reduces to the Bat
space case; (b) if all transverse momenta vanish, i.e., the
particles collide normally to the wave, again the interac-
tion reduces to the Minkowskian case. This is completely
different to what happens to classical and quantum point
particles which converge at the same point at the same
time; i.e., the transverse distance among geodesics be-
comes zero and their z coordinates are the same for a nor-
mal collision [26]. A similar observation was made in Ref.
[20] where the current algebra giving rise to this class of
backgrounds was analyzed and two kinds of irreducible
representations were found: those corresponding to par-
ticles having momentum in the transverse directions and
those having only longitudinal momentum. However, the
gravitational wave obtained &om the central extension of
the 2D Poincare algebra [19] is different from the one we
have considered here.

From the poles appearing in the factorization of this
amplitude the mass spectrum of the theory was found
to coincide with the Hat space case. The vertex opera-
tor of the massless states was "read" from the residue of
the massless pole corresponding to the graviton-tachyon
scattering amplitude. The effect of the wave on the ver-
tex is to shift the k+ momentum component by a factor
2/We(1 + i) However, t. his shift does not amount to a
shift in the mass spectrum of strings in this background.

The vertices responsible for the emission or absorption
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of higher mass particles can be constructed in the same
way &om higher orders of the Taylor expansion. Vfe be-
lieve that the difference with their Bat space analogues
will be contained in the shift in k+ and in the exponential
"tachyonic" part.

The procedure used here to obtain the higher mass
vertex operators can be generalized to arbitrary Riemann
surfaces [28]. The advantage of the formalism is mainly
that normal ordering and self-contractions arise naturally
&om the physical amplitudes. Arbitrary regularizations
and possible sources of Weyl anomalies are thus avoided.

Klimcik and Tseytlin [29] analyzed the action of dual-
ity transformations on plane wave metrics. They found
that the corresponding dual 0-model target spaces belong
to the same class of metrics. Duality may connect curved

backgrounds with Bat metrics, but in general nontrivial
antisymmetric tensor and dilaton fields are necessary. It
would be interesting to consider the action of these du-

ality transformations on the vertex operators.
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