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Finite black hole entropy and string theory
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An accelerating observer sees a thermal bath of radiation at the Hawking temperature which is
proportional to the acceleration. Also, in string theory there is a Hagedorn temperature beyond
which one cannot go without an infinite amount of energy. Several authors have shown that in the
context of Hawking radiation a limiting temperature for string theory leads to a limiting acceleration,
which for a black hole implies a minimum distance from the horizon for an observer to remain
stationary. We argue that this effectively introduces a cutoff in Rindler space or the Schwarzschild

geometry inside of which accelerations would exceed this maximum value. Furthermore, this natural
cutoff in turn allows one to define a finite entropy for Rindler space or a black hole as all divergences
were occurring on the horizon. In all cases if a particular relationship exists between Newton's
constant and the string tension then the entropy of the string modes agrees with the Bekenstein-
Hawking formula.

PACS number(s): 11.25.—w, 04.70.Dy

I. INTRODUCTION

Usually entropy in physics can be described both in
a thermodynamic sense and in terms of a counting of
states. However, although black hole entropy has long
been formulated in a thermodynamic sense involving the
Hawking temperature, only recently has it been possible
to approach black hole entropy as a counting of states.
In [1] 't Hooft calculated the number of particle states
surrounding a black hole in a "brick wall model, " where
particles are not allowed to be closer than a certain cut-
off distance to the horizon. He found a contribution to
the entropy proportional to the area of the horizon but
divergent as the cutoff distance was taken to zero. A
difFerent approach was taken by Bombelli et al. [2] and
Srednicki [3], who traced over particle states inside the
sphere of the horizon and also found a divergent entropy
proportional to the area. Callan and Wilczek [4] and Ka-
bat and Strassler [5] showed that the brick wall model of
't Hooft and the geometric model of [2,3] were in fact
equivalent. The divergence in the entropy arises because
of an infinite number of states which appear on the hori-
zon itself and occurs whenever the brick wall cutofF is
removed. Susskind and Uglum [6] calculated the density
of states of the Schwarzschild geometry in the limit of
infinite mass, which was essentially equivalent to Rindler
space, the spacetime seen by an accelerating observer.
The canonical particle entropy was again divergent, but
they identified a contribution in string theory consist-
ing of open strings with the ends attached to the horizon
that, owing to the difFerent ultraviolet properties of string
theory, could in principle yield a finite black hole entropy
[7-9].

In this paper we pursue an alternate route to a finite
entropy in superstring theory. We show that the brick
wall cutoff used by 't Hooft to obtain a finite entropy has
a natural interpretation in terms of a string theory's max-
imum acceleration. This is fundamentally a string the-

ory phenomenon related to the existence of a Hagedorn
temperature [10,11], the limiting temperature in string
theory. Essentially an accelerating observer sees thermal
radiation at the Hawking temperature T = a/2vr with a
the acceleration [12]. In string theory, however, there is
a limiting temperature, the Hagedorn temperature; this
suggests that for Hawking radiation there is a limiting
Hawking temperature and maximum acceleration. Sakai
[13]has studied this phenomenon by calculating the ther-
mal response function and vacuum stress in Rindler space
and finds a limiting Hawking temperature related to the
Hagedorn temperature by TH~~k;„s M~ = TH~s, d~»/7r.
Parentani and Potting [14] find the same relation in terms
of a thermal Green's function approach (see, in addition,
Bowick and Giddings [15]). This limiting acceleration
also applies to stationary observers outside a black hole
and yields minimum distance from the horizon for an ob-
server to remain stationary. In this paper we find that
the structure of Rindler space or the Schwarzschild geom-
etry must be suitably altered close to the horizon, where
accelerations would exceed the maximum value and in-
finite vacuum stress would be present. We then argue
that this effectively introduces a cutoff in Rindler space
or the Schwarzschild geometry and yields a finite entropy
in string theory.

II. MAXIMUM ACCELERATION IN STRING
THEORY

The essence of the Hawking efFect is that an observer
at constant acceleration a will feel the existence of a heat
bath at temperature T = a/2x. It is also well known
that in string theory there exists a maximum tempera-
ture TH z g, above which the string partition function
diverges. Essentially this is because the number of string
states of given mass is p(m) = mo' m 'exp(bm) and
the partition function involves multiplying by exp( —Pm)
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dt qvr1 v2 dt~
(2.1)

with v = dx/dt and z~ = 0, we obtain the spacetime
trajectory of a particle with proper acceleration a, initial
position and velocity x;, v; at time t; given by

) 2- i/2

z=z, +- 1+
I a(t —t, ) y

1 —v2 j

and summing over m, where P = 1/T .Thus the crit-
ical temperature is given by TH s,g~,~ = 1/b. One
might expect that because the Hawking radiation is ther-
mal, string theories possess a limiting Hawking temper-
ature corresponding to 1/b .Indeed Sakai [13] and also
Parentani and Potting [14] showed that there is maxi-
mum Hawking temperature; however, the limiting value
turns out to be TH g;„s M „= 1/b7r so that the lim-

iting acceleration is simply a „= 2/b For the mass
degeneracy p(m) = mo' m "'exp(bm), the quantities
n, and b are determined by the spectrum of various string
theories [16—18]. One has for n noncoxnpact dimensions
n, = "z for open strings, n, = n for closed strings, 6

is given by 4+i/nr for bosonic strings, 2i/2+i/o. r for su-

perstrings, and (2+ y/2)sr~a' for heterotic superstrings
while mo is of the order 1/v nr.

Before discussing the derivation of this maximum ac-
celeration let us quickly review the structure of Rindler
space [19],the spacetime as seen &om an accelerated ob-
server, in order to set notation useful later. Solving the
diH'erential equation

As described by Susskind and Uglum, the Schwarzschild
metric

) 4 " )

T„„=8„$0„$— g„„(g~ 0~—$8 P+ m P ) (2.5)

of a very large black hole can also be described by
the Rindler coordinates with the transformation ~
t/4GM, s = +8GM(r —2GM), and the area of the hori-
zon taken to be A = 4z (2GM) .

The phenomenon of maximum acceleration in string
theory has been discussed in several contexts. Sakai [13]
studies the detector response functional for string theo-
ries in an accelerating kame and found that it deverged
for a ) 2/b = a . Parentani and Potting [14] stud-
ied the Feynman propagator in Rindler space and found
the same value for the limiting acceleration. Another ap-
proach regarding acceleration in string theory was taken
in [20,21] where a mode instability for classical solutions
of an extended object in Rindler space led to a critical
acceleration a, = (

~
2l)i/s~. Because the critical

acceleration a, is somewhat larger than the maximum
acceleration a = 2/b of Sakai, we mainly work witha, as these efFects should occur 6rst, however, similar
conclusions can also be reached regarding a, . A phys-
ically intuitive derivation of the maximum acceleration
was also given by Sakai who studied the difference in
the vacuum energy between Rindler space and Minkowski

space, similar to the Casimir efFect. One begins with the
stress tensor for a massive scalar 6eld:

(2.2)

Now if the relations t; = — "', and x, = —(1+ i "'„,) /
1—v~

hold for the initial conditions, the spacetime trajectory
sixnpli6es dramatically to

The vacuum stress [22,23] is then defined by T„„
(OiiIT IO&) (OMITr IOM), where IO&) and IOM) rep-
resent the Rindler and Minkowski vacuum, respectively.

The vacuum stress can be computed by solving the
eigenvalue problem in Rindler and Minkowski space and
using these solutions to form the two-point function and
then the stress tensor from

z =
I

t'+ —,
Ia )

(2 3) T„„= lim
I

8„8„' — g„„(g~—r9pr9' + m')
I
G(z, *'),

This is the trajectory of a Rindler observer. Note that the
distance of closest approach to the origin z; = 1/a is
smaller for larger accelerations, whereas one might expect
large accelerations to cause a turnaround further out.
This happens because the initial conditions of a Rindler
trajectory are such that highly accelerated observers start
closer to the origin. The Rindler coordinates are de6ned
by x = s cosh', t = s sinh7, and cover the right-hand
wedge of Minkowski space x ) Itl. Then from (2.3) we

have the relation

where

G(* *') = (0~1&(z)4(z') IoR)

The quantum field P is written

(2.6)

(2.7)

s= 1/a, (2.4)

+ ds + d&~dx~.

so that large accelerations correspond to sxnall s close to
the horizon x = Itl. In terms of Rindler coordinates the
Bat spacetime xnetric takes the form

Here ug, are eigenfunctions in Rindler space and k is
the conjugate xnomentum to x~. The ag annihilate
the Rindler vacuum aqlOR) = 0 and are related to
Minkowski space creation and annihilation operators
through as = Ql + n d„+ gn d» with dslOM) = 0 and
n = (e2 —1) ' [24].
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The Green's functions are then given by

«X7 QTL—2I
(O I&(z)&(z') lO ) = d~ 2,u, (*)u'„(z')

0

and

OO dTL —2 Q
(oMl&(z)&(z')IOM) = d~

2 „,[u-uS(z)uS(z')
0

+(1+ -) .(*) '(*')]

so that

OO dTL —2 I
G(z, z') = — dur n„u„'(z)us(z') + c c.

2m ~

(2.8)

The eigenfunctions in Rindler space are solutions to

( 1 Bz 82 1 8 8 8
+ +-—+ -m' lu& =o

s2 8~2 Bsz a Bs Bzi Bzi
(2.9)

and one obtains

us = —(sinhn'ur) / K, (agkz + mz)exPi(kzi —QJ7 )

FIG. 1. Representation of the structure of Rindler space in
string theory The. dashed line indicates the a = b/2 = a
boundary inside of which the vacuum energy diverges and
accelerations exceed a = 2/b = a . The outside curved line
is a trajectory of an accelerated observer with a ( a „and
the dark 45 degree lines show the horizon z = ltl.

(2.io)

with K~ (z) the modified Bessel function. Now one uses
this soluton to compute the Green's function G(z, z) ob-
taining the stress tensor from (2.6). For large mass, such
as the massive states in a string theory, the last term in
(2.6) is dominant and we find, for the stress energy,

Tp m dur(e —1) —sinhmur
0

dtL —2 I
x lK; (sQkz+m2)l . (2.11)

The fermionic contribution to the vacuum stress has a
similar form except for a Fermi-Dirac factor (ez + 1)
[22]. Using the asymptotic expansion for the Bessel func-
tion K; (z) ~2, e ' and integrating over ur and k one
obtains, for the vacuum stress energy at large mass,

Tp (s, m) (m/s)"/ e 2™, (2.i2)

Tp —— dm p(m)Tp (s, m)
fll p

dmmp' m "'e (m/s) / e
f7Lp

(2.i3)

This clearly diverges s ( b/2 = s~;a. Now since

which is in agreement with Sakai [13] and Takagi [23].
Now one forms the vacuum stress for a string theory

Tp by multiplying (2.12) by the number of string states
at a given mass p(m) = mp' m 'e and integrating
over the mass to obtain

s = 1/a, the string stress energy diverges for accelera-
tions a & 2/b = a and we have the limiting acceler-
ation of Sakai [13] and Parentani and Potting [14]. The
physical interpretation of this result can be inferred from
the work of Candelas and Deuts'ch [22], who showed that
Tpp represents the absence of Hawking radiation from the
vacuum and the presence of T00" ——T0 thermal en-
ergy density in Rindler space. Therefore the divergence
in T00 for s ( sm;n represents the absence from the vac-
uum of an infinite amount of Hawking radiation and there
is a infinite wall of thermal stress energy T 0" ——T0~
a finite distance &om the horizon. Since the energy of
the thermal bath of radiation is taken &om the exter-
nal source accelerating the observer [19],it follows that a
string cannot accelerate into that region of Rindler space.
The energy required to accelerate further cannot be pro-
duced and the string can only continue at a uniform ve-
locity into that region (see Fig. 1). Also by the equiv-
alence principle, a string cannot remain stationary at a
distance s & s;„ from the horizon of a Schwarzschild
geometry. The energy required to support the infinite
thermal stress present there cannot be produced and the
string simply slips into the black hole.

III. MAXIMUM ACCELERATION AND FINITE
ENTROPY

The presence of an infinite wall of stress energy in
Rindler space introduces a forbidden region and cutoff'
s )s; which has important implications for finite en-
tropy. Consider the single particle density of states of a
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scalar particle of mass m. Susskind and Uglum [6] took
the eigenvalue equation (2.9) and solving for the radial

2
momentum p, = (—,, —k2 —m2) / with turnaround
points 8 „=&, 2 and 8;„obtainedgk2+m2

ou/Qk&+rn&
/

2
q

1/2

psds —k —m
/

ds
n;„

for quantum number n. The single particle density
of states represents the Jacobian g(ur, k, m) = dn/dvi
between the discrete index n and the quantity m and
Susskind and Uglum find

(, , +p.(s- )~
g(vi, k, m) = —In~

&. ..—p. ( --) )
' (3.1)

where p, (s;„)= (, ' —k2 —m2) / . Integrating over
min

the transverse mornenta for n = 4 they obtain

d k
g(vi, m) = A g(vi, k)

(2x) smin

) 1/2
2—m

m2
+ ln

2

8min

&min

«l in

i«in

) 1/2
—m'

/

(3.2)
—m2

/

The second contribution vanishes for a massless parti-
cle but is quite significant for a very massive particle as
we shall see. Clearly the single particle density of states
diverges on the horizon if 8;„=0. To obtain the sin-
gle string density of states we multiply g(tv, m) by p(m)
and integrate over the mass just as we did for the stress
energy.

The entropy is given in the canonical ensemble by
forming S = PU+ lnZ, where U = —

a lnZ and

An()
massless =

min
(3 4)

with no related to the number of massless particles. To
calculate the entropy of massive states it is convenient to

OO OO 1 /'1 —e
lnZ = — dm dpi p(m)g(vi, m) —ln

~

~O ~+min

(3.3)

with P set equal to 2vr. For massless states the entropy
was calculated by 't Hooft [1] and Susskind and Uglum
[6] who showed that

define E = vi/s m;~ and p = QE2 —m2. Then the single
particle density of states in Rindler space becomes

m' /E- p)g(E, m) = Ep+ ln~
2x ' 2 iE+p) (3 5)

A 2 341dm dv p(m)sm;„—msv4—
0

'" 2%23 2

/'1 —exp( —Pa;„m —Ps;„" ) )
&I+exp( —Ps; m —Pa; ')) (3.7)

For very massive particles the argument of the logarithm
is near 1, so expanding the logarithm and integrating
over the velocity v we obtain

~1 A

4 '"(2~)2

x (Ps . m/2) s/2e P&main~

The &ee energy U = — lnZ is then given by

(3.8)

'" (2~)2

(Pa«««m/2)
~

am'«m +
~

e
'

(3 9), , /' 5)

The entropy is then S = PU + lnZ, and by performing
the integral over mass using the incomplete I' function
I'(a, z) = J' dtt ie ~ it can be expressed as

as compared with a Minkowski space density of states
that goes like Ep. The partition function now becomes

OO OO A
lnZ = — dm dE p(m)s '"

27r 2

/ E-pl 1 (I-e-P~'--)
x Ep+ ln —ln(E+p) 2 (1+e P@+min j

(3.6)
2

For very massive string states E —m+ ~2 and a nonrel-
ativistic approximation is appropriate. Defining v = p/E
the density of states takes the simplified form

A 2/' v 1,1 A 2g(Em)= m
~

—v ——v ~= —mv
(2s)2 (1 —v 3 ) (2m) 3

for massive nonrelativistic states. Note that if the term
involving the logarithm in (3.2) were not present the den-
sity of states would only go like a single power of the
velocity.

With the simplified density of states the partition func-
tion becomes

S „-„,= 2 /
P(msa; ) / [mp(Ps —b)] / +"'I'~ —n„(Pmo— . a—b)

~

+—(mps;„)'/ [mo(Ps; —b)] / +"'I'~ ——n„(mP o;s—b)
~

(3.10)
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Now we take the inverse Hawking temperature P = 2z and from Sec. II s;„=2. Noting that s;,mp, and b are

all of order ~a', we set mp ——n', /s; with n, ', a number of order 1. The entropy due to the massive string states
then becomes

A I
~massive g r(~s s ns)

min
(3.11)

where

r(n„n', ) = 5
2 ( ', ) ~ (2 ', ( —1)) +"'I'

~

——,2, ( —1)
~

—3 2+ra+—(n', )'~'(2n', (w —1)) ~'+" I'
~

——n„2n', ( s—1)
~

(3.12)

The total entropy is the sum of that due to the massless
and massive states and is given by

A (np~ = ~massless + ~msssive = s,.„&36O
+r(n„n', ) ~,

r
(3.13)

where no is related to the number of massless states of
the string theory through no ——n~ + Snyo with n~ and
neo the number of massless bosonic and fermionic modes.

Setting (3.13) equal to the Bekenstein-Hawking black
hole entropy SgH ——4& yields the condition

4
= '

I 360
+ ( ) (3.14)

or, since sm; = b/2,

G=b'
~

+r(n„n', ) ~.
( np

q360~ ' ' )
(3.15)

For all string theories 5 is proportional to o.' so that (3.15)
gives a relation between Newton's constant and the string
tension. Setting b = n", ~n' we have

G = a' n,"2
~

+r(n. , n', ) ~.
g 360'. (3.16)

Therefore the relation between Newton's constant and
the string tension is fixed by requiring the entropy of
massless and massive string states to be equal to the
entropy of a black hole. For heterotic superstring the-
ory compactified to four dimensions n, = 4 and 6 =
(2 + ~2)z~o. ' so n", = (2 + ~2)z. For open super-
string theory compactified to four dimensions n, =
and b = 2~2m ~a' so that n", = 2~2m. . In either case
mp = n', /s =2n', /5 can be chose.n so that n', is of
order 1. The massless contribution to the entropy turns
out to be much greater than that of the massive modes
whose major effect is to set the cutoK length s; as
discussed in Sec. II. This being the case the relation
between Newton's constant and the string tension is of
order G a', where no is related to the number of
massless modes.

String theory itself relates Newton's constant to a'

~Gr np X/2s;„=
~

+ r(n„n'. )2 &360m
(3.17)

Taking the limit np ~ oo tells us that a; ~np if the
entropy is to reproduce the Bekenstein-Hawking entropy.
Thus for an infinite number of degrees of &eedom the cut-
ofF 8;„would have to move infinitely far away &om the
horizon yielding an unphysical picture of a macroscopic
black hole. String theory, on the other hand, has an in-
finite number of degrees of &eedom of increasing mass
and a fixed value for s . = 5/2 with a forbidden region
only very close to the horizon. This region corresponds
to Planckian acceleration, and it is physically reasonable
for string eKects to play a role there.

Our calculation of the black hole entropy in string the-
ory was done ass»ming the canonical ensemble. There are
concerns about the validity of using the canonical ensem-
ble because of the negative specific heat and loss of equi-
libri»m of both black holes and massive string states. In
this paper as in [6] the area of the horizon was taken to be
L2 with L the limit of transverse coordinates in Rindler
space. Rindler space was identified with the spacetime

through gauge and string coupling constants. These rela-
tions depend on the type of string theory considered. For
heterotic superstring theory compactified to four dimen-
sions [25], setting e4 ——y 8z G, the gauge coupling to g4,
the string coupling to g, and the compactified six volume

I sl

to V, the relation is 2+4 ——y 2a'g4 —— ~ g. In terms

of Newton's constant we have G =
ze ~ = 2~va . For

open superstrings [26] the relations are m4 ~vg4z-

g which can be put in the form for Newton's con-~v
stant G ~ s s'„o,' = a&a' . The oPen suPerstring gauge
coupling can be weakly coupled with weakly coupled cr

model V » a' and still be consistent with the relation
(3.16) derived by setting the entropy of the string states
to the Bekenstein-Hawking formula. AQ other couplings
must either be strong or have a strongly coupled o model
V (( a's to be consistent with (3.16).

In [1] 't Hooft's studied the entropy of a particle the-
ory of fixed mass and infinite numbers of degrees of free-
dom and found an unreasonably large value of the cutofF
length. Indeed, requiring that the entropy agrees with
the Bekenstein-Hawking formula fixes the cutofF length
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of a very large black hole with horizon area 4m(2GM)~
and, as in Rindler space, was taken to be static. For a
very large black hole, the variation in the horizon area
with time is so slight that the identification with Rindler
space is appropriate and the deviation &om equilibrium
relatively small. However, for small evaporating black
holes the horizon area is rapidly varying, with a metric
deviating strongly &om Rindler space. In this regime a
microcanonical counting of states is a more appropriate
procedure far &om eqn~hbrium.

A microcanonical description leads to a number of
states cr(W) = exp[8(W)] with W related to the mass
of the black hole and

dw; p(m;)

(3.18)

Here N represents the number of strings and 1jN! en-
sures the correct statistics. The single particle density of
states g(m, m) can be that relevant to a small evaporating
black hole out of equilibrium. A similar microcanonical
description has been used to describe string theories at
high energy density [27,28], where a single massive string
state can carry almost all the energy and represent a
nonequilibrium configuration. In this way massive string
states can also lead to a negative specific heat [29]. How-
ever, in the case of a very large black hole studied in this
paper the canonical ensemble is valid because the limiting
Hawking temperature is still less by a factor of 1/z' from
the Hagedorn temperature above which thermodynamic
quantities can diverge.

IV. CONCLUSION

was introduced by the infinite wall of vacuum stress and
maximum acceleration. The entropy of the string excita-
tions was computed using the canonical ensemble at the
Hawking temperature and was finite because of the natu-
ral cutofF. The massive string contribution preserved the
relation that the entropy is proportional to the area of
the horizon divided by the cutofF squared. We found that
the string entropy agreed with the Bekenstein-Hawking
formula if a particular relationship existed between New-
ton's constant and the string tension, and then compared
this with similar relationships found in various string the-
ories. Finally we discussed the validity of the canonical
ensemble for evaporating black holes and massive string
states.

The basic point is that there is a region outside the
horizon of a black hole within which a string cannot re-
main stationary. Likewise, by the equivalence principle,
there is a region outside the horizon of Rindler space
within which a string cannot accelerate into. This sug-
gests that an efFective cutoff is introduced on the bound-
ary of a region slightly away from the horizon. This
can cut ofF the divergence in the single particle den-
sity of states and yield a finite answer for the entropy.
't Hooft's result that the brick wall cutoff should move
infinitely away from the horizon in a theory with infinite
numbers of degrees of &eedom is avoided in string theory
due to the infinite set of states of arbitrarily high mass.
Further studies using a fundamental description of the
string propagator [30], instead of the sum over modes
approach we have taken here, are necessary to place the
entropy calculation on a sound footing. In general, string
calculations have features like modular invariance which
are not obvious in sum over field theories and are im-
portant for a geometric understanding of the partition
function and entropy.

In this paper we have examined the arguments leading
to a maximum acceleration in string theory and an infi-
nite mall of stress a finite distance outside the horizon.
We multiplied the single massive particle density of states
of Refs. [1,6] by the number of string modes at a given
mass and summed over all masses to obtain a single string
density of states in Rindler space or about a very large
black hole. We found that a cutoff on the density of states
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