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We construct two new classes of exact solutions to string theory which are not of the standard

plane wave or gauged WZW type.

Many of these solutions have curvature singularities. The

first class includes the fundamental string solution, for which the string coupling vanishes near the
singularity. This suggests that the singularity may not be removed by quantum corrections. The

second class consists of hybrids of plane wave and gauged WZW solutions.

dimensional example in detail.

PACS number(s): 11.25.—w, 11.27.+d

I. INTRODUCTION

One of the main obstacles toward a better understand-
ing of string theory is the scarcity of exact classical so-
lutions. At the present time, only two classes of solu-
tions are known for the bosonic string. The first are
plane-wave-type backgrounds [1-4] which have a covari-
antly constant null vector, and the second are those corre-
sponding to gauged Wess-Zumino-Witten (WZW) mod-
els (see, e.g., [5,6]). [For the superstring, there is a third
class of solutions corresponding to (2,2) supersymmetric
models.]

There is a well-known ambiguity in the form of the clas-
sical string equations of motion. These equations are usu-
ally expressed as a power series in a’. The leading term
is unambiguous, but the form of the higher-order terms
can be altered by field redefinitions or, equivalently, by
choosing different “renormalization schemes.” For the
simplest plane wave solutions, this ambiguity is irrele-
vant since all the higher-order terms vanish identically.
For the gauged WZW solutions, in the familiar confor-
mal field theory (CFT) scheme there are o' corrections to
all orders [7-9], but there is evidence [10-12] that there
also exists a scheme where the leading-order solution is
exact. Given this ambiguity, to study string propagation
and scattering one needs to know more than the fact that
a particular background is exact in a certain scheme. One
also needs to identify explicitly the corresponding CFT.
This is known for the gauged WZW models, but not for
all the plane wave solutions. Nevertheless, some proper-
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We discuss a four-

ties of a solution can be determined from the information
about its exact form in some scheme.

Is it possible to go beyond these two classes of solu-
tions? Consider a family of backgrounds described by
a dilaton ¢(z) and a metric and antisymmetric tensor
characterized by a single function F(z):

ds? = F(z)dudv + dz;dz', By, = iF(z). (L.1)
Note that the two functions' F and ¢ depend only on
the transverse coordinates z*. For backgrounds of this

form, the leading-order equations of motion reduce to
(see Apendix A)

PF ' =20,F', ¢=¢o+bix'+1InF(z), (1.2)

where b; is a constant vector. Some of the solutions to
(1.2) have recently been shown to correspond to gauged
WZW models where the subgroup being gauged is nilpo-
tent [13]. It was argued that they should not receive
higher-order corrections in the CFT scheme. It is cur-
rently unknown whether all solutions to (1.2) can be ob-
tained from a gauged WZW model, but we believe this
to be unlikely. Nevertheless, we will show that there is
a scheme in which all of these solutions are exact and
receive no a' corrections. Since the equation for F~1 is
linear, linear combinations of these solutions yield new
exact solutions.

One of the most interesting solutions in this class is
the fundamental string (FS) [14], which has ;=0 and

M

F_1=1+;5_—5, D >4,

(1.3)
F'=1-Mlnr, D=4,

where 7?2 = z;2° and D is the number of spacetime di-
mensions. This solution describes the field outside of a
straight fundamental string located at » = 0. The metric
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(1.1) becomes degenerate at r = 0, and the curvature
diverges. One would therefore expect the higher-order
terms in the string equations to become important and
significantly modify the solution. However, it was re-
cently suggested [15] that this might not be the case for
the superstring. Some evidence based on supersymme-
try was presented that the F'S does not receive higher-
order a' corrections.! One consequence of our results is
that the FS is indeed an exact solution (in a particular
scheme) even for the bosonic string theory and thus, of
course, is a heterotic or superstring solution as well.

It is known that the FS in D > 4 is the extremal
limit of a two-parameter charged black string solution to
the leading-order equations with regular event horizon
[16,17]. The nonextremal black string receives higher-
order o' corrections. But in D = 3 a two-parameter
charged black string solution was constructed from a
gauged WZW model [18]. It is likely that there exists
a scheme in which this leading-order solution is exact
(this was shown to order o' in [11]). Its extremal limit
turns out the be the general solution to (1.2) in three
dimensions. This provides a perturbative check on the
general argument for the conformal invariance of these
backgrounds. In the original construction, the extremal
D = 3 black string was obtained by taking a certain limit
of a background representing a gauged WZW model. We
will show that this extremal solution can be obtained
directly as a particular gauged SL(2,R) x R/R WZW
model.

The fact that the FS (1.3) is an exact classical solu-
tion has implications for singularities in string theory.
We do not yet have a completely satisfactory definition
of a singularity in classical string theory. Geodesic in-
completeness, which is so useful in general relativity, is
clearly unsatisfactory as seen, e.g., by the example of orb-
ifolds. Even diverging curvature is not a sufficient condi-
tion since some solutions with curvature singularities are
known to be equivalent to nonsingular backgrounds. A
definition based on the motion of classical strings is no
better than geodesics, since null geodesics are included
in the motion of strings. It appears that one must define
a singularity in terms of the motion of quantum strings.
This is natural since the equations for the background
fields come from requiring that quantum strings are de-
scribed by a CFT. Thus a string singularity should be
a CFT which is ill behaved in some sense. For the sim-
plest plane wave solutions, one can study the propagation
of quantum strings explicitly and show that this is not

It was shown in [15] that corrections to the equations of
motion coming from specific (anomaly related) terms in the
effective action vanish on the FS background. However, their
argument is incomplete since the heterotic string effective ac-
tion also contains other terms (necessary for reproducing the
string S matrix) which were not considered in [15]. It may be
that the contributions of these other terms (taken in a specific
“supersymmetric” scheme) also vanish on the F'S background,
but this question deserves further investigation.
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well behaved when the wave becomes singular [2] (see
also [3]). So at least some classical singularities exist in
string theory.

We do not yet know if the CFT associated with the
FS is ill behaved due to the curvature singularity. If it
is, this may have a striking consequence. One usually
expects that quantum effects will be large near regions
of large curvature. But the string coupling is a dynam-
ical field e?, and for the FS solution e? — 0 near the
singularity. This is quite different from other familiar ex-
amples of classical solutions such as the two-dimensional
black hole [5] for which e? diverges at the singularity in
the leading-order metric. (If one just considers solutions
to the leading-order equations, one can obtain a large
class of singular backgrounds by starting with any reg-
ular solution with a symmetry having a fixed point and
applying a spacetime duality transformation [19]. In all
these examples, e? diverges at the singularity.) The fact
that e? — 0 for the F'S suggests that quantum loop cor-
rections will be suppressed and the solution will become
more classical near the singularity. If this could be es-
tablished, it would show that at least some singularities
remain even in quantum string theory.

The observation that all the leading-order solutions of
the form (1.1) are exact also has implications for space-
time duality. These solutions can be obtained by apply-
ing a leading-order duality transformation (with respect
to translations in u) to the plane wave metrics

ds? = dudv + K(z)du?® + dz'dz; (1.4)
with K = F~1, B,, =0, and ¢ = ¢ + b;z*. These solu-
tions are known to be exact. One can ask whether there
always exists a scheme in which the leading-order duality
is not modified by o’ corrections. It turns out that this
is not the case: The o’ modification [20] of the leading-
order duality is necessary in all the schemes if D > 3.
(A special scheme where duality is not modified exists in
D = 2; this is not surprising since as we shall see the
effective action is trivial in this case.) However, it is pos-
sible that the following slightly weaker statement is true:
Given an exact solution to string theory with a continu-
ous symmetry, the solution obtained by a leading-order
duality transformation is also exact in some scheme.

This conjecture does not require that duality itself be
exact since we allow the original solution and its dual
to be exact in different schemes. Some earlier evidence
for this came from the fact that the three-dimensional
black hole constructed from the SL(2,R) WZW model
[21] (which is exact) is dual to the three-dimensional
black string [18], and it was shown [11] that the first
a' correction to the black string metric can be removed
by a field redefinition. The fact that the leading-order
duals to the plane wave solutions (1.4) also turn out to
be exact is further support for this conjecture.

The method we will use to establish the conformal in-
variance of (1.1) also applies to a larger class of back-
grounds where the transverse space is curved. A similar
argument can be used to show the conformal invariance of
the plane wave metrics (1.4) with nonflat transverse part
(see also [4]). To obtain explicit solutions, one needs the
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“transverse” theory to be, e.g., a gauged WZW model.
In this way one obtains a “hybrid” of the plane wave and
gauged WZW solutions.

To illustrate this construction, we will discuss two ex-
amples. The smallest dimension for which the construc-
tion is nontrivial is 4. In this case we are able to resolve
a difficulty with the F'S in four dimensions. The FS (1.3)
in D = 4 differs from its higher-dimensional analogues in
that it has an extra singularity at a nonzero value of r.
We will find that the dual of the new solution we con-
struct can be viewed as a fundamental string in D = 4
which is asymptotically flat and has no additional sin-
gularities. We will also discuss a simple five-dimensional
example (which may also be interpreted as D = 4 het-
erotic string solution).

It is clear that when considering exact solutions, the
scheme dependence of the equations of motion, or ef-
fective action (EA) that reproduces them, plays an im-
portant role. We shall show that in D = 2 one can
actually represent the (G,B,¢) part of the EA only
by the leading-order term. In other words, all of the
higher-order o’ terms can be redefined away. In ret-
rospect this is not surprising for two reasons. First,
in D = 2, the metric-dilaton system has no dynami-
cal degrees of freedom and the only propagating mode
is a massless tachyon. So there are no real massive ex-
changes and hence no genuine o’ vertices in the EA. Sec-
ond, in D = 2 the most general leading-order classical
solution is the “black hole” [5,22]. This corresponds to
the SL(2,R)/U(1) coset, and it is known that there ex-
ists a scheme [10] where the leading-order solution is not
modified by higher-order corrections.

In D = 3 one cannot remove all the higher-order terms
since the (G, B,¢) system has one degree of freedom.
However, we will see that it is possible to choose a scheme
in which the higher-order terms depend only on deriva-
tives of the dilaton.

The plan of this paper is as follows. In Sec. II we intro-
duce the general models we wish to consider and derive
the conditions under which they are conformally invari-
ant to all orders in o’. In Sec. III we use these results to
explicitly construct two new solutions, one in four space-
time dimensions and the other in five. Section IV is de-
voted to a discussion of the field redefinition ambiguity
and the structure of the effective action in low dimen-
sions. In Sec. V we will show that solutions to (1.2) in
D = 3 correspond to a gauged WZW model. Section VI
discusses the relation between solutions (in particular,
the ones corresponding to gauged WZW models) in dif-
ferent schemes. Some concluding remarks are made in
Sec. VII. The appendixes contain some technical details
and a further generalization of our models.

II. PATH INTEGRAL ARGUMENT

FOR CONFORMAL INVARIANCE

A. Basic models

We wish to study strings propagating in the back-
ground (1.1) with a curved transverse space. This prop-

agation is described by the ¢ model
Lp = F(z)0udv + (Gi; + Bi;)(x)9z'8z7 + o/ Re(z) ,
(2.1)

where R is related to the world sheet metric v and its
scalar curvature by R = %ﬁR(z). We will refer to this
model as the “F model.” We will also study the following
generalization of the plane waves:

Lk = 0udv + K (u,z)0udu + (Gij + Bi;)(z)0z 8z’
+a'Re(u,z) (2.2)

which we will call the “K model.” When K and ¢ are
independent of u, these two models are simply related by
leading-order duality: The dual of (2.2) with respect to
uis (2.1) with F = KL

The F model has a large symmetry group. It is in-
variant under the three Poincaré transformations in the
u,v plane. Moreover, it is invariant under the infinite-
dimensional symmetry u — u+ f(7+0), v > v+h(r—0);
i.e., it has two chiral currents. In general, the K model
has only one null Killing vector ! = 8/0v, but it is covari-
antly constant. The special case where ¢ depends only
on u, and

G,‘j = 5,'_.,', Bij =0, K('u.,a:) = ’wij(u):ti:l:j (2.3)

actually has translation invariance in all transverse di-
rections. It can be put into the form Lx = dudv +
Gij(u)0z'0z’. The general K model is also invariant
under v = v + h(7 — 0); i.e., it has one chiral current.

The fact that the K model has a covariantly constant
null vector can be used to give a simple geometrical argu-
ment that leading-order solutions are exact in the special
case when G;; = §;;, B;; = 0, and ¢ depends only on u
[2]. This is because the curvature contains two powers
of the constant null vector ! and derivatives of ¢ are also
proportional to [. One can thus show that all higher-
order terms in the equations of motion vanish identically.
Only the leading-order equations turn out to be nontriv-
ial. Can one extend this argument to the case (2.2) when
the transverse space is nontrivial? Clearly, the curvature
of the transverse space can now appear at all orders of
o'. Let us suppose that the transverse space is known
to be an exact solution in some scheme. Then the model
(2.2) will be conformal with K=0. But the curvature of
the metric with K #0 is equal to the curvature of the
metric with K = 0 plus a term of the form (VVK)IL.
Unfortunately, this can result in nontrivial corrections to
the equations of motion at each order of a’. These cor-
rections will be linear in K, and so one learns that the
exact equation for K will also be linear. But from this
argument, one cannot conclude that there is a scheme in
which the leading-order solution for K is also exact. To
establish this, one needs to explicitly study the confor-
mal invariance conditions from the path integral, which
we now proceed to do.
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B. Generating functional and conformal invariance
conditions

We shall study the conditions of conformal invariance
of the above models by directly looking at the path in-
tegral representation for the generating functional. To
obtain the complete set of Weyl invariance equations, we
need to introduce sources for the o-model fields and find
out when the generating functional on a curved world
sheet does not depend on the conformal factor of the
world sheet metric. This is equivalent to the condition
of the vanishing of the trace of the stress-energy tensor
operator.

J

To avoid duplication, we will start by considering a
more general o model which includes both the F' and the
K models:?

Lrg = F(x)0udv + K (z,u)0udu

+(Gij + Bi;)(x)02* 0z + o/ Rep(u, ) . (2.4)
After proceeding as far as we can in this general the-
ory, we will specialize to the two cases of interest, the K
model (F = 1) and the F model® [K =0, ¢ = ¢(z)]. A
slight generalization of the F' model which preserves its
conformal invariance is discussed in Appendix B.

Let us define the generating functional

exp(—WI[U,V, X,4]) = /[du dv dz] exp (—;L— /d2z[LFK(u,v,:v,'y) +Vadu+Uddv + Xagm]) , (2.5)

!

where U, V, X are external sources on the world sheet with metric y,q (which is taken in the conformal gauge). Since
v only appears linearly in the action, one can do the integration over it explicitly (by rotating v — iv), obtaining a

é-function factor

exp(—W[U,V, X,~]) = /[dud:c]&(é[F(a:)Bu — 9U]) exp (—ﬂ_il /dzz

x[K (z,u)0udu + VOBu + (Gij + Bi;)(x)0z 8z’ + o' Rp(u,x) + Xagx]) . (2.6)

The & function now allows us to do the integration over u to obtain

exp(—W[U,V, X,~]) = /[dz]ﬂ[m,'y] exp( —1—/d22:

o'

x[(Gi; + Bi;)(2)07'0z7 + K (z,us)0u,Ou, + VOOu. + o/ R(us,z) + Xc')gz]) , (2.7)

where u, is defined by (f is an arbitrary holomorphic function)

F(z)u, = 8U + f(z) = 8U" . (2.8)

The determinant factor €2 is defined as follows. If the measure for the (u,v) fields is given by

(Su, v) = / 422 /7Fo(2)du bv | (2.9)

then

Qz,v] = (detQ)™* = /[dudv] exp [—1—1_% /dzzF(:c)auév]

- / [du dv] exp [—%a,(u, Qv)] ,

1

(2.10)

d(F¥) .

(2.11)

— —_\/’VFO

2Low-energy solutions of this form have been discussed in, e.g., [23].

*By adding a multiple of u to v, one can shift K by a multiple of F. So the theory (2.4) with K = bF (b constant) is also
equivalent to the F model. Note also that in the case when K does not depend on u, setting u = y1 + y2, v = y1 + qy2, and
applying a duality transformation in the y direction we find (u,v — u',v’) F' = —F/(K + ¢F), K' = -1/(K + qF).
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The crucial point is that In detQ can be computed explicitly and has a local form. The general expression* for detQ

was found (in heat kernel regularization) in [24]:

= _mao=2L [a 2 F — L [ r@g-2g®
Al=-lnQ= 81r/d 2y/YA*(In F lnF°)+487r/R V™*R
—T;—; /dzz(alnFélnF +0ln Fy8In Fy + 481n F §1n Fy)
1 2 (2)
~3an d’z,/AR*(2InF + In Fy) , (2.12)
[
where A is an UV cutoff. metric G;;(z) and dilaton
As usual, the form of Indet@ in (2.12) is not unam- , , , L
biguous, being dependent on a regularization and choice Gy =Gy —ad Xy, ¢ =¢-3InF,
of measure, i.e., is defined modulo local dimension 2 coun- (2.15)

terterms. What is unambiguous is the locality property
of (2.12).

The definition of the determinant, i.e., the choice of Fj
and regularization, must be determined by the conditions
on the whole (z,u,v) theory (2.4). For example, if we use
the heat kernel regularization and demand target space
covariance in the (z,u,v) space, we should set Fy = F.®
This is because the covariant functional measure for a
o model with the target space metric G, is defined by
(6z,6x') = [d?2,/4G,,(z)éz*sz". Then [24] [we do
not indicate explicitly the free-theory vy-dependent term
in (2.12)]

__ 1 [ 5 _1 [ )
Al = 27r/d 20InFlnF 87r/d z/AR*¥' InF

(2.13)

or, equivalently,

Al = _ZL /dzz(a,- InF8;nFdz'dz’ + R InF) .
™

(2.14)

The two terms in (2.14) lead to the local shifts of the

%A similar expression was also given in [25]. The reason
why this determinant is given by a local expression can be
understood in a simple way by drawing an analogy with a
complex scalar coupled to a U(1) gauge field: L = (8¢ +
iBy)(dy* — iBy*). If we set ' = v/Fu and v’ = v/Fo, then
the Lagrangian in (2.10) takes the form L = (8u'+ Bu)(8v’ —
Bv'), B=—38InF, B= 18InF, so that in the present case
the gauge field potential is purely transversal, ¥ = 0B—0B =
881n F. The logarithm of the determinant is proportional to
that of a two-dimensional Dirac fermion coupled to this gauge
field, and the standard Schwinger-type term in the effective
action ~ [ F(88)™'F is equal to JInFO8InF.

5For generic choice of measure and/or regularization, one
may need to make a noncovariant redefinition of the dilaton
field (¢ — ¢ + a IndetG) in order to restore the target space
covariance of the model [26].

X,'j = %8,'1111?6]' InF .

It should be emphasized that the way we compute the
path integral (2.5) (by directly integrating over u, v) does
not manifestly preserve the covariance in the (z,u,v)
space. One usually employs the normal coordinate ex-
pansion in order to maintain the covariance of perturba-
tion theory. The use of (2.12) with Fy = F in general is
not sufficient to guarantee the target space covariance of
the full theory.® That means one may need to add extra
local 8z 8z noncovariant counterterms in order to restore
the target space covariance; i.e., X;; in (2.15) may con-
tain extra local terms constructed out of derivatives of ¢
and F.7

Returning to functional integral (2.7), we see that since
u, is a nonlocal functional of z, the conditions of Weyl
invariance of the resulting theory for &* are hard to deter-
mine in a closed form. We can, however, proceed further
in our two special cases of interest: (i) F'=1 and (ii) K =0,

¢ = ¢(z).

C. K model

In the K model (2.2), F = Fy = 1 so that the operator
Q [Eq. (2.11)] is trivial and thus u, = U(z) is z inde-
pendent (we absorb an arbitrary harmonic zero mode of
Q in U). The resulting path integral is

SThe covariance in the transverse z space is of course pre-
served under proper choice of regularization and/or measure
in the z theory.

"One may question why the addition of such counterterms
is legitimate given that lndetQ in (2.12) does not contain
divergences of such kind. The point, however, is that extra
divergences may be present in the general (z,u,v) theory,
which should thus admit the corresponding freedom of local
coupling redefinitions.
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exp(_W[U, ‘/’ X1 ’Y])

— Zo(y) [lda]exp (—5 [ #:l(Gs + B)@poatdrt

+T(z,U) + o'Ré(U,z) + X80z + V85U]) , (2.16)

T(z,U) = K(z,U)dU 8U . (2.17)

Now it is easy to formulate the conditions of the Weyl
invariance of this theory: (1) The transverse x model
(Gij, Bij, ¢) must be Weyl invariant by itself (i.e., for
U=0); (2) since the interaction potential T is equivalent
(in what concerns its quantum field = dependence) to a
scalar “tachyonic” term, it should solve the “tachyonic”
Weyl anomaly equation which is linear (to all orders in
perturbation theory in o) in T [27]. Since T is propor-
tional to K, we get

—wT +8'¢ ;T +282¢0U 8U = 0

= —31V2K +0(d!) + 8¢ 8, K +202¢ =0 . (2.18)
Here w is the scalar anomalous dimension operator which
in general contains (G;j, B;j)-dependent corrections to
all orders in o/, and only a few leading o'™ terms in it
are known explicitly (for a review, see [10]).% The dila-
tonic terms appear due to the £ and U dependence of the
dilaton.® Note also that in contrast to the usual tachyonic
coupling, here T has canonical dimension 2, and so there
is no —2 (tachyonic mass) term in this equation. Equa-
tion (2.18) can also be interpreted as the uu component
of the metric 8 function of the original D-dimensional o
model (see [4]).

Given an exact string solution (G;;, Bij, ¢), in general,
we would still be unable to determine the exact expres-
sion for K because of the unknown higher-order terms
in (2.18). There are, however, special cases when this is
possible. An obvious one is that of the flat transverse
space with the dilaton being linear in the coordinate z:

Gij = 6,-,~, B,‘j =0, (}5 = ¢o(u) + bi.'l,'i . (2.19)

Then the exact equation for K [Eq. (2.18)] becomes

~10'8;K +b'9;K +202¢ =0 (2-20)

and can be readily solved. For b;=0 we obtain the pre-

8Note that we have assumed that the path integral is com-
puted in the “minimal subtraction” scheme where higher-
order tadpoles do not produce contributions to the Weyl
anomaly so that the operator w does not contain higher-
derivative terms in the flat space limit.

?Computing the variation over the conformal factor of v, one
finds the “classical” anomaly term ~ 98¢, which (after use
of classical equations of motion) gives V;V;¢ and V,V,¢ =
8¢ + %G‘j 8:K9;¢ in the relevant terms in the operator of
the trace of the stress tensor.
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viously discussed plane-wave-type solutions [1-4]. The
special case where

K:l-l—l r? = gt

D=1’ ¢ = const

(2.21)
is dual to the FS background [17] and describes a string
boosted to the speed of light. For b; # 0 one obtains
a generalization of the plane-wave-type solutions with a
linear dilaton.

We can obtain more interesting new exact solutions
when the CFT behind the “transverse” space solution
(Gij, Bij, ¢) is nontrivial, but still known explicitly. In
fact, in that case the structure of the “tachyonic” oper-
ator w is determined by the zero mode part of the CFT
Hamiltonian or Lo operator. Fixing a particular scheme
(e.g., the CFT one where Lo has the standard Klein-
Gordon form with the dilaton term), we are then able, in
principle, to establish the form of the background fields
(Gij, Bij, ) and K. This produces a hybrid of a gauged
WZW and plane wave solution. Some examples in four
and five dimensions will be discussed in Sec. IIL.

D. F model

Let us now turn to the second case when K=0 and
¢ = ¢(z). In that case the substitution of u, in (2.8)
into the action in (2.7) gives

exp(—W[U,V, X,7])

- / [dm]exp(——wil / d22((G., + By;)(z)0z' Bz

+T(z,U,V) +a'R¢'(z) + Xaéz]) , (2.22)

T(z,U,V) = —F~Y()dU’ 8V , (2.23)

where we have used (2.14) and G’ and ¢’ were defined in
(2.15). What we have obtained is a o model for z¢ with
the “massless” couplings (G', B, ¢') and the “tachyonic”
coupling T. The dependence of T on the background
sources U,V only implies that as in the K model [(2.16)
and (2.17)], T has canonical dimension 0, not 2. The con-
dition of Weyl invariance is thus that (G', B,¢’) should
represent a Weyl-invariant theory and T ~ F~! should
satisfy again Eq. (2.18) [now with (G', B,¢’) as back-
ground fields):

T+ 8¢ 8T =0

- —1V2F-140(a') + 8'¢' 8:F 1 = 0. (2.24)

As mentioned above, this equation can be written down
explicitly to all orders in o’ only when (G', B, ') corre-
sponds to a known CFT.

To summarize, given a conformal “transverse” theory
(G',B’,¢') and F satisfying (2.24), we find that for the
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particular choice of couplings in (2.15) the F model with

Gij =Gy + 300, InFo;InF, ¢=¢" + ;InF,

(2.25)
Bi; = Bj; ,
represents an exact string solution (in a particular scheme
the choice of which is implicit in the definition of the path
integral we were discussing). Since the transverse theory
is, in general, defined modulo local coupling redefinitions,
we may absorb the a’d;In F §; In F term in (2.25) into a
redefinition of G7; (F is an extra scalar from the point
of view of the “transverse” theory). We may also try
to interpret this redefinition as a restriction of a field
redefinition in the full (u,v,z) theory.

As we have already mentioned above, the crucial point
in our path integral argument is the locality of the re-
lation between G;; and Gj;. The precise form of this
relation would be fixed if we carry out the argument
using some fixed explicit regularization of the whole
(z,u,v) theory. If such a regularization does not man-
ifestly preserve the target space covariance, we would
need to make local noncovariant redefinitions of the o-
model couplings to restore the covariance in the final
expressions.!? The locality of (2.15) is sufficient in order
to be able to claim that there exists a scheme where the
F model represents an exact string solution. We can use
the freedom of adding local noncovariant counterterms
to X;; in (2.15) to put G;; — G}; in a manifestly covari-
ant background-independent form which is the closest
analogue!?! of (2.25),

G, = G;w +2a'8,40,¢ , (2.26)
or simply to remove X;; completely,
Gu = G;w . (2.27)

This can then be considered as a transformation to a
leading-order scheme where the transverse metric is given
by the o'-independent G7;.

Let us now consider some examples starting again with
the simplest case

Gi; =8ij, Bij =0, ¢ =¢o+biz’, ¢o,b;i = const
(2.28)

®Note that from the point of correspondence with field re-
definitions in the effective action, the latter ones need not
necessarily be covariant in order to preserve the S matrix.
The assumption of covariance is an extra condition that re-
stricts the class of effective actions and field redefinitions one
wishes to consider. From the quantum two-dimensional (2D)
o-model point of view, target space covariance is an extra
global symmetry in the space of 2D fields and couplings that
needs special effort (special choice of bare couplings) to be
preserved in the full quantum 2D theory.

'1Similar redefinitions of the metric appeared in the context
of gauged WZW o models, relating a “standard” scheme to a
scheme where the leading-order solution is exact [10,11] (see
also Sec. VI).
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or, in terms of the original fields in the leading-order
scheme (2.27),

G,’j = ‘Sijv ¢ = ¢o + biil:i + %lnF . (229)
In this scheme the exact form of the equation for the
function F' is simply

—19°F 1+ b9, F 1 =0; (2.30)

i.e., the F' model
Lp = F(z)0udv + 8z*0z; + o/R(¢o + biz* + L InF) |
(2.31)

with F satisfying (2.30), is Weyl invariant to all orders.!?
In this scheme the leading-order duality is exact since the
leading-order dual to (2.31) is the K model

Ly = Oudv + F~1(z)0z'dz; + o'R(¢o + biz*) , (2.32)

which represents an exact string solution if F' solves
(2.30) [cf. (2.20) with ¢ = 0]. In particular, we conclude
that there exists a scheme in which the FS solution

Fl=1+ D >4,

rD—4’
(2.33)
F'=1—-MlInr, D=4, r?=z;z*

is a classical string solution to all orders in «'.

The conclusion about the existence of a scheme where
the F' model (2.31) represents an exact string solution is
consistent with the result of [13] that the particular F'
model

w
F“1:Z€iea"':, ¢_—_¢0+p.l'+%h]F (234)
i=1

(where the constants ¢; take values 0 or +1, o; are sim-
ple roots of the algebra of a maximally noncompact Lie
group G of rank N = D — 2, and p = 3 > 1. a, is half
of the sum of all positive roots) can be obtained from a
G/H gauged WZW model. H is a nilpotent subgroup
of G generated by N — 1 simple roots (this condition on
H is needed to get models with one time direction). For
example, the D=4 models are obtained for each of the
rank-2 maximally noncompact groups [SL(3), SO(2,2),
etc.]; for ¢, = 1, F~1 = e™'® 4 ¢%2'® ywith the classical
string propagation being determined by the Toda equa-

12The F model (2.31) considered on a flat 2D background is
thus UV finite on shell. It may be possible to prove this fact in
a more direct way (without the need for an extra redefinition
of the metric) using the manifestly covariant normal coordi-
nate expansion in a way similar to how it was done for the
WZW model in [28]. One would then still have to show that
there exists a dilaton such that the condition of Weyl invari-
ance (which is stronger than scale invariance [29]) is satisfied
as well.
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tion. As argued in [13], this background does not receive
o' corrections in the CFT scheme: Since the gauged sub-
group is nilpotent, the action or Lo operator of the coset
model is not modified by 1/k corrections except for the
standard overall rescaling k=! — (k + 3cg)™! (see also
Sec. VI).

E. Remarks

We have discussed the F' model from the point of view
of a perturbative path integral approach. One may try
to give an alternative proof of its conformal invariance
using the existence of the two chiral currents J, = F Ou,
J, = F8v to construct directly the conformal stress-
energy tensor. At first sight, it appears that this idea
should not work since in contrast to the case of the WZW
model here we do not have enough chiral currents. The z*
currents do not look chiral since the z* equation of motion
is not free and has an interaction potential proportional
to 8;F ! [for example, this is the Toda equation in the
case of the models in (2.34)]:

80z; = —10,F Y (z)Ju(2)Ju(2) . (2.35)
However, extra chiral currents may still exist. This is
illustrated by the example of the particular D = 3 F
model with F = e~2%% which is equivalent (see Sec. V)
to the SL(2,R) WZW model and which thus must have
extra chiral currents in addition to J, and J,. In fact, if
we define

Jr =08z + Fvdu = 8z + vy,

(2.36)
Jz =08z + Fudv = 8z + uJ, ,
then the classical equations imply
8J,=0, 8J,=0, 8J,=0, 8J,=0, (2.37)

where we have used the fact that F is a pure exponential.
Extra chiral currents must also exist for the generic D=3
F model since, as we shall show in Sec. V, it is equiva-
lent to a gauged SL(2,R) x R/R WZW model, as well as
for the models (2.34), which can also be obtained from
particular gauged WZW models [13].13

Another comment we would like to make is about
possible supersymmetric generalizations. The model
(2.1) has an obvious n = 1 supersymmetric version
with the fields u,v,z* replaced by n = 1 superfields
(D =2 _092):

56 8z

/ d?z d*0[F(2)Da Db + (Gi; + Bi;)(8)D2? Dz

+a'Ré(2)] . (2.38)

!3The chiral currents in o models obtained by integrating out
the 2D gauge field in a gauged WZW model should be non-
local when expressed directly in terms of the o-model fields.

It would be interesting to formulate conditions on the
functions of the F' model under which (2.1) admits n > 1
generalizations. Such extended supersymmetric versions
exist for the special F' models which correspond to gauged
WZW models.

As for generic F' models, we can try to draw an analogy
with the case of the n=1 supersymmetric gauged WZW
theories. In supersymmetric WZW models there is no
nontrivial shift of £ coming from the measure since the
Jacobian (§ and §' are superfields of opposite statistics)

[astasnexe {— [0+ 14, 1)@'} (2.39)

is trivial [9]: The fermionic and bosonic A-dependent
contributions cancel out. This is the reason why the cor-
responding o-model couplings receive no o' corrections
[30,8,9]. A similar conclusion is true for the n = 1 super-
generalization of the determinant factor Q in (2.10):

Qz,v] = / [di do] exp [— / d?z d?0F(2)Da Do
(2.40)

Since F(2)DaDi = (D + f)a'(D + ), f = -—%D InF,
f= —%'D InF, it is natural to expect that this deter-
minant factor contains only the dilaton contribution and
not the derivative ff term when defined in a supersym-
metric way. Then the metric in (2.15) does not have the
o' correction. This is certainly true for the particular F
models [D = 3 and models in (2.34)] which are related
to gauged WZW theories.

III. NEW EXACT SOLUTIONS
IN FIVE AND FOUR DIMENSIONS

We showed in the previous section that one could con-
struct new exact solutions which were a hybrid of the
gauged WZW models and the plane waves by using a
gauged WZW model to describe the transverse space and
adding du dv+ K du? to the metric. The function K must
solve the scalar “tachyonic” equation (with zero mass) in
the transverse space. For a gauged WZW model, there
exists a CFT scheme where the tachyonic equation is sim-
ple (given by the zero mode part of the CFT Hamiltonian
or Lo) while G, B, and ¢ may receive o’ corrections. By
solving this simple equation and using the known exact
form of G, B, and ¢, one obtains new exact solutions.

A. Five dimensions

The simplest example of this construction starts with
the SU(2) WZW model. In this case the dilaton is con-
stant, the metric is the standard round metric on 53,

ds® = d¢? +sin? £dQ, , (3.1)

and H;ji = €;ji is the volume form. In the CFT scheme,
the metric and antisymmetric tensor have only a con-
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stant overall rescaling and the relevant equation for K is
just AK = 0, where A is the Laplacian on $3. Assuming
SO(3) symmetry, the general solution is K = a + m cot€.
The constants a and m can be absorbed into a redefini-
tion of u and v, and so one obtains the new exact solution
ds? = dudv + coté du® + d€? + sin® £dQ, | (3.2)

where H;ji = €;j and ¢=const as before. This solution
has singularities at the poles of the §3. To interpret these
singularities, it is useful to consider the dual F model.

Starting with the general solution for K and dualizing
with respect to u yields

ds* = (a + mcotf) 'dudv + d¢? + sin®£dQ, . (3.3)
Keeping the constants a and m is necessary to obtain the
general solution, since they correspond to the freedom to
dualize with respect to the symmetry which is a linear
combination of translations of v and v. In the F model
it is not possible to remove both a and m by redefining
u and v, but clearly a can be set to be either =1 or 0 by
rescaling one of the coordinates. The dual of (3.2) is the
special case of (3.3):

ds® = tané dudv + d€? + sin? £dSQ, . (3.4)
Since u in (3.2) is timelike on one hemisphere and space-
like on the other and so is null at the equator, the dual
with respect to v [Eq. (3.4)] has an additional singu-
larity there. It still has singularities at the poles, but
in a neighborhood of these singularities, the solution ap-
proaches the five-dimensional F'S solution [see (1.3)]

T

ds® = (3.5)

Mdudv +dr? +r%dQ, .

Thus, even though the transverse space is curved, the
singularities introduced by adding an SO(3) symmetric
K in (3.2) are just like the one in the background dual to
the F'S. This is not surprising since locally the transverse
space is, of course, flat.

B. Four dimensions

To obtain a four-dimensional solution, one must
start with a two-dimensional conformal o model.
Essentially, the only nontrivial possibility is the
SL(2,R)/U(1) gauged WZW model which describes the
two-dimensional Euclidean black hole. As discussed
above, to construct this new solution we must use all
the zero mode information provided by the SL(2,R)/U(1)
coset: the exact metric and dilaton and the form of the
tachyon equation. This will give us the all-order form of
all the functions in the D = 4 o model (2.2). The solu-
tion constructed in this way will be the generic D=4 K
model.

Let us first review what is known about the exact back-
ground fields of the SL(2,R)/U(1) model in the CFT
scheme [7]. The metric and dilaton are given by

2
ds® = Gyjdaide? = dz® + ——%deﬂ . (36)
1 — ptanh®bx

¢ = ¢o — In coshbz — 1 In(1 — ptanh®bz) (3.7)

where the parameters b and p are related by

_ 2 n2 1
p - k’ a b - k _ 2 ]

(3.8)

3k
D—-26+6a'b*>=-—--1-26=0, D=2.
k—2
Since @ must be periodic, it is convenient to introduce
the shifted dilaton
¢ =2¢ — 3IndetG . (3.9)
The physical coupling in this case is exp(%cp), which is
invariant under the leading-order duality transformation.
For the above solution, the shifted dilaton is simply

¢ = o — Insinh2bzx . (3.10)

Since in the CFT scheme the tachyonic equation has
the standard uncorrected form, the function K (z) must
satisfy [see Eq. (2.18); here ¢ is u independent]

_ 1 s ~26 i g,
2\/56_2458,(\/@3 G9;)K
=0. (3.11)

~1V?K + 0'¢9,K = —

Observing that the measure factor is VG exp(—2¢) =
cosinh2r and assuming that K depends only on = and
not on @, we find that the solution of (3.11) is simply

K = a+ mlIntanhbz . (3.12)

The constants a,m can again be absorbed into a redef-
inition of u and v, so that the full exact D = 4 metric

isl4

tanh?bz

——a—dt®,
1 — ptanh®bzx

ds? = dudv + In tanhbz du® + dz? +

(3.13)

while the dilaton is unchanged. This metric is asymp-
totically flat, being a product of D = 2 Minkowski space
with a cylinder at infinity. Note that now the condition
on b is different than in the D = 2 solution since there
are two extra dimensions

3k

—— —25=0.
k-2

4 —26+6a'b? = (3.14)

“We can generalize this solution by introducing a wu-
dependent dilaton. Then K will get an extra piece ~ z?
and will grow at large z as in the plane wave case.
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Remarkably, the solution for K [Eq. (3.12)] is the same
in the leading-order scheme where the metric and dila-
ton do not receive a’ corrections. The point is that the
tachyon operator remains the same differential operator;
it is only its expression in terms of the new G, ¢ that
changes. Thus, in the leading-order scheme we get the
exact D=4 solution

ds? = dudv + Intanhbz du? + dz? + tanhZbz d6? ,
(3.15)

¢ = ¢o — Incoshbz, ¢ = o — Insinh2bz .

In addition to the covariantly constant null vector d/dv,
this solution has two isometries corresponding to shifts
of u and 6. Hence we can consider two different types of
duals. Dualizing with respect to 6 yields

ds® = dudv + In tanhbz du? + dz? + coth®bz d6? ,
(3.16)
¢ = ¢o — Insinhbz, ¢ = o — Insinh2bx .
For the two-dimensional Euclidean black hole, this du-
ality can be viewed as a result of a coordinate shift
bz — bz + im/2, under which the solution remains real.
This is no longer the case for the four-dimensional solu-
tion (3.15) since G, is unchanged under this duality.
To obtain the dual with respect to u, we again need to
start with the general solution for K [Eq. (3.12)]:

ds? = F(z)dudv + dz? + tanh®bz d6? ,
By, = 1F(z), ¢ =¢o—Incoshbz + ;InF,
F™!=K =a+mln tanhbz .

(3.17)

In contrast with the Euclidean D = 2 black hole, the
above D = 4 K- and F-model metrics in (3.15) and (3.17)
have curvature singularities at z=0. The F model (3.17)
may have an additional curvature singularity at nonzero
= depending on the parameters a and m. Let us choose
a=1,m=—-M (M > 0) so that these additional singu-
larities are absent. We thus find

ds® = (1 — M Intanhbz) " 'dudv + dz? + tanh®bz d§? ,
By, = (1 — MIntanhbz)™?, (3.18)
¢ = ¢o — In coshbz — 1 In(1 — M In tanhbz)

The singularity at the origin of this solution is exactly of
the same type that appears in the FS solution [see (1.3)]:
In D=4 we have F~! = 1 -~ M Inr — —M Inr near
r = 0, while here F~! = 1 — M Intanhbz - —M Inbz
near £ = 0. As in the five-dimensional example, the F
model (3.18) is completely equivalent to the fundamental
string near!® z = 0:

z—-0: ds®* = (—M lnbz) ‘dudv + dz? + (bx)%d6? .
(3.19)

'5The reason why the two solutions agree is that near
z = 0 the dilaton is constant and thus the equation for F,
—1V?F! + 8'¢8; F! = 0, takes its FS form V2F~! = 0.
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This behavior near x=0 would be the same if we had
started with the metric (3.13) in the CFT scheme.

Moreover, the above F model (3.18) can be viewed
as an improved version of the FS solution in four di-
mensions. In D = 4, the FS is given by (1.1) with
F~! =1— M Inr. In addition to the usual singularity
at 7 = 0, there is another singularity outside the string
at nonzero r. The solution we have just constructed
[Eq. (3.18)] has the same singularity at the origin (and
hence can be viewed as the field outside a fundamental
string), but is regular elsewhere and even asymptotically
flat. The original FS can be recovered by taking the
limit & — 0, which is consistent, since the central charge
condition is now imposed only at the level of the higher-
dimensional solution (and can be satisfied, e.g., by adding
22 extra free degrees of freedom).

IV. FIELD REDEFINITION AMBIGUITY
AND STRUCTURE OF THE EFFECTIVE
ACTION IN D=2 AND D=3

The aim of this section is to discuss the general struc-
ture of the tree-level string theory effective action (EA),
emphasizing a possibility to use the field redefinition free-
dom to put higher-order a'® corrections in the simplest
form. In particular, we shall show that the EA can be
chosen in such a form (a “scheme”) that all &’ corrections
vanish once we specialize to the case of a D = 2 back-
ground. In such a scheme the D = 2 metric-dilaton EA
is thus known explicitly, i.e., is given by the leading-order
terms. There also exists a scheme in which the D = 3
limit of the EA has all o’ corrections depending only on
the derivatives of the dilaton, but not on the curvature
or antisymmetric tensor.

A. Scheme dependence of the effective action

Let us first recall a few basic facts about the string ef-
fective action [31,32]. Given a tree-level string S matrix
(in D = 26), we can try to reproduce its massless sector
by a local covariant field theory action S(G, B, ¢) for the
metric, antisymmetric tensor, and dilaton. Subtracting
the massless exchanges from the string scattering ampli-
tudes and expanding the massive ones in powers of o’
gives an infinite series of terms in S of all orders in o'.

The form of such action is not unique: a class of ac-
tions related by field redefinitions which are local, co-
variant, background-independent, power series in o’ (de-
pending on dilaton only through its derivatives not to
mix different orders of string loop perturbation theory)
will correspond to the same string S matrix. Given
some representative in a class of equivalent EA’s, we refer
to other equivalent actions as corresponding to different
“schemes.” The reason for this terminology is that the
extremality conditions for the effective action are equiva-
lent to the conditions of conformal invariance of the o
model representing the string action in a background
[33,34] and the related ambiguity in the o-model Weyl
anomaly coefficients or “g3 functions” can be interpreted
as being a consequence of different choices of a renormal-
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ization scheme [35]. This implies that some coefficients
of the a'™ terms in the EA will be unambiguous (being
fixed by the string S matrix), while many others will be
“scheme dependent.”

Though one possible way of determining the EA is to
start with perturbative massless string scattering ampli-
tudes on a flat D = 26 background, S must actually
be background independent.!® In particular, its unam-
biguous coefficients are universal (e.g., they do not de-
pendent on the dimension D). This is implied by the
equivalence between the effective equations of motion and
the string o-model Weyl invariance conditions (which
are background independent). To make this equiva-
lence precise in any dimension D, we need only to add
to the EA one D-dependent (“central charge”) term'”
~ [dPz/G exp(—2¢)(D — 26).

Given such a background-independent EA

3a’

S = /dDa:\/ae'zd’{ XD —26) [R + 4(8,0)?

— 15 (Hun)?] +0(a’)} : (4.1)

it would be useful to choose a scheme (i.e., the values
of ambiguous coefficients) in which S has the simplest
possible form.!® For example, the correspondence with
the Weyl anomaly coefficients of a string ¢ model im-
plies that there exists a scheme in which (4.1) does not
contain other higher-order dilatonic terms. This follows
also from the general argument [36] based on the path
integral representation for the EA [32] and was checked
directly at the o' order [37,38] by comparing with the
string S matrix. We now show that in three dimensions
one can do just the opposite, i.e., have only dilaton terms
as higher-order corrections.

18 After all, we expect the EA to be a result of solving for the
“massive modes” in a hypothetical background-independent
string field theory action.

"There is actually a subtlety related to this term: It is not
clear that one can have a consistent a’-perturbation theory if
one is expanding near a vacuum with D #26. For example,
the linear dilaton background will involve a parameter of order
1/a’. This problem can be formally avoided by assuming that
the central charge condition is imposed only at the very end
and/or extra degrees of freedom are added to make total D
equal (or very close) to 26.

18 As usual in field theory, one is trying to fix the freedom of
local field redefinitions in such a way that to have the simplest
possible action reproducing a given S matrix. For example,
one would prefer to reproduce the graviton scattering ampli-
tudes of the Einstein theory by the Einstein action, and not
by a complicated action [ d*zv/G'R(G’), G}, = Guu+a'Ry,,
which contains all powers of the curvature.
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B. Effective action in D < 3

It is possible to arrive at a more definitive conclusion
about a simplest possible scheme by specializing to the
low-dimensional cases of D = 2 and 3. More precisely, we
would like to find an EA (defined for general D) such that
its a'™ terms take a simple form in the limit D — 2, 3.

Given that (4.1) is background independent (in partic-
ular, its higher-order coefficients do not depend on D), we
are free to take (G, B) in (4.1) to correspond to a generic
D = 2 or 3 background. Since the basic fields (G, B)
are second-rank tensors, higher-order terms which involve
“irreducible” contractions of tensors of rank greater than
2 cannot be altered by field redefinitions. But in D < 3
the Riemann tensor can be expressed in terms of the Ricci
tensor, and H,,» = €u,2H. Thus all possible covariant
structures in the EA will have the “reducible” form of
products of scalars, vectors, or at most second-rank ten-
sors.

This is a necessary condition for a higher-order term
to be removed by a field redefinition, but it is not suffi-
cient. It has been shown [39] that some combinations of
a priori ambiguous coefficients in the EA are actually re-
definition invariant (unambiguous) and thus are uniquely
determined by the string S matrix. In fact, it is easy to
show that one cannot find a scheme in which there is no
a' term in the D=3 EA. Suppose H=0 for simplicity.
Then, in the standard scheme, the o’ correction to the
bosonic string EA is simply

S1(G,B, ¢) =ao/dDa: Ge **(Rpuuer)? (4.2)
In three dimensions, (Ruuxx)? = 4(Ru.)? — R?2. Un-
der a field redefinition, the action changes by a term
proportional to the leading-order equations of motion.
So, if S; can be removed by a field redefinition, it
must vanish when the equations of motion are satis-
fied (up to surface terms). Consider first the Ricci term
JdPzV/Ge %%(R,,)?. Using the low-energy equations of
motion with H=0 and integrating by parts, one can show
that this is a total divergence in any dimension. But the
scalar curvature contribution [ d*zv/Ge?¢R? turns out
to be nonzero in general. Thus in D = 3 the order-o’
term in the EA cannot be removed completely, although
its form can be altered. However, in D = 2, one can write
(Ruvrr)? = 2(R,,)?, and so this term now vanishes when
the leading-order equations are satisfied. Using the re-
sults of [37], one can show that this term can indeed be
removed by a field redefinition.

So far, we have discussed just the first order o' cor-
rection. What can one say more generally? Consider
first the D=2 case where H,, automatically vanishes.
Suppose we compute the scattering amplitudes for the
dilaton and graviton (in general D) directly in the string
frame where the dilaton and graviton mix in the propa-
gator. Since there are no transverse degrees of freedom
for the string in D = 2, there are no dynamical degrees
of freedom in the (G, ) system, and the limit D —2
of the scattering amplitudes is trivial. This means that
the on-shell limits of unambiguous terms in the EA must
vanish identically. Hence there exists a choice of the EA
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(in generic D) such that higher-order terms in it vanish
in the D —2 limit.

A similar statement is not true in D=3 since there
is one transverse degree of freedom for the string which
could yield higher-order corrections to the scattering am-
plitudes and hence to the EA. However, one can express
these corrections solely in terms of the dilaton. To see
this, consider the exact equations of motion for G,.,,, B,,,
and ¢ in some scheme:

Ry + 3H?Gu +2V,V, 6= Y o™Ty,,  (43)
n=1
V(e *H) =) "V, (4.4)
n=1

1 2(D—26)
4V2¢> - 4(V¢)2 + R + EHZ - —(@‘—) = E a'"S" s
n=1

(4.5)

where T, V', and S™ are the higher-order correction
terms and we have used the fact that H,,n = €urH in
D = 3 (and assumed a Minkowski signature). Since we
are interested in solving these equations perturbatively
in o/, we can proceed as follows. Start with n = 1 and
use (4.5) to replace the H? terms in T, V!, and S*
[and the left-hand side of (4.3)] by dilaton and curvature
terms. Then use (4.4) to replace (VH)? terms by the
dilaton and curvature. Finally, use (4.3) to replace all
the curvature terms by derivatives of the dilaton. This
will, of course, change the form of the correction terms for
n > 1, but it will ensure that the n = 1 terms only involve
the dilaton. One can now repeat this procedure for each
n. In this way, one can express all the correction terms
solely in terms of derivatives of the dilaton. The action
which reproduces this form of the exact equations will
then have only dilaton terms as higher-order corrections.

C. Discussion

Let us discuss some implications of the above remarks.
Since in D=2 there is a scheme in which all o' cor-
rections to the EA vanish, all backgrounds which solve
the leading-order equations are in fact exact solutions.
This conclusion is not so surprising: The D = 2 “black
hole” background [22,5] represents the generic solution
of the leading-order equations, and given that the corre-
sponding CFT is known [SL(2,R)/U(1) coset [5]], one
can find explicitly [36] a local covariant background-
independent redefinition from the CFT scheme [7] (where
the background fields are o’ dependent) to the leading-
order scheme. It also follows that in this scheme the
D = 2 0-model Weyl anomaly coefficients just have their
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leading-order form.!®

As for D = 3, in the scheme where o corrections are
proportional to the derivatives of ¢, the solutions of the
leading-order equations which have constant ¢ remain
exact to all orders. It is easy to see that the only leading-
order solution with constant ¢ in D = 3 is the constant
curvature anti-de Sitter space with the parallel H,,, tor-
sion corresponding to the SL(2, R) WZW model or its
possible cosets over discrete subgroups (in particular, the
D = 3 black hole of [21]). For solutions with nonconstant
¢, the best that we can hope for is to find a scheme in
which a particular leading-order solution does not receive
o' corrections. This was shown [11] to be the case (to o
order) for the charged black string background [18], i.e.,
the SL(2,R) X R/R coset model. In the next section we
will find that there exists a scheme where the leading-
order solution for the D = 3 F model [(2.1),(2.30)] is
also conformal to the next order in o’. This will provide
a perturbative check of the general path integral argu-
ment of Sec. IID.

Another implication concerns an exact form of the
Abelian duality transformations: Leading-order duality
[19] is a symmetry of the leading-order terms in the EA
[41,20] and thus is an ezact symmetry in the simplest
scheme in D=2. In fact, we have checked directly that
while for a general D there does not exist a scheme in
which the leading-order duality remains a symmetry at
o' order without been modified by the derivative O(ca’)
term [20], such scheme does exist in?® D=2.

As for D >4, here the massless sector of the string S
matrix is nontrivial, and so no simple scheme should be
expected to exist.

V. F MODEL IN THREE DIMENSIONS

The first nontrivial example of the F' model is in D =
3. If b = 0, the equation for F [Eq. (2.30)] just says
that F~! is a linear function of z. Since the transverse
space here is one dimensional, we can absorb the two free
parameters and write the solution as

Fl=z ¢=2¢ —%lnm. (5.1)
This is the formal D=3 analogue of the F'S solution (1.3).
The corresponding dual K model

ds? = dudv + z du® + dz?, ¢ = o (5.2)

'*One may be tempted to draw a conclusion that there ex-
ists a scheme where the B functions of a generic D = 2 o
model also have just the leading-order form. This may not
necessarily be the case since the field redefinitions implied in
our argument are more general (involving the dilaton) than
the redefinitions corresponding to the freedom of choice of a
renormalization scheme in the standard o-model 3 functions.
It may be of interest to understand this question further, e.g.,
in connection with the renormalization group (RG) flow in
some 2D o models [40].

2%In the case of the D = 2 black hole solution, this was
observed in [36].
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describes a flat spacetime.
The general solution of (2.30) with b # 0 is?!

F™' = a+ me?® | (5.3)

¢ =¢o + bz — §In(a+ me?®) . (5.4)
[The solution (5.1) is recovered in the limit & —0 provided
one takes a and m to infinity such that a + m and mb
are kept fixed.] This solution is closely related to the
SL(2,R) WZW model. One way to see this is to note
that, in the limit @ — 0, the F' model (2.1) becomes
equivalent to the SL(2,R) WZW model written in the
Gauss decomposition parametrization

() (510

Lwzw = k:((')'r or + e‘z”auév), r=bx + %ln m,
(5.6)

(5.5)

a'b? =1/k .

As we have noted earlier, the actual value of a is not phys-
ical since one can rescale F' by simply rescaling one of the
coordinates u or v. The values which yield geometrically
different solutions are a = 0, +1.

Another connection between the F' model and the
SL(2,R) WZW model is through their duals. The K-
model dual to (5.3) is

Ly = 0udv + (a + me?*®)dudu + dz Bz

+a'R(¢po + bz) . (5.7)

By the coordinate transformation v — v — au and a
rescaling of v and v, this becomes

Ly = 0udv + e®20udu + dz dz + o' R(do + b) ,
(5.8)

which is obviously u dual to the SL(2,R) WZW model
(5.6). In other words, the F' model (5.3) is related to the
SL(2,R) WZW model by dualizing with respect to one
symmetry and dualizing back with respect to another
symmetry. This implies that the D = 3 F' model (5.3) is
an O(2,2) rotation of the SL(2,R) WZW model (5.6).2
This does not prove that the F model is equivalent to
the SL(2,R) WZW model since dual models are equiva-
lent only if the symmetry direction is compact, but if u
is periodically identified, the coordinate transformation

21'We shall assume that b < 0 so that z — +oco corresponds
to the asymptotically flat region.

22In any dimension D, the F model with function F is re-
lated to the F model with F’' = (F~'+a)™!, a=const, by the
0(2,2) rotation. Obviously, if F is a solution of (2.30), the
same is true for F'.
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v — v — au is not globally valid.

We shall now show that the F' model with b # 0 [Eq.
(5.3)] can, in fact, be derived from an SL(2,R) x R/R
gauged WZW model. Let us first note that the standard
Lorentzian D = 2 black hole [5] can be obtained by gaug-
ing the following global symmetry of the SL(2,R) WZW
action in the Gauss decomposition parametrization (5.6):
r' =71 +¢ v = eu, v = efv. The gauged action is

Lewzw = k[(a'r‘ + A)((I;T + /i)
+e7 3 (Ou + Au)(dv + Av)] . (5.9)
Fixing the gauge » = 0 and solving for A, A first, we
finish with
Ly = k(1 + uwv) " '0udv — %Rln(l +uv) . (5.10)
In contrast to the F model, here one cannot easily in-
tegrate over u,v. An equivalent expression is found by
fixing the gauge as uv = 1, u = e’. The resulting metric
is then given by ds? = k(1 + €%7)~1(—dt? + dr?).
Introducing an extra field y and gauging independently
the “left” and “right” subgroups of SL(2,R) x R [gener-
ated by the positive and negative roots as in [13], i.e.,

corresponding to the shifts of v and v in (5.5)], we get
[cf. (5.9)]

Lowzw = k[Or 8r + e~ (8u + AA)(dv + vA))]
+k(0y + pA)(Oy + pA) . (5.11)

Here the constants A, v, p correspond to a selection of a
particular subgroup we are gauging (the action is invari-
ant under v’ = u—Xe, v' = v—ve, y = y—pe, A’ = A+0e,
and A’ = A + 9¢). Fixing y = 0 as a gauge and solving
for A, A, we finish with the F model (see also Appendix
C)

Av

Fl=a+e™, ¢:¢0+r+%lnF, aEFZ—.

(5.12)
This model is equivalent to (5.3) under the same identifi-
cation as in (5.6): r = bz + 3 Inm, a’'b® = 1/k. Given the
freedom of rescaling u, v and shifting r, the only nontriv-
ial values of a are again 0,+1,—1. a = 0 (i.e., the limit
p =00, A =0, or v = 0) gives back the SL(2,R) WZW
model.

Gauging the subgroup of SL(2,R) x R which is a
straightforward extension of the black hole one in (5.9)
(r' =r+e u = eu, v = ev, y' = y—pe) and fixing the
gauge u = v~ ! = e! one can show that the corresponding
SL(2,R) x R/R gauged WZW model yields the charged
black string background [18]

2
ds? = — (1 - %) dt® + (1 - ﬁw) dy*

M\ Q% \ " kdr'?
+(1-= 1-
! Mr! 4r2

(5.13)

10

s ¢:¢0_%lnr17 ¢0:—%1ﬂk s
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where M and Q represent the charge and mass per unit
length. This gauged WZW model only yields solutions
with @ < M. However, given (5.13), one can clearly take
the extremal limit Q = M to obtain?3

M kdr'?
2_ (1)) a2 2y, Rkar- ]
ds (1 TI) (—dt* +dy )+-4( M) (5.14)
Letting bz denote the proper radial distance,
br = —11n(r' — M), (5.15)

one finds that the extremal black string is precisely the
F model (5.12) or (5.3) where the parameters are related
by a =1, m = M, o'b? = 1/k. As we have just seen,
one can obtain this solution directly as a gauged WZW
model by gauging a different subgroup of SL(2,R) x R.

The relation between the F' model and black string
clarifies the causal structure of the former. It was shown
in [18] that the extremal three-dimensional black string
(5.14) has a horizon at v’ = M, but no singularity. The
correct extension across the horizon is not to take r’ <
M, but to use a new radial coordinate 2 = ' — M. The
F model in the form (5.3) just covers the region outside
the horizon and is incomplete.

In Sec. IT we have found that all F' models are exact
solutions in some scheme. How this is consistent with the
fact that the D = 3 F model is equivalent to a gauged
WZW model? First, there exists a scheme in which the
leading-order solution for the general charged black string
(5.13) remains a solution to the next order in o' [11].
In particular, this is true in the extremal limit. The
above equivalence then implies that the general F' model
in three dimensions is also exact to order o’ in the same
scheme.?4

?3The parametrization of the charged black string back-
ground used in [42],
z2—q—1,2 2—q, 2 dz?

dt d
z T z+4(z—q—1)(z—q)’

is related to (5.13) by z = Vkr', M = q/Vk, Q* =
q(1+ q)/k, so that the extremal limit corresponds to ¢ — oo,
k = oo, M = = q/Vk Vk=fixed. Let us mention also
that in the Euler angle parametrization of SL(2 R) g =
exp (20La'2) exp ( ral) exp ( 9302) 0 = 0+0 Or =0 — 9,
the black string metric is [11]

ds® = —

1 c-1 2

_ C+1
ds® = —di® + (1
R G o ey wre ey T

“ic¥1+2g

dé?,

C = coshr .

It is related to the above one in terms of (z,z ,t) by 2z =
C+1+2q,it=(1+q)'%, iz = —q'/%6; i.e., 0,0 are to be
infinitely rescaled and 7 shifted in the extremal hmlt

24We have also checked this directly starting with the F
model and repeating the computation in [11]. We would like
to point out a misprint in Eq. (4.33) of [11]: It should contain
an extra term —V?ZS.
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Moreover, by taking the extremal limit of the exact ex-
pressions for the charged black string in the CFT scheme
[42,11], one finds that there are no genuine o’ corrections
in this case (all dependence on 1/k can be absorbed into
rescalings of the coordinates). This is easy to see di-
rectly from (5.11). The origin of the 1/k corrections to
the o-model backgrounds corresponding to gauged WZW
models is in a different renormalization of the coefficients
k—k+ %cc and k —» k+ %CH in front of the group and
subgroup parts of the action defined in the CFT scheme.
The CFT scheme analogue of (5.11) thus has the coeffi-
cient k of the first SL(2,R) two terms replaced by k — 2,
while the coefficient k of the last R-subgroup term re-
mains unrenormalized. This means that to find the exact
background fields the constant p? and thus a in (5.12) are
to be replaced by p? = pz-,;—k—z and @’ = a(1 — %) But
as was already mentioned above, a can be rescaled by
a coordinate transformation. We conclude that like the
F model (2.34) obtained by the nilpotent gauging, the
D = 3 F model does not receive nontrivial o’ correc-
tions, not only in the leading-order scheme, but also in

the CFT scheme.

VI. RELATION BETWEEN SOLUTIONS
IN DIFFERENT SCHEMES

Let us now examine in more detail the relation between
exact solutions in different schemes. Since F models are
in many respects similar to gauged WZW models,?® we
shall start with some general comments on exact back-
grounds corresponding to gauged WZW models.

A. Solutions corresponding to gauged WZW models

The classical gauged WZW action can be represented
as
Iewzw = kIwzw(h™'gh) — kIwzw(h™'h),
(6.1)
A=hoh™', A=hoR™?
i.e., as a difference of the two WZW actions for the total
group G and the gauged subgroup H. This representa-
tion implies that the gauged WZW model is a conformal
theory. Fixing a gauge on g and changing the variables
tog’ = h~gh, h' = h~1h, we get a 0 model on the group
space G x H which is conformal to all orders in a par-
ticular leading-order scheme. That means that the one-
loop group space solution remains an exact solution in
that scheme. Replacing (6.1) with the “quantum” action
with renormalized levels k — k + %cG and £k = k+ %CH
does not change this conclusion. This replacement cor-

2%In particular, the integral over u, v in the former is similar
to the integral over A, A in the latter.
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responds to starting with the theory formulated in the
CFT scheme in which, e.g., the exact central charge of
the WZW model is reproduced by the first nontrivial cor-
rection [10,11] and the metric (k + 3cg)G, is the one
that appears in the CFT Hamiltonian Lo considered as
a Klein-Gordon operator.

To obtain the corresponding o model in the “reduced”
G/ H configuration space (with coordinates being param-
eters of gauge-fixed g), one needs to integrate out A, A
(or, more precisely, the WZW fields h and k). This is
a nontrivial step, and the form of the result depends on
a choice of a scheme in which the original “extended”
(g,h,h) WZW theory is formulated.

Suppose first the latter is taken in the leading-order
scheme with the action (6.1). Then the result of inte-
grating out A, A can be found by using a matrix gener-
alization of the formulas (2.10), (2.12), and (2.14). If
the O(A?) term in (6.1) is written as [ d%z F,, A®A®,
Fap = Tr(g7'TagTs — 84p), then under a specific assump-
tion about the measure the correction to the action is*®

Al = —2i / d?z 8(In detF)d(In detF)
e

—Si / &2 /TR detF . (6.2)
s

The resulting o-model metric and dilaton are then given
by [cf. (2.15)]

Gl =G —20/0,00,6, ¢=¢o— tlndetF , (6.3)

where G, is the metric obtained by solving for A, A at
the classical level and ¢ is the original constant dila-
ton. Since the a’ term in the metric can be eliminated
by a field redefinition, we conclude that there exists a
leading-order scheme in which the leading-order gauged
WZW o-model background (G, B, ¢) remains an exact
solution. The leading-order scheme for the ungauged
WZW o model is thus related to the leading-order scheme
for the gauged WZW ¢ model by an extra 2a'0,¢ 9, ¢
redefinition of the metric. This provides a general expla-

J

!
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nation for the observations in [10,11] about the existence
of a leading-order scheme for particular D=2,3 gauged
WZW models. _

If instead we start with the (g, h,h) WZW theory in
the CFT scheme, i.e., with the action

Iewzw = (k + 1cg) {Iwzw(h_lgil)
(6.4)

then the resulting o-model couplings will explicitly de-
pend on 1/k (and will agree with the coset CFT oper-
ator approach results [7-9]). While in the WZW model
the transformation from the CFT to the leading-order
scheme is just a simple rescaling of couplings, this trans-
formation becomes nontrivial at the level of the gauged
WZW o model. It is the “reduction” of the configuration
space resulting from integration over the gauge fields A, A
that is responsible for a complicated form of the transfor-
mation law between the CFT and leading-order schemes
in the gauged WZW ¢ models (in particular, this trans-
formation involves dilation terms of all orders in 1/k; see
Sec. VIB below).

An exception is provided by the ¢ models (2.34) ob-
tained by nilpotent gauging: Here the second term in
(6.4) is absent by construction [13]. The background
fields do not receive nontrivial 1/k corrections even in
the CFT scheme; i.e., the relation between the leading-
order and CFT schemes is equivalent to the one for the
ungauged WZW model. The same is true for the D =3
F model or the extremal limit of the SL(2,R) x R/R
coset.

B. Transformations between different schemes

Let us now discuss how the above remarks are sup-
ported by the direct perturbative analysis. There exists
a simple (“standard”) scheme in which the order-a’ ef-
fective action has the form [37]

5= /d%\/ée—w{z(%@ ~ R+ 4V%¢ — 4(V$)? — L (Hpwr)?]

30/ [(Byuan)® = SR HO By + 35 Hyun HY e HON B — §(Huag Hy )] + O(a“’)} .

26In general, the derivative term in AI will have the form
Tx[0f1(F)df2(F)] where f; are functions of the matrix F. The
choice of the measure should be consistent with the assump-
tion that the resulting o model should be formulated in a
target-space-covariant way. In particular, the resulting dila-
ton should be the one that can be also obtained by solving di-
rectly the covariant o-model conformal invariance equations.

(6.5)

The redefinition leading from this standard scheme to the
leading-order scheme in which the parallelizable (group)
space with ¢=const is automatically a solution of the
conformal invariance equations (to order o) is [37]

Gl(}le,ad) — GE‘s’fand) + %alHiu + O(aIZ) ,
(6.6)

Blgl;aad) — B‘Ss:and) + O(al2)’ ¢(lead) — ¢(stand) + O(a') ,
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where H2, = H, wapH,*P. As discussed above, this
scheme should differ from the leading-order scheme in
which the gauged WZW background fields do not receive
o' corrections by the dilatonic term in (6.3). In fact,
the leading-order scheme in which the [SL(2,R) x R]/R
gauged WZW background remains a solution at o’ order
is related to the standard scheme by [11]

Gle*d) = Gitend) + 1o'HY, — 20/ 8,0 8,4 + O(a?)
(6.7)

lead) __ stand 2
B = By + 0(a”),
(6.8)
¢(lead) — ¢(stand) + E%a’(H#W\)z + %Q'R-l- O(a12) .

The two o' terms in (6.7) thus have a clear interpretation:
The first (H ﬁ,,) leads to the leading-order scheme for the
ungauged WZW model, while the second (8,4 8,¢) is
related to the derivative term (6.2) in the determinant
factor which results from the integration over the gauge
fields in the gauged WZW model.?”

At the same time, the transformation between the
standard and CFT schemes (in which the background
fields receive corrections to all orders in 1/k) was found
(for the D = 3 [SL(2,R) x R]/R background) to be [11]

GICFD = Gtend) + 1o/ HE, — 20/ (8¢)*G

+a' V239G, + O(a'?) , (6.9)
B‘(‘SFT) — B'(‘s:and) + a’VA(i’HyyA + O(alz) ,
(6.10)

¢(CFT) - ¢(stand) + -11—20'(H,4u>‘)2 + %a'R+ O(al2) .

The relation between the leading-order and CFT schemes
obtained in the case of the D=2 SL(2,R)/R model is [10]

20/ 8,40, ¢
1+ %a'R

20/ (09)%G .

G(lead) — G(CFT) _
o uw 1+ilaR

I

(6.11)

¢(lead) — d)(CFT) — %ln(l + %QIR) .

Note that the presence of the dilatonic terms o’ 8,¢ 8, ¢
and (84)%G,. in (6.11) is consistent with (6.7) and (6.9).
However, since (6.11) and (6.9) were derived using spe-
cific properties of D = 2 and 3 backgrounds, they need

2"The transformation of the dilaton in (6.8) does not seem to
have a simple interpretation since we do not explicitly know
how the dilaton is defined in the standard scheme compared
to the leading-order scheme.
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not coincide in detail.?8

As follows from the discussion in Sec. V, (6.7) is also
the transformation to the leading-order scheme for the
D=3 F model (see also Appendix C). This transforma-
tion must be universal: It should define the leading-order
scheme also for generic D > 3 F models. This is certainly
true for the models (2.34) and is consistent with what we
have found in Sec. II. The background (2.28) corresponds
to the solution in the leading-order scheme

lead) _ lead) __ (lead) __
Gt(w ) - Bi(w ) - %Fv Gij - ‘Sij )
(6.12)

¢(lead) — ¢’ + %IDF, ¢' = ¢o + b,;:l:i .

We thus conclude that the result of the path integral
argument of Sec. II is consistent with the perturbative
analysis of the solutions corresponding to (6.5) [cf. (2.26)
and (6.7)].

VII. DISCUSSION

We have considered two new classes of exact solutions
to bosonic string theory. These take the form of the F'
model (2.1) and the K model (2.2) which are related by a
leading-order duality transformation. One can view these
solutions as two different ways of extending a known
spatial (D — 2)-dimensional Euclidean CFT to obtain a
D-dimensional Lorentzian one. The K model provides
an interesting union of the standard gauged WZW and
plane wave constructions. We have discussed a four- and
five-dimensional example in Sec. III, but clearly higher-
dimensional solutions can be constructed in an analogous
manner. Since these two classes of exact solutions are
related by leading-order duality, it appears likely that
given any exact solution to string theory with a contin-
uous symmetry, the solution obtained by a leading-order
duality transformation is also exact in some scheme.

Perhaps the most interesting solution in the class of
F models is the fundamental string (1.3). This solution
has a curvature singularity at r=0. Furthermore, the ef-
fective string coupling e? = go/F goes to zero at the
singularity. The FS is the first example of an exact so-
lution with these properties.2® It thus appears that this

28Gince the CFT scheme is defined only for specific gauge
WZW backgrounds, there may not exist a universal relation
(valid in any D) between the CFT and standard schemes.

2%If one periodically identifies the direction along the string,
the effective coupling is exp(3¢), ¢ = 2¢— } In G, which is in-
variant under duality. Since the dual of the FS is a plane wave
which is known to be exact, this provides a second (equiva-
lent) example of a solution with these properties.
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singularity might survive not only o', but also quantum
string corrections. To establish this, two further results
are needed. One must study the CFT corresponding
to this classical solution and determine whether there
is a singularity in a sense appropriate to string theory.
The diverging curvature of the metric “seen” by point-
like string states by itself is not sufficient to ensure the
existence of string singularities. One must also study
the string loop corrections in some detail. The perturba-
tive corrections are powers of the string coupling times
some (nonlocal) functionals of the metric and dilaton,
which may still diverge at r = 0, producing a large quan-
tum correction. However, one should note that the string
coupling vanishes faster in higher dimensions, while the
curvature diverges like 1/r2 for all D. Thus it is possible
that perturbative quantum effects are important only in
low dimensions. In addition, there may be nonpertur-
bative corrections, but they are likely to be small in the
limit of small string coupling.

There are several arguments one might give to try to
support the idea that the singularity in the fundamen-
tal string solution should be innocuous in string theory.
First, the behavior of classical test strings in this back-
ground has been studied [43], and it was shown that test
strings parallel to the source string and oriented in the
same direction do not “feel” any force in the limit of
small velocities.3° This same conclusion holds for all F
models. Second, quantum test strings have been stud-
ied in a shock wave background which has a singularity
similar to the FS for u = 0, but is flat elsewhere [45].
It was argued that string propagation remains well be-
haved. Third, strings may be dual to five-branes, and
if one rescales the F'S metric by a power of the dilaton
to obtain the geometry seen by a five-brane, it does not
have a curvature singularity [46] (although the dilaton
still diverges). Finally, as we have said, the FS can be
viewed as the field outside a straight fundamental string.
Using the linearity of the equation for F~!, one can con-
sider the multistring solution and study string scattering.
Preliminary calculations show that this scattering is in
agreement with the standard results of string scattering
in flat spacetime [43,44]. This suggests that the FS so-
lution is in some sense equivalent to the usual strings in
string theory which are certainly nonsingular objects.

While it may be true that the singularity in the FS
is not serious, the above arguments are far from conclu-
sive. In the first case, generic classical string configura-
tions certainly do “feel” a force, and one must consider
all states of a (quantum) test string before a singular-
ity is declared harmless. In the next argument, the fact
that the spacetime is flat away from u = 0 means that a
string will “feel” the singularity for at most an instant.
For the FS, the singularity is present for all time. The
third argument is relevant only if one wants to define

30This is modified if we make a periodic identification to
obtain strings of finite length R and take the limit of small
velocity v holding Rv constant [44].
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a singularity in terms of the behavior of objects other
than test strings. It is not clear whether this is a use-
ful thing to do. Finally, the scattering calculations have
so far been compared only at large impact parameters
where the strong curvature regions do not play a sig-
nificant role. More importantly, we have been viewing
the FS as a particular nontrivial classical solution. The
question of whether it is singular is not directly related
to the scattering of two quantum strings. In particular,
the fact that the string coupling goes to zero in the FS
solution has no analogue in the usual string scattering
calculations in flat spacetime.

There is one unusual feature of the FS solution which
is evident even at the level of the leading-order string
equations. While the FS is certainly a solution to these
equations for r # 0, it is not a solution at the singularity
due to the presence of é-function source terms. In gen-
eral relativity, one never asks if the field equations hold
at a singularity since in general this is not a well-defined
question. However, if string theory is indeed a “theory
of everything,” one should presumably not add external
sources. One might thus argue that the F'S should not
be viewed as an allowed classical background. The dif-
ficulty with this argument is that if one demands that
the field equations hold everywhere, one is in danger of
simply defining away the problem of singularities. Phys-
ically, one must study dynamical collapse situations to
see whether the field equations break down or (in some
sense) remain satisfied for all time.

The key property of the F' models used in this paper
is their chiral structure (the balance of the metric and
antisymmetric tensor components) in the (u,v) sector.
That is why the path integral over (u,v) can be computed
exactly and one can prove their all-order conformal in-
variance. The fact that the integral over (u,v) produces
a local effective theory for the transverse coordinates z*
is quite remarkable. That means that for the F-model
backgrounds one has a formal D — D — 2 “dimensional
reduction.” The correlators of operators which depend
only on transverse coordinates3! are exactly given by the
correlators in the “transverse” Euclidean CFT. For exam-
ple, for the D=4 F models the “transverse” CFT is two
dimensional; i.e., it is either equivalent to the “flat space
with linear dilaton” [for the FS or the models (2.34)]
or the SL(2,R)/U(1) two-dimensional black hole (for the
solution constructed in Sec. III [Eq. (3.17)]). This is
to be compared with, e.g., the Schwarzschild background
where integrating out any pair of coordinates produces a
complicated nonlocal two-dimensional effective theory.

We have seen in Sec. V that the D = 3 F model can
be obtained as a gauged WZW model. It was previ-
ously shown that F models of the form (2.34) can also
be obtained as gauged WZW models. An open ques-
tion is whether other F and K models, in particular, the

31Unfortunately, most of these operators do not describe
physical states since a timelike momentum necessarily in-
volves u and v.
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FS one, are also related to gauged WZW theories. It
is known that some of the plane wave solutions admit
a coset CFT interpretation [47]. However, these are all
of the special form (2.3) and thus are the simplest type
of K model. It is not clear whether this correspondence
extends to the more general K models considered here.

Another interesting question concerns supersymmetric
versions of the F' and K models, and related superstring
and heterotic string solutions. In particular, we can con-
struct a D = 4 heterotic string solution by adding the
(u,v) terms to the two-dimensional “monopole theory”
constructed in [48]. This is essentially a reinterpreta-
tion (in a Kaluza-Klein or heterotic string manner) of
the (u,v)xSU(2) D=5 bosonic solution (3.2) as a D=4
heterotic one.
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APPENDIX A: LEADING-ORDER EQUATIONS
FOR THE F MODEL

We consider here the F' model with flat transverse
space (1.1). Since

Guy = %Fa Gijzaij, Buvz%Fv Bij:()v F=et )
(A1)

the components of the Christoffel symbols are
T.,=—-1F08h, TY =08h, TY =0dh. (A2)

The only nontrivial components of the curvature are
(others reduce to them or vanish)

RVuj = —8;T% — T&TY = —8,0;h — ih O,

uit uj
(A3)
R o = —%F 9;h &R .
The Ricci tensor is then

R'ij = —2(8,-8jh + 0;h 3jh),
(A4)

Ry, = —3F(8°h + 20;R0'h) ,

R = —40%*h — 63;h 8'h . (A5)

In addition, defining H2 =

= ,‘,\,H,A", one has
Hiy, = F8;h, H}, = —4F 8;h8'h, H} = —80;h0;h ,

(A6)

ViVih = 8;0;¢, V,Vod=L1F8hd'¢. (A7)
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The one-loop conformal invariance conditions can be ob-
tained by extremizing the action (4.1). Varying with re-
spect to G, B,,, and ¢ yields,

Ry, —iH?, +2V,V,6=0, (A8)
VH(e *%H,,,) =0, (A9)
2(D — 26
4V2¢ - 4(V¢)2 + R - %HnuAH"W\ - (—3(1,—) =0.
(A10)
Equation (A8) yields
(Z]) : ~8,~8jh + 8i6j¢ = 0;
(A11)

(wv): —10°h +8;h8'¢=0.

Equation (A9) does not produce any further independent
conditions. From the first equation in (A1l), one has
¢ — h = ¢o + b;z*, where b; is a constant vector. The
second equation in (A1l) can then be written §2F~! =
2b'0;,F~ !, and the dilaton equation (A10) implies b;b* =
—(D —26)/6a’.

One might expect the curvature to be simpler using
the connection with torsion

Iy, =Th +1HY,, . (A12)
Then
fi,=o0, I, =—Foh, I? =0,
(A13)
I2, =208k, T =0, T =208,h.
The curvature for f‘;\w is
Ruiuj = —20;0;h, ﬁ"ivj =0, Eiujv =0,
(A14)

Ri,ju=—-F38h, R*,y, =0.

It vanishes when h is a linear function of z, e.g., for the
SL(2,R) WZW model (F = e~2%®) as it should since this
is the group space case. To obtain a vanishing curvature
for the general F' model, we would need to “add” dila-
tonic terms to the 9;0;h and 8'9;h terms in (A14). It
is not clear if this can be done in a systematic way by
modifying the connection.

APPENDIX B: A GENERALIZATION
OF THE F MODEL

In this appendix we point out that there is a slight
generalization of the F' model which can also be shown
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to be conformal using the arguments of Sec. II. This is
motivated by the following generalization of the K model
(see, e.g., [2,4]). When the transverse space is flat, one
can extend the K model by introducing an antisymmetric
tensor background of the form B;, = B;(z). The K
model then becomes

Ly = 0udv + K(z)0udu + B;(z)(0z'du — du dz*)
+0z'8z; + o’ R(a + biz?) . (B1)
In this case, H,,,) is again proportional to the covariantly
constant null vector and one can show that all terms
in the conformal invariance equations for the K model
which involve more than two powers of H vanish identi-

cally. If we define H;; = 23[1~Bj], these equations become
[cf. (2.20)]

3j(e_2¢Hij) =0 y
—30°K +b'0,K — $H H;; + 202¢ + O(o/*(8°H)?)

=0. (B2)
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The last equation still includes o’ corrections, but these
vanish in the simple case of “constant field strength”

b; =0, B; = —%Hi]-a:j, H,'j = const ,
(B3)
— %BzK - %Hinij + 233(}) =0.

When K and ¢ are both independent of u, one can con-
struct a generalized F' model which is dual to this solu-
tion. Our conjecture in Sec. I implies that this general-
ized F' model should also be an exact solution. We now
show that this is indeed the case.

The Lagrangian u dual to the generalized K model
(B1) is

Lp = F(z)(8u + B;dz')(8v — B;8z") + 9z*dx;

+a'R(¢o +biz* + 1 InF), F=K'. (B4)

This generalized F' model is still chiral in the u,v direc-
tions. Integrating over v and u, we find the following
expression for the generating function [cf. (2.22)]:

exp(—W[U,V, X,v]) = Zo('y)/[dz] exp(—% /dzz[ngam"gmj

—B;(z)(0U' dz* — 8z*8V) — F~}(z)0U’ 8V + o' R(¢o + biz') + Xﬁéw]) ,

where G}; and T are the same as in (2.15) and (2.23).
By power counting the conformal invariance conditions
for the couplings in W must be at most quadratic in B;.
We thus get back to the conditions (B2). In the leading-
order scheme, we thus obtain the following “constant field
strength” solution:

b; =0, B; = —%H,--mj, Hij = const,
(B6)
O*F'=-1HYH; .
The solution that generalizes the F'S one (1.3) is thus
H%H;; , M

Fl1=1-
iD-2" T

D>4. (B7)

APPENDIX C: SHIFTS OF METRIC
AND DILATON IN THE D =3 F MODEL

To clarify the meaning of the shifts of the metric and
dilaton implied by the path integral argument of Sec. II,
let us consider first a particular example of a D = 3
F model—the SL(2,R) WZW model (5.6): F = e~2%%,
¢ = ¢o, a'b? = 1/k. Using the method of Sec. II, one can
demonstrate explicitly its all-order conformal invariance

(Bs)

f

and compute the ezact value of its central charge.3? In
fact, integrating over u and v, we find according to (2.15)
the z model
L = G2(x)0z 0z + a'R,
¢ =¢o—1InF = go+bz ,
k-2

G::c =1- %al(az lnF)z =1- Za’bz = T .

(C1)

The integral over (u,v) thus produces the effective renor-
malization k — k — 2 of the coefficient of the 9z Oz term.
We have assumed that the measure factor Fp in (2.12)
is equal to F = e~2* (as implied by the Haar measure).
The conformal invariance condition (2.24) is then satis-
fied automatically and the corresponding central charge
condition becomes [cf. (3.8)]

0=D —26+6a'G*8,¢0,¢
6a’b? 3k

T_2ap2 - T3

=D —-26+ E_3°

(C2)

32A similar computation of the central charge for WZW
models admitting the Gauss decomposition parametrization
was discussed in [49] (see also [13]).
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This calculation was done in the leading-order scheme
where the original background fields do not receive o’
corrections. Alternatively, we may start with the cor-
rected metric in (2.25) and after having integrated out
u,v get just Gy,=1. In that scheme the central charge
equation is thus

0=D —26+6a'G"*9,¢8.¢ =D — 26 + 6a'b? . (C3)

To obtain the same exact expression for the central
charge, we need to start with the WZW action in the
CFT scheme (i.e., with k — k — 2) so that a'b? is iden-
tified with 1/(k — 2) (see also [10,11]).

Let us now repeat this argument for the general D = 3
F model, i.e., the gauged WZW model (5.11). Changing
the variables to w,w, A = dw, A = 8w, we have, in the
y = 0 gauge,

Leowzw = k[b%0z 8z + e ~2%(Ou 4 X Ow)(8v + v 3w)
+p%0w 0] . (C4)

This is the expression in the leading-order scheme for
the WZW theory. In the CFT scheme, & — k — 2,
p? = psz_T As was already noted above, this trans-
formation is trivial since it can be “undone” by rescaling
of the coordinates. If we first change the coordinates
v — o' — Aw, v = v/ — v, then (C4) becomes the sum
of decoupled actions for the SL(2,R) WZW model and
the free R x R model for (w,w). The theory is thus ob-
viously conformally invariant. Integrating over u’,v’ and
w, W, we get the same resulting z theory (C1) and (C2)
as in the ungauged WZW case. The integral over w,w
gives only a constant contribution if we assume that the
measure factor Fg,, corresponding to (w, @) is trivial.
An equivalent result should be found if we first inte-
grate over A, A or w,% (as we are supposed to do in
order to obtain a o model corresponding to a gauged
WZW model). We can compute the resulting effective
action by applying (2.10) and (2.12) to the integral over
w,w with the action ~ [ d%z F,,(z)0w 8w:
Fo=1+ ae_%‘”,

a=xv/p?. (C5)

Taking the corresponding measure factor to be equal to
F,,, we find [cf. (5.3) and (5.12)]
Lp=F0udv+(1-1a’0InF,0InF,)0z 0z
+a'R(¢o — 3 InF,) ,
(Cs)

F—l — a+e2b:|: — e2ba:Fw .

If we now integrate over u,v [assuming that the measure
factor for (u,v) is Fo = F as would be natural if we would
have started with a o model (C6) with the path integral
measure defined by the corresponding o-model metric],
we get the z theory with [cf. (C1)]

G,,=1-1d8InF,0InF, — 1ddlnFOInF , (C7)

¢=¢o—iInF' —1InF =¢o+bz. (C8)

While the dilaton (C8) is the same as in (C1), the a’ term
in the metric does not reduce to the expected result

G,, =1-1a'8(InF, +InF)d(InF, +InF)

=1-2a'b?. (C9)

The reason for this paradox lies in the fact that the re-
definitions of (u,v) should be consistent with covariance
properties of the measure; i.e., they do not, in general,
preserve the covariance of the theory. As in the path in-
tegral argument in Sec. II, extra local counterterms are
to be added to get a consistent result. In the present case
we need to add a local counterterm leading to the “mix-
ing” term —a/dlnF&InF, in G, in (C7). Then the
final result (C9) is the same as in the manifestly “confor-
mal” approach when one first redefines u,v to decouple
them from w,w.

More generally, one can consider the following ana-
logue of the (u,v,w,w) part of (C4):

L = F,(0u + 0w)(8v + 0w%) + F20w 8 = F,,0u®dv® .
(C10)
The two ways of computing this integral (by first inte-
grating over u,v and then over w,w or vice versa) give
equivalent results; i.e., the relation3?
Al = All(Fl) + AIz(Fz)
(C11)
F\F,

=AL | —— | + AL(F, + F.
I(F1+F2) 2(F1 + F2)

is true only if the measure on the full (u,v,w,w) space
is consistently assumed to be the same in both cases.

33AI and AL correspond to the (u,v) and (w, W) integrals
and are the same as in (2.12).
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