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We give a complete description of the genus expansion of the one-cut solution to the generalized
Penner model. The solution is presented in a form which allows us in a very straightforward manner
to localize critical points and to investigate the scaling behavior of the model in the vicinity of
these points. We carry out an analysis of the critical behavior to all genera addressing all types of
multicritical points. In certain regions of the coupling constant space the model must be de6ned via
analytical continuation. We show in detail how this works for the Penner model. Using analytical
continuation it is possible to reach the fermionic one-matrix model. We show that the critical
points of the fermionic one-matrix model can be indexed by an integer m, as was the case for the
ordinary Hermitian one-matrix model. Furthermore the mth multicritical fermionic model has to all
genera the same value of p,~, as the mth multicritical Hermitian model. However, the coefficients
of the topological expansion need not be the same in the two cases. We show explicitly how it is
possible with a fermionic matrix model to reach a m = 2 multicritical point for which the topological
expansion has alternating signs, but otherwise coincides with the usual Painleve expansion.

PACS number(s): 11.25.Db

I. INTRODUCTION

The Hermitian one-matrix model with a polynomial
potential is by now completely understood. All critical
points have been localized and classified. The different
types of critical behavior are indexed by an integer m,
and the mth multicritical model is characterized by p,q,
taking the value ——[1]. Furthermore, it is well known
that if one considers a potential consisting of a linear
plus a logarithmic term one can reach a critical point for
which p,q, ——G and for which logarithmic scaling viola-
tions occur at genus zero [2]. This is the critical point
of the Penner model [3]. The possibility of multicritical
behavior for generalized Penner models, i.e., models with
a logarithmic term and a higher degree polynomial, was
pointed out in Refs. [4—6]. However, only the genus zero
and the genus one behavior was addressed.

In Ref. [7] a complete description of the genus-
expanded one-cut solution to the Hermitian one-matrix
model with a generic polynomial potential was given.
Here we generalize this description to the case where in
addition a nonpolynomial term, namely, a logarithm, ap-
pears in the interaction. The solution is presented in
a form which allows us in a straightforward manner to
localize all critical points and to investigate the scaling
behavior of the model in the vicinity of these points. All
types of multicritical points can be addressed and the
analysis can be carried out for any genus. The outcome
of our analyses is that no other values of p,t, than p,t, ——0

or p,q,
————,m = 2, 3, . . ., are possible.

In some regions of its coupling constant space the gen-
eralized Penner model can only be defined via analyti-
cal continuation. We show in detail how this procedure
works for the Penner model itself, extending the analyses
of Refs. [4, 5]. By analytical continuation it is possible to
reach the fermionic one-matrix model [8]. As an appli-
cation of our study of the generalized Penner model we
show that the possible types of multicritical behavior for
the fermionic one-matrix model can, as in the Hermitian
case, be indexed by an integer m. Futhermore, the mth
multicritical fermionic model has to all genera the same
value of p,q, as the mth multicritical Hermitian matrix
model. However, the coefBcients of the terms in the topo-
logical expansion will not necessarily be the same for a
mth multicritical point obtained &om a Hermitian and a
fermionic matrix model, respectively. For example, it is
possible in the fermionic case to find a m = 2 multicriti-
cal point for which the topological series has alternating
signs but otherwise coincides with the usual Painleve ex-
pansion. Having alternating signs, this series might very
well be Borel summable.

II. MODEL AND ITS LOOP EQUATIONS

The generalized Penner model is defined by the parti-
tion function

Z = e = dPexp( —NTr [U(P)]), (2.1)
NxN
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where the integration is over Hermitian N x N matrices
and ( ) = [ (P)] +

N dV (P)
d(d (V'((d) + —'j, 1 d

~ 271 1 p —4o ¹dVp

U(P) = V(Q) + ting, (2 2)
provided W(p) satisfies the equation

(2.9)

We define expectation values in the usual way and in-
troduce the generating functional for one-loop averages
by

.V'((u) W((u) —tW(0) = 0.
Eked

2%X
(2.10)

w()=( —„'~ '
) (2.3)

With the normalization chosen above the genus expan-
sion of the &ee energy and the one-loop correlator read

g=o"
w(p) =) N, w, (p).

g=o"
(2.4)

:4+e). „,=4+el„),p"+' (p p — )
(2 5)

The loop equations of the model express the invariance of
its partition function under field redefinitions. To derive
the loop equations in an appropriate form it is convenient
to consider the following transformation of the field P:

For t = 0 the validity of the relation (2.10) is ensured by
the invariance of the partition function under field redef-
initions of the type P ~ P+ e. For t g 0 we can also for-
mally derive the relation (2.10) with W(0) = (~ Tr P i)
by considering the same transformation of the field. How-
ever, the ill-defined quantity Tr P i appears. By equat-
ing the i terms in (2.9) we see that a W(p) which satis-

p
fies (2.9) will automatically fulfill the requirement (2.10).
Hence a solution of (2.9) is automatically a solution
of (2.7). The loop equation (2.9) is of exactly the same
form as the one of the Hermitian one-matrix model with-
out a logarithmic interaction term. In Ref. [7] an iterative
procedure for solving the latter loop equation was devel-
oped and explicit results for Ws(p) as well as I's for g = 1
and g = 2 were given. Ihu'thermore, the general structure
of I"s and Ws(p) for any g was described. From the re-
sults of Ref. [7] we can read off' the complete perturbative
one-cut solution of the model (2.1).

The reason why we do not include a n = 0 term in the
sum above is that we wish to avoid the appearance of
terms of the type Tr P i from the variation of 1ng in the
action. Introducing the shift of P, (2.5) in (2.1), we get,
to the first order in e,

fdp( Tr/

NTr
~

U'(P)—
~

e ~ ~1~ = 0. (2.6)p(p-4) &

We now introduce as usual corresponding to the matrix P
an eigenvalue density p(A). With our interaction it is nec-
essary to require that the support of the eigenvalue den-
sity does not cross the branch cut of in%. Then Eq. (2.6)
can be written as

III. GENUS ZERO SOLUTION

A. General results

With the assumption that the singularities of W(p)
consist only of one square root branch cut [which in the
case of W(p) being a solution of (2.9) is equivalent to p(A)
having support only on one arc in the complex plane [9]]
and with the normalization W(p) + 1/p as p ~ oo, the
genus zero contribution to W(p) for the model (2.1) can
be written as

1 ~ (V'(~) + —') (p —z)(p —y)
Wo(p) =—

2 c 2zi p —u (u —z)(~ —y)

(3 1)

where z and y are determined by the boundary conditions

'( ) w( ) + -'w(„)
p c2 p- p

(P)] + N2 dV (P) ( )¹dVp

Bi(z, y) —=

~ 2xz

B2(z, y)—: 2' Z

P( )+
V'(~ - z)(~ —y)

v'(
Q((u —z) (u) —y)

(3.3)

where &&"&
&

is the loop insertion operator,

d

dV(p) ~ - go+i dg,
' (2.8)

and where C is a curve which encloses the support of the
eigenvalue density but which does not cross the branch
cut of the logarithm; neither encloses the point cu = p. It
is easy to see that (2.7) can be written in the forin

It is easy to verify by direct calculation using (3.1) that
the condition (2.10) is indeed satisfied for the genus zero
solution due to the boundary conditions (3.2) and (3.3).
With V(P) given by (2.2) the boundary equations can be
written as a set of algebraic equations. For deg[V($)] =
D the degree of the boundary equations is D if t = 0
and 2D if t g 0. Hence for t = 0 an explicit solution can
be found for deg[V(P)] & 4 whereas for t g 0 an explicit
solution can be found only in the case of a linear or a
quadratic potential. It is easy to see that for t = 1, x =
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y = z is a possible solution of the boundary equations
for any potential. Namely, setting x = y = z in the
boundary equations (3.2) and (3.3) we find

Bi(z, z) = V (z) ——,I t
z

Bz(z, z) = z V'(z) + t

(3.4)

&(&) = f (&'(n) —&~a(n)]&@ (3.5)

The support of the eigenvalue distribution is an arc con-
necting y to z along which G(A) is purely imaginary and
which is embedded in a region where Re(G) ( 0. We are
used to considering a model of the type (2.1) as mean-
ingful if the branch points x and y are real and the cut
lies along the real axis. There are regions of the cou-
pling constant space where such a situation cannot be
realized. In some of these regions it is still possible to
attribute a meaning to the model by analytical contin-
uation. The eigenvalue density is defined according to
the rules given above and is now a curve in the complex
plane. We note that one might obtain by this prescrip-
tion a complex-valued partition function. A lot of infor-
mation about the model (2.1) can be extracted without
knowing the precise location of the branch points or the
cut of W(p). For instance, all critical points can be eas-
ily localized and classified. All we have to assume is that
the branch cut of W(p) does not cross the branch cut of
the logarithm. When working with contour integrals this
assumption turns into the assumption that the contour
does not cross the branch cut of the logarithm.

By means of the solution (3.1) we can calculate the
genus zero contribution to the susceptibility yo.

d~

dt~

By differentiating (2.1) one gets

d 1 Trl d~. l
dWcu

(3.6)

(3 7)

From the expression (3.1) one obtains, by direct differen-
tiation using Eqs. (3.2) and (3.3),

Hence with t = 1 and Bi(z, z) = 0 the boundary equa-
tion Bz(z, z) = 2 is autoxnatically fulfilled. Conversely it
follows that the only way in which we can have x = y = z
is by t being equal to 1. As noted in Ref. [4] for t = 1
we have Wo(p) = — independently of V(P). This result

follows easily from formula (3.1). Another case for which
soxne information can be extracted &om the boundary
equations even for a generic potential is the case t = 2.
For t = 2 one finds that if the potential V(P) is of a defi-
nite parity z and y will lie on the imaginary axis. If V(P)
is even, x and y will both be situated either on the neg-
ative or on the positive imaginary axis. If V(P) is odd,
one has x = —y. By solving the boundary equations we
determine the branch points of W(p). However, this does
not fix the position of the cut of W(p), i.e., the support
of the eigenvalue distribution. The missing information
is encoded in the function G(A) [10]:

z/z
dWp(p) du 1 ( (iL) —z) (u —y) l

dt c 47ri (p —(u)(u I (p —z)(p —y) )
z/~

*y
» p ~(p —z)(» —y))

1

((s —*)(n —v)I'~* )
' (3.S)

Substituting into Eq. (3.7) and compressing the contour
C to the cut of the logarithm, we get

) x/2
zy

2 o» p ((» —*)(p —y))

[(p-*)(p-y)l"
J

&(*u)'* —(*+v)
2 16zy

(3.9)

We stress that this formula holds for a generic potential.

B. Penner model

Here we show how the procedure of analytical contin-
uation works in a sixnple case, namely, the case of the
Penner model:

gg
———1, g;=0, i &1. (3.10)

For this model the boundary equations read

tB,(z, y) = —1—,, =0,
xy

1B,(z, y) = —-(z+ y) + t = 2,
2

(3.11)

(3.12)

and we note that we recover from (3.9) immediately the
well-known result [4]

go ———lxi(1 —t) —lnt .

Solving (3.11) and (3.12) for z and y gives

z = (t —2) + 2(1 —t) ') ',
y = (t —2) —2(1 —t) )

(3.13)

(3.14)

(3.15)

The analyticity structure of W(p) and hence the location
of the support of the eigenvalue distribution are quite dif-
ferent for different values of t. A detailed analysis of the
analyticity structure based on the function G(A), which
can be calculated explicitly, is carried out in the Ap-
pendix. Here we just suxnmarize the results.

t ( 0. The branch points x and y are real and nega-
tive and the cut of W(p) is the straight line connecting
z and y. This position of the cut of W(p) implies that
(zy)x)'z = ~zy[

)' which is in accordance with Eq. (3.11).
The branch cut of the logarithm can for instance be
placed along the negative real axis (Fig. 1). In the limit
t + 0 the cut of W(p) collides with the cut of the loga-
rithm (Fig. 2).
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FIG. 1. The support of the spectral density for t ( 0 (the
bold line) and the branch cut of the logarithm (the thin line).

0 & t & 1. The branch points x and y are again
situated on the negative real axis. However, the cut of
W(p) now looks as in Fig. 3. We note that the presence of
the loop implies that (xy) /2 = —

~2:y~ / which is again
in accordance with Eq. (3.11). For t -+ 1 the branch
points x and y collide (Fig. 4).

t ) 1. The branch points x and y get an imaginary
part and are each others complex conjugate. The cut
of W(p) is an arc which connects y and x and which
intersects the real axis on its positive part (Fig. 5). In
particular for t = 2 the model (2.1) can be interpreted
as a fermionic matrix model [8). We will return to this
point in Sec. VI.

FIG. 2. The support of the spectral density for t m 0 (the
bold line) and the branch cut of the logarithm (the thin line).

IV. SOLUTION TO HIGHER GENERA

Explicit solutions for Wq(p) and W2(p) as well as the
general structure of Ws(p) for g ) 1 can be read o8'
from Ref. [7] and it is easy to show that W(p) fulfills
the requirement (2.10) to all genera. From the analysis
of Ref. [7] we also have a detailed knowledge of the free
energy of the model. To express the higher genera contri-
butions to E (as well as to any multiloop correlator) it is
convenient to introduce instead of the coupling constants
((g;), t) a set of moments (M», Jg):

FIG. 3. The support of the spectral density for 0 ( t & 1
(the bold line) and the branch cut of the logarithm (the thin
line).

P'(~) + )
c 2wi ((u —x)s+ / (~ —y) /

(4.1)

The genus one contribution to F reads

1 1 1
F1 ————ln M1 ——ln J1 ——ln d.

24 24 6

For g & 1, F~ takes the form

FIG. 4. The support of the spectral density for t ~ 1
where z ~ y (the bold line) and the branch cut of the loga-
rithm (the thin line).

).(vari "o.'pi" A~o p p),
a~ )1,
Ps)1

M, . M .Jp, Jp,X
M Jd~ g)1, (4 4)

where d = z —y, the brackets denote rational numbers,
a,nd cr, P, and p are non-negative integers. The indices
nq, . . . , a„Pq,. . . , P~ take values in the interval [2, 3g —2]
and the summation is over sets of indices obeying the
restrictions

(s —a = 0) m (s = n = 0), (4.5)

- 0

I —P(0, (I —P = 0) m (l = P = 0),

(n —s) + (P —I) = 2g —2, (4.7)

FIG. 5. The support of the spectral density for t & 1 (the
bold line) and the branch cut of the logarithm (the thin line).

) (~;-I)+) (P, —1)+~=4y-4, (4.8)
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g —1&p&4g —4. (4.9)

We note that contour integrals such as (4.1) and (4.2)
are calculated by taking residuals at zero and at infin-
ity. Hence in our formalism we effectively do not need
to know the precise location of the support of the eigen-
values, although it is of course essential in order to get
a complete understanding of the model. We see that
for real x and y, E~ will automatically be real while in
the case of models with z and y complex, which must of
course be defined via analytical continuation, E~ will in
general be complex. In the following we investigate the
coupling constant space of the one-cut solution to the
model (2.1) defined when necessary and possible via an-
alytical continuation. We localize and classify its critical
points and show how in the vicinity of any of these one
can define a continuum theory using a double scaling pre-
scription. In particular, we show that there exist critical
points for which x and y are complex but for which we
obtain real-valued F~'s for all g.

V. CLASSIFICATION OF CRITICAL POINTS

This section is devoted to the study of the critical prop-
erties of the one-cut solution to the model (2.1). Actu-
ally the most straightforward way to localize the criti-
cal points is by taking a glance at the expressions (4.3)
and (4.4) for the higher genera contributions to I". It is
obvious that there are several circumstances under which
the higher genera contributions to the free energy become
singular. One possibility is that Mq or Jq or possibly
both acquire a zero of some order. This was the only
possibility in the case of the usual one-matrix model and
corresponds to the situation where a number of extra
zeros accumulates at one or possibly both ends of the
support of the eigenvalue distribution. However, with
the logarithmic term in the action we also have the pos-
sibility of d becoming zero. As shown in Sec. III the only
way in which d can become zero is by t being equal to
1. Of course, we can also have a situation where both
d = 0 and and Mq (=Jq) acquire a zero of some order. A
third possibility for singular behavior is that some of the
higher moments diverge as we approach a certain point
in the coupling constant space. This will be the case if at
the critical point z -+ 0 (or y -+ 0). For z ~ 0 we must
require that t -+ 0 in order that Bq(z, y) be well defined.
However, the critical point t = 0 can be approached in a
number of different ways which are all characterized by
z = 0(t). That t = 0 and t = 1 are critical points of the
model (2.1) was first noted in Ref. [4] where the genus
zero contribution to the susceptibility was analyzed. Here
we will carry out a complete perturbative analysis of the
scaling behavior of the model in the vicinity of its critical
points, addressing all types of multicritical behavior. We
will approach the critical points by fixing the coupling
constants (g;} at their critical values (g,'. } and scaling
only t. As appears &om the discussion above the criti-
cal points of the model are naturally divided into three
types:
typel: tg (01},M~ =M2=. . . =M ~=0,

M $0, m&2,
Ji = J2 =.. . = J„g——0, J„g0, 1 & n & m;

Here and in the following it is understood that for mo-
ments of the type Mg((g;},t = 0) and J&((g;},t = 0),
t should be set to zero before the contour integration is
carried out. We note that since we have understood that
all scaling is associated with t the usual mth multicritical
points of the Hermitian one-matrix model do not imme-
diately fit into this classification. For the usual mth mul-
ticritical points one uses a scaling prescription where t is
kept fixed at t, = 0 and the coupling constants (g,}are
scaled. As it will appear in the following for t g (0, 1}
both scaling prescriptions lead to the same critical be-
havior. For t, = 1, keeping t fixed at t does not make
sense [cf. (4.4)]. To characterize the different types of
critical behavior let us denote by A~ the renormalized
version of t [i.e., AR (t —t,)] and let us introduce the
critical index p,q, by

~(2—distr )(1—9)
R g)1. (5.1)

A. Type 1 critical points

Keeping the coupling constants (g;}fixed at their crit-
ical values and assuming for a given value of t the branch
points of W(p) to be z and y we find expanding the
boundary equations Bq(z, y) and B2(z, y) keeping only
leading order terms:

c (z —z, ) M' + c„(y—y,)"J„'= 0, (5.2)

c (z —z, ) z,M' + c„(y—y, )"y,J„'= (t, —t), (5.3)

where

M = M-((g,'} t.) Jk = J~((y;} t.) (5.4)

(2m —1)Il

m!2
If we introduce a renormalized coupling constant AR by

(t. —t) = a~AR, (5 5)

we see that

(z —z, ) - aA~~ (y —y.) - ( A~)'" (5.6)

while of course d a since per assumption t g 1. Fur-
thermore, expanding the moments one finds

Mg, (aA~ ) k 6 [1,m], (5.7)

E C [1,n].

[We note that in order for (5.7) to be true it is necessary
that neither x nor y tend to zero at the critical point.

type2: t=l Mq ——M2 ——. ——M q
——0 M $0,

m&0;

type3: t=O, MO ——Mq ——. . . ——M z
——O, M $0,

JO Jl ' J —1 0 J 7LO 1&n
& m.
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However, as pointed out above x + 0 (or y ~ 0) is not
possible for t finite. ] From the expression (3.9) for yo it
follows that the leading nonanalytical term in Eo is given
by

The type 1 multicritical points of the generalized Pen-
ner model clearly belong to the same»~iversality class
as the usual mth multicntical points of the Hermitian
one-matrix model.

2+—
Fo ——const x AR (5.8)

where const is a nonuniversal constant. (We remind the
reader that we have assumed that m & n )F.urthermore,
from the relation (5.7) it follows that in the scaling limit
the genus one contribution to the &ee energy develops a
logarithmic singularity of the type

1 m —1 n —1+ lnAR 1 & n & m. (5.9)
24 m n

A given term of E~, g ) 1 will scale with a negative power
of a, P~, given by

S

Ps = a(m —1) +P(m ——) —) (m —a;)n i=1

.f m&m—

(g —1)(2m + 2) —p
'll

( mi+ & (& —l)+).(P —1)

(5.10)

(5.1i)

P = l =0, f =g —1. (5.12)

These terms hence do not depend on any J moments and
have

(a —s) = 2g —2,
S

) (a; —1) = 3g —3.
i=1

(5.i3)

In deriving (5.11) we implicitly assumed scaling for all
M moments involved. By a slight modi6cation of the
argument given above it is easy to convince oneself that
terms which contain a moment Mg with k ) m will be
subdominant in the limit a m 0. Hence in this limit E~
can be written as I, M.

Fs —— ) (ag a, ~a)s
M1 d~~

(5.14)

All terms in (5.14) scale as given by

Max(Ps ) = (g —1)(2m+ 1), (5.15)

and we see the possibility of a double scaling limit emerg-
ing. Furthermore, bearing in mind (5.5), we recover the
behavior (5.1) with

p.g, ———1/m. (5.16)

For n = m all terms with p = g —1 contribute in
the scaling limit and F~ becomes a s»~ of two terms
of the type (5.14), one which involves M moments and
one which involves J moments (cf. Ref. [7]). Obviously
the relations (5.15) and (5.16) hold also in this case.

where to obtain the second equality sign we have made
use of the relation (4.8). Now it follows from (4.5), (4.6),
and (4.9) that for n ( m the dominant terms of F~ are
those for which

B. Type 2 critical points

Let us consider a critical point ((g;), t) = ((g, ), 1) for
winch Mg ——M2 ——. . . ——M~ g

——0, M~ g 0, m &

1, and let us approach the point by setting ((g,), t) =
((g, ), t) We. note that Mg = J» since z, = y . A.ssuming
for a given value of t the branch points of Wp(p) to be z
and y we find, by expanding Bq (x, y) keeping only leading
order terms,

) M' c;c;(z—x,)'(y —y, )
' = 0,

i=O
(5.i7)

) (z, M'+, +M ) c;c +g, (z —z,)'(y —y, )
+" '

i=0

(5.18)

[The vanishing of the terms of order (z —z, ) is due
to (5.17).] We now de6ne a renormalized coupling con-
stant AR by

t, —t=a +AR
and get

A1/(en+1)

The moments scale in the following way:

(5.19)

(5.20)

aA1/( +1) k ~ P (5.2i)

Using the expression (3.9) it is easy to see that the sin-
gular behavior at genus zero is caused by the scaling of
d and that

1
FO ——— ARlnAR,m+1 (5.22)

as was also found in Ref. [4]. Furthermore, using (4.3),
(5.20), and (5.21) we see that in the scaling limit we have,
independently of m,

1F, = ——lnAR.
12

(5.23)

This property of the multicritical Penner models was
shown for m up to 4 in Ref. [6].

Here we can address also the question of the behavior
of these models for y & 1. A given term of E+, g & 1 will
scale with a negative power of a, with P given by

Ps = [(a —s) + (P —l)](m —1)
S S

+) (a-1)+).(&-1)+~
i=1 j=l

= (g —1)(2m+ 2) .

(5.24)

(5.25)

which tells us that (x —x,) (y —y, ). The expansion of
B2(x, y) leads to the relation
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Here we find the amazing result that all terms in our
expression (4.4) are potentially relevant for the scaling
limit. By potentially relevant we mean relevant for m
suKciently large: We have in deriving (5.24) and (5.25)
implicitly assumed that all moments scale. A closer anal-
ysis reveals that as in the previous case terms which con-
tain a moment Mg„k) m, can be neglected in the limit
a ~ 0. Now bearing in mind the relation (5.19) we see
that independently of m we have

t = ~+ii2A R )

we have

1

x aA~en+ 1/2
(y —y) a + An.

Making use of the expression (3.9) for yo we find

Fa = 1 2A~lnA~.2m+ 1

(5.30)

(5.31)

(5.32)

p,g, ——0. (5.26) For the moments we have

~ = 4(g —1), 8= 1 =0, a+P = 2(g —1).

(5.27)

In particular, these terms do not depend on any moments
other than Mi and Ji.

The fact the p,&,
——0 for type 2 multicritical points

shows that these have no connection to the multicritical-
ity associated with the conventional c = 1 models where

p,q, ———(m —2)/(m+ 2) [11].

Among the type 2 critical points we find the critical point
of the Penner model, gy = 1 g' = 0 i & 1 It is well
known [2] that this model exhibits the scaling behav-
ior characteristic of a theory describing two-dimensional
(2D) quantum gravity interacting with matter with cen-
tral charge, c = 1. However, it appears that this scaling
behavior occurs for all type 2 critical points with Mf g 0.
Let us note that for these models all scaling of the higher
genera contributions to the &ee energy is due to the scal-
ing of d and the terms which are important in the limit
a -+ 0 are those for which

m —It, k e [O, oo],

while the J moments do not scale. Hence from (4.3) we
see that the genus one contribution to the &ee energy
behaves in the scaling limit as

1 (m —1&
Fi =-—

I24 im+1/2) (5.34)

Pear = o. (5.35)

VI. FERMIONIC ONE-MATRIX MODEL

To handle the higher genera contributions to F we note
that except for the fact that in the present case all M
moments scale the behavior (5.33) is the same as that of
a type 1 multicritical model with (m, n) = (m, 1). Hence
we have the same value of max(Ps j as in that case which,
bearing in mind the relation (5.31), tells us that

C. Type 3 critical points In this section we consider the one-matrix model

For simplicity let us consider a point for which Ji g 0.
The generalization to the case Ji ——J2 —— . ——J~ i ——0,J„g0, 1 ( n ( m, is straightforward although more
tedious than in the case of the type 1 multicritical mod-
els. [We remind the reader that for moments of the type
Mg((g;), t = 0), J(s(g;), t = 0) it is understood that t
should be set to zero before the contour integration is
carried out. ] Again we keep the coupling constants (g;)
fixed at their critical values and assume at a given value
of t the branch points of W(p) to be x and y. After per-
forming a few rearrangements we can write the boundary
equations (3.2) and (3.3) as

Z = e = deed@ exp —N Tr V 4@ (6.1)

V(44) = ) —(4%)".
le=1

(6 2)

For this model we define the one-loop correlator by

where 4' and @ are N x N matrices whose matrix el-
ements are independent Grassmann variables. We take
the interaction to be of the type

c 2: ( 2)y'i'M +cg(y —ye)Jfyc=o

c x (xy, ) i M' +t=0.
(5.28)

(5.29)
(6.3)

Hence if we introduce a renormalized coupling constant
A~ by

and the genus expansion of the &ee energy and the one-
loop correlator looks as in Eq. (2.4). To derive the loop
equations of the model it is convenient to consider a
transformation of the fields (@,9) of the type

1For the Penner model one actually has to keep next to lead-
ing order terms in the expansion of the boundary equations.
However, it is easy to shower that the conclusions stated above
hold also in this case.

4 ~'0+ e
p(p —44) '

(6.5)
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Under such a transformation the measure changes as 2

g2&+y c& z
j=o

2

( z2) 1/2 =0, (6.12)

(6.7)
( 1

~p(J —~+)»
Using the result (6.7) it is easy to show that the in-
variance of the partition function under the transforma-
tion (6.4), (6.5) leads to the loop equation

'( }W(.)+ -'W(, )c 2

+ W(p), (6.

which admits a solution of the type z = ip. In order
to recover in the lixnit g2~+q -+ 0, j ) 0, the previously
obtained results for the Penner model, we should take the
negative square root of (—z2)1/2. However, if we want to
recover in the limit g2~+q ~ 0, j & 0, a Gaussian model,
we should take the positive square of (—z2)1/2. In the
following we will consider the latter possibility since we
wish to have an interpretation of our model in terms of
random surfaces. In any case we see that for a fermionic
matrix model with odd potential we have for the branch
points of W(p), z = —y = ip. This has the following
implications for the moments:

where the notation is as in Sec. II. This equation is
identical to Eq. (2.6) for t = 2 [8]. Hence we learn
that when analytically continued to t = 2 the Hermitian
matrix model (2.1) is equivalent to the fermionic ma-
trix model (6.1). In particular, we know from Secs. III
and IV the complete perturbative one-cut solution to the
model (6.1).

The boundary equations for t = 2 reveal an interesting
feature of the fermionic model. Inserting t = 2 in (3.2)
and (3.3) we find

V'((u)
2mi Q(~ z) (~ y)

d~ ~V'(~)
2mi Q(~ z)(~ —y)

= 0.

2
——0, (6.S)

(6.io)

%e see that the roles of the boundary equations are in a
sense opposite to what was the case for the ordinary Her-
mitian one-matrix model. The concepts symmetrical and
nonsymmetrical are interchanged; i.e., an odd potential
leads to the branch points of W(p) being placed symmet-
rically with respect to the origin while an even potential
leads to a nonsymxnetrical placing of the branch points.
Let us consider the case of an odd potential; i.e.,

V(4@) = ) + (44)2"+'. (6.11)
Q —0

(6.13}

It is obvious that the fermionic model possesses only
critical points of type 1. To investigate the scaling behav-
ior in the vicinity of these points we will set (g, ) = (gg,')
and scale g to 1. As mentioned earlier for type 1 critical
points the critical behavior is the same whether the scal-
ing is associated with t or g. Hence the critical points
of the fermionic model belong to the same universality
class as the critical points of the usual Hermitian one-
matrix model. The value of p,q, for the mth multicritical
fermionic model coincides with the value of p,q, for the
mth multicritical Hermitian model to all genera. The
critical indices being identical does not mean that the
topological expansion in the vicinity of a mth multicrit-
ical point is the same for the fermionic and the Hermi-
tian one-matrix model, however. For the fermionic one-
matrix model the branch points of W(p), i.e., z and y,
will in general be complex and hence F~ will in general
be a complex quantity. In the case where the potential
of the ferxnionic model has a definite parity it is easy to
investigate how the branch points being complex affects
the topological expansion.

Let us to begin with consider the case of an odd po-
tential. Inserting z = —y = iIJ, in the definitions (4.1)
and (4.2) we find

(6.14)
In this case, if we set x = —y = z the boundary equa-
tion (6.10) is trivially satisfied, since there is no residue
at infinity. The rexnaining boundary equation reads

where M is real and given by

did P&—o g2j+1 P ( 1) 2

2~1 (~ P)m+1/2(~ + P)1/2 ( ~)nP
(6.i5}

In case we were considering instead of the matrices (4, 4)
with Grassmauniau matrix elements complex matrices (Pt, P)
a similar shift of variables would lead to the following change
of the measure [12]:

d4 dP ~ d4 d4 1 + W
~ ~ ).t t (
Ep ')

What causes the difference between this formula and for-
mula (6.7) is the fact that in comparison with the complex
matrix model the fermionic matrix model has an additional
factor (—1) appearing in the change of the measure for trans-
formations of the type 4 m @+ s4'(4'4')", n & 1.

and J„=(—1)"M„[cf.Eq. (6.13)]. In addition we af
course have

8=2'Kp=xd~ (6.16)

where d is real. Inserting the relations (6.14) and (6.16)
into the expression (4.4) we find, for a given term fs of
our expression (4.4) for the genus g cantributian to the
&ee energy,

f —(') + 2;= ' E = ' f (6.17)

where fs is real and appears fram fs in (4.4) by replacing
M, J, and d by M, J, and d. Using the relations (4.7)
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and (4.8) one finds that

Jig ——( —1)g Eg (6.18)

equation of the ordinary Hermitian one-matrix model [cf.
to (6.20)]. In this case we find, in the scaling limit for
the moments of interest,

Now it seems as if a possibility of a topological expansion
with alternating signs emerges. To test the viability of
this possibility we must of course study in detail the M's.
Let us do so restricting ourselves to the vicinity of a m =
2 multicritical point.

At this point it is instructive to recall what the situa-
tion was like for the Hermitian one-matrix model with-
out the logarithmic term. To be speci6c let us consider
the model where only gr and g3 are different from zero.
For this model only Mi and Ms (and Ji and J2) are
nonvanishing (where we now understand that the mo-
ments are defined without the t term). The support of
the eigenvalue distribution (in the perturbative region of
the coupling constant space) is asymmetric and we de-
note it as [y, z]. The model has an m = 2 multicritical
point; namely,

3
22]3 )

C
g3 = —1. (6.19)

Let us approach this critical point by setting g; = gg;.
Expanding the boundary equations in powers of (z —z, )
and (y —y, ) we recover Eqs. (5.2) and (5.3) with (m, n) =
(2, 1). In particular, inserting (5.2) in (5.3) we find

(1 —g) = cz (z —z, ) Mz. (6.20)

In the scaling limit all dependence on J moments disap-
pear and for the M moxnents we have

M2 ——M2 ——g3 ( 0,
3

Mi ———M2 (z —z, ) ) 0.
2

Furthermore, for d we have

d=z, —y, =d, ) 0.

(6.21)

(6.22)

(6.23)

Now let us return to the fermionic model with odd
potential and let us try to localize a m = 2 critical point,
i.e., a point for which Mo ——Mq ——0. If we assume for
simplicity that only gq and g3 are different &om zero, we
get the following equations for gi, gs, and p:

0 = g3PC + gZPC —2 = 0C C 3 C

M~ =g3P, —2 = 0.

(6.24)

(6.25)

It is easy to see that the following solution is possible:

g3
——1, Pc =2Z/3 (6.26)

(g —1) = cz Mz p, (p —p, ) (6.27)

which looks completely sixnilar to the corresponding

As before we approach the critical point by setting g; =
gg,'- and expand our (single) boundary equation in powers
of z —z (where z = ip). After a few rewritings where
only leading order terms are kept we can represent our
boundary equation in the form

( , 2 5
M, = —

I
gs+ —,

I

= —2gs &0~

M, =M2(„„.-) = 2g-s(„„.-) & o.

Furthermore, we of course have

(6.28)

(6.29)

d=20,, ) 0. (6.3o)

Since Mq, Mq, and d have the same signs as Mq, Mq,
and d for the Hermitian model, we get for the fermionic
m = 2 multicritical model a topological expansion with
alternating signs. Apart &om the signs the topological
expansion of the fermionic model is identical to the usual
Painleve expansion (for suitable normalization of the cos-
mological constant). The question of the possible change
of signs in the topological expansion of the higher mul-

ticritical fermionic models requires further investigation.
However, on the basis of the above presented example
we put forward the conjecture that for all mth multicrit-
ical points of the ferrnionic one-matrix model with odd
potential we have, in the scaling limit for the genus g
contribution to the &ee energy, Ffe™,

pferm
( 1)g-1 pHerm

g ) (6.31)

where F e™is the genus g contribution to the f'ree en-

ergy of a mth multicritical Hermitian model obtained
&om a symmetrical potential.

Let us close this section by commenting on the
fermionic matrix model with an even potential. In this
case an analysis of the boundary equations shows that
the branch points of W(p) are again imaginary. However,
now they both lie on either the positive or the negative
real axis. (If the potential does not have a definite par-
ity, the branch points will in general have a real as well
as an imaginary part. ) Also for the symmetric fermionic
matrix model we get a set of relations such as (6.14).
However, the prefactor —,.

„
is replaced by,.„+,. This mod-

ification results in (6.18) being replaced by

Fg ——Fg . (6.32)

VII. CONCLUSION

The combination of the loop equations and the mo-
ment description constitute a powerful tool for studying

Analyzing in detail the m = 2 multicritical point is in this
case a lot more complicated than in the case of an odd
potential, because the cut is no longer symmetric and the
moments involve xnore terms due to the larger degree of
the potential. Of course, the analysis of the higher mth
multicritical points is even more difficult. However, we

put forward the conjecture that the topological expan-
sion in the vicinity of a mth multicritical point obtained
&om a ferxnionic matrix model with even potential coin-
cides with the topological expansion in the vicinity of a
mth multicritical point obtained &om a nonsymmetrical
Hermitian matrix model.
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higher genera contributions in matrix models. In partic-
ular, the moment variables make it very simple to localize
critical points and to investigate the scaling behavior in
the vicinity of these points.

Previously the moment technique was developed only
for one-matrix models with polynomial potentials. Here
we have extended the method to the case where in addi-
tion a nonpolynomial term, namely, a logarithm, appears
in the interaction, i.e., to the generalized Penner model.
The investigation of the coupling constant space of the
generalized Penner model revealed no unknown types of
scaling behavior. Our solution of the generalized Pen-
ner model provided us with a solution of the fermionic
one-matrix model and the possible types of critical be-
havior of this model turned out to be characterized by
the same value of p,t, as the mth multicritical points of
the usual Hermitian one-matrix model. A feature of the
fermionic one-matrix model which deserves some atten-
tion, though, is that it has a m = 2 multicritical point for
which the topological expansion has alternating signs but
otherwise coincides with the usual Painleve expansion.
Having alternating signs this series might very well be
Borel summable. It would be interesting if the fermionic
nature of the model could be given a world sheet inter-
pretation.

One interesting prospect of the present work is the pos-
sibility of generalizing the moment technique to the Her-
mitian two-matrix model which is known to be capable of
describing all minimal conformal models coupled to grav-

ity [13]. The study of loop equations for the Hermitian
two-matrix model has been initiated [14], but explicit re-
sults for correlators are few and limited to genus zero.
Another promising application of our results is the genus
zero analysis of matrix models in dimensions, D & 1 [15].
Here the task would be to localize critical points and de-
vise possible continuum limits. The genus zero loop equa-
tions were obtained in Ref. [16]. Of particular interest is
the Hermitian matrix model with a logarithmic potential
for which these equations can be exactly solved for any
D [17].

APPENDIX: EICENVALUE SUPPORT
FOR VARIOUS T

Let us investigate in some detail the question of the
location of the support of the eigenvalue distribution for
the Penner model:

U(P) = —P+ ting. (Al)

From Eqs. (3.14) and (3.15) we know explicitly the po-
sition of the end points x and y of the distribution as a
function of t. As explained earlier the exact location of
the support can be found only by studying the function
G(A) defined by (3.5). The support is an arc connecting
y to z along which G(A) is purely imaginary and which
is embedded in a region where Re[G(A)] & 0. Using our
solution (3.1) we can write down an explicit expression
for G(A). We find

= — (p —*)"(
— )"+(

— ) (( [( —
)"( — )"'+ + ( — )])

0. 5
2-

—0 5- —2-

—0. 5 0. 5

FIG. 6. The sign variation of Re[G(A)] for t = 1.
Re[G(A)] & 0 in the gray region and Re[G(A)] ) 0 in the
white region.

FIG. 7. The sign variation of Re[G(A)] for t = 3/2.
Re[G(A)] & 0 in the gray region and Re[G(A)] ) 0 in the

white region.
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where we have on the way made use of the boundary
equations (3.11) and (3.12).

Below we have shown the sign variation of Re[G(A)]
in some spectacular cases assuming the cut of the square
root (p —x) ~i z(p —y) ~~ to be the straight line connecting
x and y. Before proceeding to analyzing these plots let
us note certain characteristics of the function Re[G(A)]
which can easily be read off from (A2). First we see that
as p ~ +oo we have Re[G(A)] ~ goo and as p ~ 0 we

have Re[G(A)] -+ +oo (provided t g 0). Furthermore,
it is easy to convince oneself that if x and y are real
Re[G(A)] = 0 for A 6 [y, z]. However, if z and y are
imaginary we have Re[G(A)] g 0 for A's on the imaginary
axis between x and y.

Figure 6 shows the case t = 1. We see that the branch
cut [y, z] has collapsed to a point and that there is a loop
encircling the point A = 0 along which Re[G(A)] = 0.
Inside the loop Re[G(A)] ) 0. The appearance of such a
loop going through the point x is a common feature for
all t ( 1, t g 0. For t ( 0 the support of the eigenvalue
distribution is simply [y, x]. However, for 0 ( t ( 1 with
the cut of W(p) only reaching from y to x we have actu-
ally not satisfied the requirement that we should take the
negative square root of (xy)~~z (cf. Sec. III). However,
this requirement will be fulfilled if we deform our original
cut so that it includes also the loop. Then we will have

Re[G(A)] ( 0 both inside and outside the loop and hence
the loop belonging to the support of the eigenvalue distri-
bution. When t & 1 the points x and y become complex
and each others complex conjugate. In Fig. 7 we have
plotted Re[G(A)) for t = sz. We see that there is still an
arc connecting 2: and y along which Re[G(A)] = 0. This
arc passes the real axis to the right of the origin. (We
note that the discontinuity of Re[G(A)] along the vertical
line connecting x and y of course has its origin in the
cut of the square root (p —x) ~~z (p —y) ~~2 being placed
along this line. ) As in the case of 0 ( t ( 1 we can now

4-

2-

0-

-2-

illa i i IJIM4n& i ) & &ca mlui%8JI IIi

FIG. 8. The sign variation of Re[G(A)] for t = 2.
Re[G(A)] ( 0 in the gray region and Re[G(A)] ) 0 in the
white region.

deform our original cut into the arc with Re[G(A)] = 0
connecting z and y, thereby identifying this arc with the
support of the eigenvalue distribution and satisfying the
requirement concerning the sign of (xy) ~ . Finally in
Fig. 8 we have plotted Re[G(A)] in the fermionic case
t = 2. The figure exemplifies the statement that the
roles of even and odd potentials are interchanged for the
fermionic one-matrix model. We see for the odd poten-
tial V(P) = —i' a completely symmetric picture. The
analysis of the cut structure is left to the reader.
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