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Conformally invariant boundary conditions for dilaton gravity
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Quantum mechanical boundary conditions along a timelike line, corresponding to the origin in
radial coordinates, in two-dimensional dilaton gravity coupled to N matter fields, are considered.
Conformal invariance and vacuum stability severely constrain the possibilities. The simplest choice
found corresponds to a nonlinear Liouville-type boundary interaction. The scattering of low-energy
matter ofF the boundary can be computed perturbatively. It is found that weak incident pulses
induce damped oscillations at the boundary while large incident pulses produce black holes. The
response of the boundary to such pulses is semiclassically characterized by a second order, nonlinear
ordinary difFerential equation which is analyzed numerically.

PACS number(s): 04.70.Dy

I. INTRODUCTION

Two-dimensional dilaton gravity coupled to conformal
matter provides a simple &amework for studying the. puz-
zles of black hole formation and evaporation. In some
models, a fairly complete understanding of the leading
term in a 1/N expansion (where N is the number of
matter fields) of the quantum theory has been obtained
[1—5]. Below a certain energy threshold, black holes are
not formed (at this level of approximation). Above the
threshold, black holes form and evaporate, and informa-
tion is irretrievably lost into spacelike singularities.

The relevance of these results to the black hole in-
formation puzzle can be legitimately questioned on at
least two grounds. First, despite the fact that it con-
tains black holes and Hawking evaporation, the theory
may not faithfully model the four-dimensional phenom-
ena. Physics in two dimensions is certainly rife with pe-
culiarities. Second, it is not understood, even in pria-
ciple, how to compute the subleading corrections to the
leading large-N behavior. Even a formal de6aition of
the exact quantum theory has not been given for these
models. Thus it cannot be claimed that any fully self-
consistent model with information loss exists. Clearly it
is important to establish whether or not this is the case.

One of the main issues at stake here is the nature of the
boundary conditions imposed along a timelike line which
lead to the re8ection of below-threshold incoming energy
[4]. Such a boundary is required in order that the two-
dimensional theory faith&dly models the desired four-
dimensional physics. The two dimensions correspond to
time and the half-line r & 0. The boundary corresponds
to the origin of the four-dimensional, spherically symmet-

ric spacetime. A below-threshold pulse which is reBected
ofF of the boundary in the two-dimensional model cor-
responds to a low-energy four-dimensional S wave which
passes through the origin without gravitationally collaps-
1ng.

The boundary conditions are highly constrained by the
following consistency conditions.

(1) Conformal Invariance. General covariance and en-
ergy conservation require that the boundary conditions
are conformally invariant.

(2) Vacuum Compatibility. The linear dilaton vacuum,
or a close cousin, must be compatible with the boundary
conditions. If the nature of the vacuum is greatly altered,
the model cannot be used to study black hole physics.

(3) Vacuum Stability. The boundary conditions should
ensure that the vacuum is stable under small perturba-
tions.

In this paper we build on earlier work [4, 6—8] and an-
alyze the problem semiclassically. A solution is found
only when N ) 24 (but is not necessarily "large" ). In
the large-N limit it agrees with that found previously
by Chung and Verlinde [7]. The solution involves an
exponential Liouville-type boundary interaction. There
is one &ee parameter Yo which governs the strength of
the boundary interaction, but this parameter cannot be
dialed to turn ofF the interaction without encountering
instabilities. The result of throwing low-energy pulses
at the boundary can be computed perturbatively. For
a range of Yo and N ) 24, the incoming pulse excites
damped oscillations of the boundary. For values of
Yo outside this range, incoming pulses excite exponen-
tially growing oscillations and vacuum instability. When
N ( 24, there is no stable range of Yo. (Although al-
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Depending on the gauge condition, either the boundary
curve itself or fields at the boundary oscillate.
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ternate boundary conditions, which give stable dynamics
for N & 24, may well exist. ) The interesting special case
N = 24 will be described elsewhere [9] and has been pre-
viously discussed &om a somewhat diR'erent perspective
in [6, 8].

For the string theorists in the audience, we note that
the question of consistent boundary conditions can be
viewed as a problem in open string theory. In that lan-
guage, our boundary conditions correspond to an open
string tachyon condensate.

All the results of this paper are based on a semiclassical
approximation. Operationally it is clear how to imple-
ment this approximation. It is much less clear when the
approximation is reliable. It is generally justified only at
large N, so our strongest results pertain to the large-N
limit. At finite N the approximation is still justified for
the computation of certain quantities in coherent semi-
classical states, and may generally provide insight into
the structure of the theory. However, we wish to cau-
tion the reader that its reliability is much more limited
at finite ¹ While we do believe that exactly conformally
invariant boundary conditions of the type we describe ex-
ist at finite N, the methods of this paper are insufBcient
to establish that. A fully quantum treatment may be
possible when N = 24, where substantial simplifications
occur.

In Sec. II we establish our notation a.nd review the
transformation of the bulk theory of two-dimensional
dilaton gravity to a soluble conformal field theory [2, 3,
11].We also show that black holes in these theories evap-
orate semiclassically at a rate proportional to N, even
when N & 24, as desired. (The literature contains con-
fiicting claims on this point. ) In Sec. III our boundary
conditions are presented and analyzed, and in Sec. IV
we consider their large-N limit. Section V analyzes the
short-distance limit of the theory, in which the bulk cos-
mological constant can be ignored. This limit is of special
interest because the full theory, including the exponen-
tial boundary interaction, is semiclassically (and possibly
exactly) soluble.

The present work on low-energy scattering is a pre-
requisite to, but still a long way &om, a fully consistent
quantum description of black hole formation and evapo-
ration as approximately described at large ¹ In partic-
ular we do not address the issue of how the black hole
disappears after shrinking to the Planck size. This black
hole end point is in general out of causal contact with
the point where the collapsing matter arrives at the ori-
gin (as discussed in Sec. III) and so cannot be affected
by any boundary conditions we impose there. We leave
this vexing issue for future work [10].

II. THE BULK THEORY

In this section we describe the bulk conformal field the-
ory of two-dimensional dilaton gravity for arbitrary N,
deferring the issue of boundary conditions to the next sec-
tion. Our aim is mainly to refresh the reader's memory
and fix conventions, but we also present some new ma-
terial on the rate of Hawking evaporation of large mass
black hales. The reader is referred to [5] for more thor-
ough reviews of the subject.

A. Quantisation

Classical dilaton gravity is described by the action

~classical = d 0'i» ge
—2P

27r

In the conformal gauge,

ds = —e ~der+do.

where o+ = cr + o, the action becomes

(2)

N

+—) 8+f8 f;

At the one-loop level, the action (3) acquires a well-

known correction

d txO+ pO p
N

12m
(4)

from the functional measure for the matter fields. The
accompanying correction to the stress tensor will be given
below. A similar correction to (1) arises from the p, P,
and ghost measures [12):

A separate treatment wi11 be given far N = 24 (p = 0) in

The combination p —P (rather than p) appears in (5)
because the natural metric for the p, P, and ghost fields
is ds2 = e2~ 24—'do+de, rather than (2). This is the
metric which appears in the kinetic term for p and P in
the classical action (3). We will also see that this choice
of measure is required in order that black holes Hawking
evaporate at a rate proportional to N, rather than N —24.

The choice (2) of conformal gauge leaves unfixed a
group of residual coordinate transformations which is iso-
morphic to the conformal group. Thus in order to main-
tain coordinate invariance of the quantum theory, one
must ensure that conformal invariance of (3), regarded
as a theory of the N + 2 bosons f, , p, and P, is preserved
by the quantization procedure. The sum of the classical
action (3) plus the one-loop corrections (4) and (5) is not
conformally invariant to all orders in the loop expansion
paraineter e 4' (although it is conformally invariant to
leading order in the 1/N expansion). To remedy this we

must add counterterms at each order. Conformal invari-
ance does not uniquely fix these counterterms. Diferent
choices lead to inequivalent but in general qualitatively
similar theories. It behooves us to choose the counter-
terms so as to simplify theory as much as passible. As
discussed in [3,2, ll], a judicious choice leads to a soluble
conformal field theory. Let
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N —24

12

Y = —— dd/4e 44 —4(2 + 2)e ed + 2(2 4- 2),
1
'y

e '&+ 2yX=p+
y

The action is then given by

S= — do' —p8 XB X+p8 YB Y+A e
1

N

+—) 8+f8 f;
i=1

(7)

N
y 1

&P+ =
2 ).~+/&+f

Substitution of (6) into this action leads back to the orig-
inal action (3) [corrected by (4) and (5)], plus additional
potential terms which are subleading in the loop expan-
sion parameter e~&. These corrections ensure exact con-
formal invariance.

The gravitational and matter parts of the stress tensor
are given by3

T~+ = p (8+Yo)+Y —8+X8+X + (9+X),

Y= X —Acr. (10)
AThe gravitational stress tensor takes the value T++ ——"2

in the vacuum configuration (10). The nonvanishing
right-hand side of this equation cancels (in sigma coordi-

nates) against the ghost stress tensor, T+s+ ——2((9+(p—
P)),which is included in T++ in the left-hand side of the
equation. Equivalently, the ghost vacuum is annihilated
by annihilation operators defined in the (Kruskal) coor-
dinates in which p = P asymptotically. Although this
seems the most natural choice, a priori, other choices
of the ghost vacuum state might be considered. How-
ever, we shall see in the next subsection that black holes
evaporate at a rate proportional to N only if F = —1.

B. Black hole formation and evaporation

pX=e + F+ —
~

Ao+ —,2Acr

2~
Y=X —Aa,

where o' =
2

(o'+ —o' ). We have expressed the solutions
here in the "u gauge, " generally defined by the condition
Y = X —Acr, in which the static field configurations are
independent of the timelike coordinate. For all these so-
lutions 4) ~ —Ao' and p ~ 0 asymptotically. The vacuum
corresponds to p = 0 and F = —1 [11]:

yX=e" + ——1 A~,

along with a similar expression for T, T . Together
they generate a c = 26 Virasoro algebra.

The theory defined by (7) is almost as simple as a &ee
field theory. Indeed, in Sec. V we show how it can be
transformed into one. The null combination (X —Y)
which appears in the exponential in (7) does not have
a singular operator product with itself, and a super-
selection rule prevents the exponential interaction term
from generating corrections to the free operator prod-
uct expansions (OPE's). For these reasons the theory is
substantially simpler than the Liouville theory, which it
superficially resembles. For example, the quantum efFec-
tive action can be (formally) exactly computed and is the
same as the original action (7) [4]. However, these simpli-
fications evaporate to a large extent when the boundary
is introduced, as we shall see in Sec. III.

It is instructive to consider the semiclassical solutions
to this theory. By this we mean solutions of (7), rather
than of the original classical action (1). Thus our semi-
classical solutions will contain terms of arbitrary order in
e ~, and know about Hawking radiation and black hole
evaporation. The semiclassical equations of motion have
a two-parameter family of static solutions labeled by the
constants p and F:

Consider matter incident on the vacuum (10) from X
characterized by some given energy profile T++ (o'+). The
semiclassical gravitational field is a solution of the con-
straints

FA2
++ ++ 2

FA2
T~ (11)

2

This is asymptotic to the vacuum (10) only when F =
—1, but for the moment we consider arbitrary values of F
in order to see why F = —1 is indeed the correct choice.
The solution of these equations is

7X = e " ——e" P+(o+) + M((r+—) + F + — Ao,
'Y

A 2
Y=X —A~, (12)

where
~+

M(e+) =f Te~e(ve)dve,

~+

Pv(ev) =f e " T~ (v+)dv+."

The Bondi mass measured on X+ is given by

Our normalization follows prevalent dilaton gravity con-
ventions, which unfortunately differ from prevalent conformal
Seld theory conventions.

There is a potential confiict here with the no ghost theorem
which we have not addressed. See Ref. [6] for a discussion of
this theorem in two-dimensional dilaton gravity.
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m(y ) = 2e"" " (Abp+8 bP —8 by). (i4)

This expression is evaluated in asymptotically inertial co-
ordinates y+ in which p +-0, and hp and bp are the devi-
ations of P and p from their vacuum values. The inertial
coordinates y+ at 2+ are

(
y =a ——ln

~

1 — P+—e"
) '

where P+ = P+(oo). To leading order in e ",one finds

hP= — =bp,
bY
2Y

where

(16)

M 1 ( 1—
phY = ———(p —2F) ln

~

1+ P+e"—"

with M—:M(oo). The Bondi mass is then given by

A (Nm=M ——
J

——1 —F
/

2 g24

»
~

1+ —P+e "
~
+ — „.(18)

( 1- „„-l P+
P+ + Ae-»

The rate of change of the mass is evidently proportional
to N if and only if E = —1.

At early retarded times (y + —oo) t-he mass (18) de-
cays at the rate predicted by naive semiclassical reasoning
which ignores back reaction. At late times (y ++oo), -
however, a disaster occurs: the mass plummets to minus
infinity. This is not so surprising because p in Eq. {9)
can be arbitrarily negative and the system has no ground
state. The "vacuum" (10) is unstable under arbitrarily
small perturbations in the context of the bulk theory con-
sidered so far. We shall see that this disaster is averted
for small P+ when appropriate boundary conditions are
imposed.

An alternate procedure, which does lead to a confor-
mal 6eld theory, is to impose boundary conditions along
a timelike line 0 = const at or near the "origin. " Incom-
ing fields will then be re8ected at this line to outgoing
6elds. In the physical region to the right of this line, the
semiclassical vacuum values of X and Y will correspond
to real values of p and P. Strong quantum fluctuations, or
large incoming pulses, will still produce low values of Y,
but this does not preclude the perturbative construction
of a low-energy S matrix for asymptotic observers.

One might hope to also effect a cure of the negative
energy instability of the p & 0 theory by imposing a
boundary condition at some value of Y, even if there is
no natural minimum value in that case. As we shall see,
however, the solutions exhibit a qualitatively different
behavior for p & 0 and we have not found any boundary
conditions which stabilize that theory.

A. Conformal invariance and vacuum compatibility

It is imperative that the boundary conditions respect
conformal invariance. Otherwise the theory is not gen-
erally covariant and cannot be regarded as a theory of
gravity. Boundary conformal invariance is equivalent to

T++(0, ~) = T (0, ~), (19)

where T is the total stress tensor for all fields. If either
Dirichlet or Neumann boundary conditions are imposed
on the rnatter fields f;,

8+f;(0, ~) +8 f;(0, 7.) = 0,

then the boundary condition (19) implies

F9+X —0+XB+X+ 8+YB+Y

(20)

= 8 X —0 XB X+0 YB Y. (21)

This equation is 8emiclassically solved by either

III. BOUNDARY CONDITIONS
cl+X —cl X = AF(Y) e

8+Y —6 Y= —A e
BI'

(22)
In the bulk theory of the preceding section, the range

of values taken by X and Y is unrestricted. For p ) 0
this is unphysical because taking Y below a certain min-
imum value corresponds, in this case, to complex values
of the original dilaton field P [4]. When two-dimensional
dilaton gravity is derived by spherical reduction &om four
dimensions, this corresponds to transverse two-spheres of
negative area. The bothersome negative energy configu-
rations are also characterized by large regions in which
Y is below this minimum. For p & 0 the 6eld redefi-
nition {6) is nondegenerate for all values of Y but the
bulk theory has nevertheless the same negative energy
problem.

One can try to remedy these problems by simply re-
stricting the range of Y so that the original Gelds p and
P are real. However, the resulting functional integral no
longer de6nes a conventional quantum Geld theory, and in
particular does not correspond to any easily identifiable
conformal field theory.

where F(Y) is an arbitrary function, or

0+X —0 X = AAe

Y= YD,

where A and Yo are constants. In the following we will
focus on (23). The imposition of these boundary con-
ditions transforms the relatively trivial bulk theory to a
highly nonlinear, interacting theory.

Compatibility of these boundary conditions with the
vacuum solution (10) constrains the parameters A and

In the language of string theory this corresponds to an open
string tachyon, T = E(Y)e, which satisSes the classical P-
function condition, V'4 . V'T = ST.
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Yp. For a given value of A, the X boundary condition
is satisfied for the vacuum solution (10) only along the
timelike line

1—i9+Y+ u0 Y = 0,
u

where

(27)

AO = hip)

7 —2
pA=2e '+ ' 'e

2
(24)

fBx~ )
u(x+) =

I

i,Bx+ )
{28)

along which

(7+ 2)pY=e
2

4Jp.

A and Yp are, therefore, determined by the single &ee
parameter up. For a given value of A and p ) 2, there
are two values of ufo consistent with (24). However, we
shall see that at most one is stable. Note also that there
is a nonzero minimum value of A:

2' —2
min— )

y

(26)

for p & 2. Thus it is not possible in this case to analyze
the theory perturbatively in the strength of the boundary
interaction.

The boundary conditions (22) and (23) are only semi-
classical solutions of the operator condition (19) for con-
formal invariance. To verify that they imply the refiec-
tion condition (19) on the stress tensor to leading order,
X and Y are treated like c-number fields. The boundary
conditions can presumably be modified order by order in
the loop expansion of (7) in order to maintain (19).

Of course, the semiclassical approximation is not al-
ways reliable. Corrections to the semiclassical approxi-
mation can be systematically suppressed by taking p to
be large, as will be discussed in Sec. IV. However, even
when p is not large, the semiclassical approximation can
be good for certain quantities or certain states. For ex-
ample, we expect the sexniclassical approximation to be
good for calculating the radiation rate of a large black
hole for any value of p. We also expect that a necessary
condition for the semiclassical approximation (23) to the
boundary conditions to be good is that the boundary is
in a weak-coupling, large-radius (i.e., large Y) region. It
follows immediately from (25) that it is always possible
to arrange that this is the case by adjusting the &ee pa-
rameter A in (23) to be very large.

B. Dynamical boundary curve

A boundary condition imposed at 0 = const restricts
the left and right conformal invariance to a diagonal
subgroup. Separate left and right invariance can be re-
gained, however, at the price of allowing the boundary
to follow a general trajectory, described by the equation
x&(x+) = x . In this case constancy of Y along the
boundary ixnplies

and (—, u) is the tangent vector to the boundary curve.
The Neumann or Dirichlet conditions on the matter fields
become

1
B+f—; +uB f; =0.

u
(29)

The general form of the X boundary conditions follows
readily from the observation that (23) is equivalent to
the geometric condition that the extrinsic curvature of
the boundary curve in the xnetric d8 = —e xdx+dz is
constant. For a general curve the first equation of (23)
becomes

—8+X —u 8 X = AAe ' + —8+u.X—Yo

u u2 (30)

The boundary conditions (27) and (30) can be used to
relate the components T++ and T of the gravitational
stress tensor along the boundary. Since (30) holds every-
where along the boundary, a new identity can be obtained
by acting on both sides with the operator iB+ + uB
which generates translations along the boundary. One
finds

—(B+X —B+XB+X)=u (B X —B XB X)

u iu) (31)

,Tf ~ = u'Ts———B+ /

—
/

.
u lE I 'B)

(32)

The last "Schwinger" term is well known in studies of
inoving mirrors [14]. It vanishes in "straight-line" gauges
for which u is constant. This Schwinger term was omit-
ted in the reBecting boundary conditions discussed in
[4]. The boundary conditions of [4] can apparently not
be derived as the sexniclassical limit of any conventional
quantum mechanical boundary conditions. 7 They nev-
ertheless give rise to a stable evolution which conserves
semiclassical energy.

A differential equation for the boundary curve can be
easily derived in Kruskal gauge which is defined by the
condition

X(x+,x ) = Y(x+, x ), (33)

where Kruskal and sigma coordinates are related by

(34)

Taken together with the Y boundary condition (27) this
implies that

This constraint could be relaxed by considering p g 0 so-
lutions in {9),but we have not explored this possibility. This observation was made in collaboration with S. Trivedi.
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Adding (27) and (30) we then find

2 1—9+Y = AA+ —0+u.
u u2 (35)

(jl+Y = AAg+u + g2 lnu

In Kruskal gauge the general solution (12) becomes

Y= —— A x x +x P+ ——
'Y ( A

Multiplying by u and acting on both sides with (0+ +
u 49 ) (i.e., differentiating along the boundary), one ob-
tains

for large negative or positive cu, and there is no local
minimum. Substituting bd = Q)p lilto (40), one finds

or

Ox eB 2= u
Ox+ A2x+2 ' (44)

x+x = e o
B

C. Vacuum stabxlxty

The vacuum boundary curve is thus a hyperbola in
Kruskal coordinates, which means it is a straight line
located at Acr = ~0 in sigma coordinates.

The derivatives of Y are then

0+Y =

1 (. &+21——~A x +P++ 4z+) '

1 ( g p+2l
++ 4 +2)l '

A2

y

8+ lnu+ AAO+u+
2A2u2 + 2 2 f++'

Substituting these relations into (36) leads to

(37)

(38)

(39)

p~" + bA~' + (b + 2) A ~ = 2T++, — (46)

where u = u —uo and

b —2 247P ~ + 2

2
(47)

The general solution to the corresponding homogeneous
equation is given by

n n+ ~+~=C+e + +C e— (48)

It does not appear possible to solve analytically for the
boundary trajectory for a general incoming pulse but one
can easily obtain the leading order in a perturbation ex-
pansion in the strength of the incoming pulse. Lineariz-
ing (41) around the vacuum solution one finds

An alternate form of this equation is obtained by de6ning

u)(o+) = Ao++ lnu. (40)

u is a useful variable because, unlike u, it is a constant
in the vacuum. The resulting equation

(u" + k(bd)A(u'+ A = T++, ——49V(bd) 2 2 y

84)
(41)

can be interpreted in terms of a particle moving in a po-
tential subject to a driving force and a nonlinear damping

force, where k(u) = Ae —1, &i 1 ———e —Ae + ~z

and the primes denote differentiation with respect to 0.+.
Damping arises because boundary energy can be dissi-
pated into (or absorbed from) the rest of the spacetime.
Note that the damping becomes negative for suKciently
negative ~. The potential is

A
ab = — b4: /b~ —4yb——8P) .

21

Stability of the vacuum under small perturbations re-
quires that both solutions in (48) be exponentially
damped. It is straightforward to show that this is possi-
ble only for p & 0. Even for p ) 0, the behavior of the
solutions depends on the choice of A (or equivalently up).
In this case, stability requires b ) 0. This condition can
be understood by noting that b = ~&b9 Y(&up) when Y is
in the vacuum configuration (10) and, therefore, both b

and the slope of Y change sign at a minimum value Y;„
of Y. In other words, the boundary conditions can only
stabilize the system when the boundary is placed on the
physical side of Y .„.

The condition b ) 0 can also be translated into a re-
striction on A, which is

p —2
V = —e —Ae

2~
(42) 2

A&
V'~+ 2

For p ) 0, in the vacuum (10) we have T+f+ ——0 and the
particle sits at the local minimum of the potential. The
value coo of ~ at the minimum is

e '= —
~

A+ A2 —A2-
4 q

[where A; is defined in Eq. (26)] in agreement with

(24). For p ( 0, the potential goes to minus infinity

For p & 2, this condition is a consequence of A & A
so all p ) 2 vacuum-compatible boundary conditions are
stable. When 0 & p ( 2, this is a new restriction. Ap-
parently (for p g 0) A = 0 is never a stable boundary
conditon, and one cannot perturb in A.

For p ( 0 (i.e., N ( 24) the perturbations grow expo-
nentially for any value of A, and we know of no stable
boundary conditions. The case p = 0(N = 24) will be
discussed in a separate publication [9].
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While u settles back to its vacuum values after the
incident perturbation is reflected, z&(z ) undergoes a
constant shift. This can be directly seen from Eq. (35):

(51)

The right-hand side goes to a constant, but u itself van-
ishes as x+ ~ oo. This implies that asymptotically

form after a small pulse is reflected from the boundary. In
fact, the right-hand side of (56) goes to the saine constant
in the two limits x+ ~ 0 and x+ —+ oo and the boundary
energy thus vanishes at future timelike infinity. Since the
total energy is conserved, this implies that the incoming
and outgoing energy are equal.

The global behavior of the boundary curves will be
analyzed in more detail for the large-N case in Sec. IV.

e24Pp

&2x~+ P+ =—
) (52) D. A disaster

Yo [1n(pYO) —2] .(~ + 2)
4

(54)

B is chosen so that m vanishes on the boundary if u takes
its vacuum form e '/Ax+, while the constant terms in
(53) have been chosen so that m vanishes asymptotically
in the vacuum. For solutions of the equations of motion,
which correspond to matter energy incident on the vac-
uum, it is straightforward to establish that m(x+, z )
has the properties

lim m(z+, z ) = m(z+),
X+ ~WOO

where m(z+) is the Bondi mass defined in Eq. (14).
Asymptotically the function m(x+, x ) thus provides an
alternate definition of the Bondi mass.

We will now evaluate m(x+, x ) along the boundary
curve and verify that it vanishes before and well after all
the incoming matter is reflected. In Kruskal coordinates
the boundary conditions (27) and (30) iinply that along
the boundary Y = Y~ and

1/
8+YB Y = ——

i
AA+ 8+u i—4E u )

(56)

We have already seen that u settles back to its vacuum

so that z& goes to P+/—A2. The boundary curve (52)
corresponds to a coordinate transformation of the origi-
nal vacuum.

Our boundary conditions were constructed so as to be
consistent with the conformal invariance of the bulk the-
ory, which in particular means that energy is conserved
when the fields are reflected &om the boundary. Con-
formal invariance at T+ (I ) ensures that the change in
the Bondi mass equals the outgoing (incoming) energy
flux. However, conformal invariance does not guarantee
that the total incoming and outgoing energies are equal:
energy could get stuck on the boundary. To see that this
does not happen for sufBciently small incoming pulses,
consider the following function defined in the Kruskal
gauge:

2

m(z+, z ) = —B~YB Y+pAY

+""'[l-(»)-2)+ Y',
4

where the constant B is given by

e
—2up b2 Y QY2

1

4

We have seen how conformally invariant boundary con-
ditions, imposed at a boundary placed on the weak cou-
pling side of Y = 0, ensure that small pulses incoming
from 5 are reflected (in a distorted form) up to X+.
The behavior for large pulses is quite different. Consider
a pulse which begins (in the Kruskal gauge) at an initial
x,+. and has total momentum P+. It was seen in Sec. II
that, in the absence of a boundary, the mass plunges
to minus infinity at a point on X+, which is located at
z = P+/A2. —This behavior is potentially changed by
the presence of the boundary. The pulse first reaches the
boundary at

( e' ~ l(*+,*-)= i*+,—
A'z+. )

By causality the behavior on 5+ cannot be affected by
boundary reflection prior to x = —e2 '/A2z+. Thus for

P+ ) e' '/z+,

the mass still plunges to minus infinity. No boundary
condition at the origin can possibly avert this disaster
for sugciently large incoming momentum P+. Since the
causal past of the point z = P+/A2 on 2—'+ may in-
clude only regions of weakly coupled dynamics, this dis-
aster cannot in general be averted by modifications of
strongly coupled dynamics. Aversion of this disaster re-
quires fundamentally new input, such as the inclusion
of topology-changing processes. Such considerations are
beyond the scope of the present work.

It should be noted that this disaster does not neces-
sarily imply a sickness in the X,Y conformal field theory
itself: rather it arises in the transcription &om the X, Y
conformal field theory to a p, P theory of dilaton grav-
ity. The point A x = —P+ is at a finite distance in
the fiducial metric used to regulate the X, Y conformal
field theory, and the X, Y fields can be continued past
this point. The reflected pulse (and the information it
carries) eventually comes out back. However, this oc-
curs "after the end of time" as measured by the physical
metric ds = —e ~dx+dx

IV. THE LARGE-N LIMIT

An interesting special case (considered previously by
Chung and Verlinde [7)) of our equations is obtained
by taking the limit of a large number of matter fields,
i.e., p —+ oo. In taking this limit, A, A, Y, 2X
2X —ln(N/12), and T++ ——~T+~+ are held fixed The.
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X and F OPE's vanish in this limit and corrections to
the semiclassical approximation are systematically sup-
pressed.

The large-N formulas are derived as in the previous
sections and we collect a few of them here. The semiclas-
sical action (7) becomes

g2 g Xg X+ g yg y-+ p2 2(x —Y)
12'

(59)

(a) (b)

v"=(v') ~2/V-3. 5vv'+v'-. 5v+3.5v&2-2V~3

0&v&2, -1 &v'&1

I

I

I

I

I

z "=(z')&2/z-3. 5z'/z+z'+. Sz-3.5+2/z
0&z&8, -4&z'&4

(c)
V

V

r

v"—(v')h2/v 3 Svv'+v' Sv+3 Svn2 2vn3
0&v&.02, —.01 &v'&. 01

v =v-3.5v &2

0&v&2, -1 &v'&1

FIG. 1. (s) Phase portrait for overdamped (A = 3.5) trajectories. The two trajectories emanating from the saddle point
at e = 0.157 go to the vacuum at e = 1.5S and to the origin. The tv' trajectories vrhich asymptote to the saddIe point divide
the phase plane into basins of attraction of the origin and of the vacuum. (b) Saddle trajectories for A = 3.5 as a function
of z = 1jv. The vacuum is located at z = 0.629. The basin of attraction of the vacuum for this overdamped ease extends to
z = 0 (in6nite v). (c) Enlarged view of Fig. 1(a) near the origin. All trajectories emanating f'rom the origin have an initial
positive universal slope v' = 0.5v. Approaching trajectories arrive from negative v' with an asymptotically vertical slope. (d)
For A = 3.5, the boundary enters a black hole and a spacehke line arith Y = Yo +rill branch oK of the timehte boundary at the
points along the curve indicated. Comparison with Fig. 1(a) reveals that the curve crosses v' = 0 between the saddle snd the
vacuum.
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Y= X —Ao.

+ +x (61)

where P and Af+ Af are constructed &om T++. The bound-
ary conditions (23) are unchanged. The bou d
tion becomes

e oun ary equa-

and the +++ constraint equation can be written

0+YO+Y —8+XB+X+82X+ Tf 0 (60)

The solution correspondin to in
reBect

ing o incoming matter (without
re ec iong is, in the cr gauge

I I

I I I

I I I I I

v
I

I I I I

I I I

1 (
e '= —~A+vAe —4).

4
(63)

For A ( 2 there is no vacuum.
e inearized equation is given by (48) with exponents.

A (
cr~ = —

~

b+ b—2 —4b
2 E )

(64)

u"+A(Ae —1)(d'+A
~

2e —A e +-~= 2T' -.
2) ++

(62)

In the vacuum

il I Py -(y') A 2/y-2 1 yy' yy'- 5y+2 1 yh 2-2 A 3
&y&2, -1 &y'&1

FIGIG. 2. Phase portrait for the uor the underdamped case A = 2.1.

a e asin of attraction of the vacuum
'

the A = 3.5 case
e vacuum is (in contrast to

case now a teardrop-shaped re ion
'ec ories w ich emanate from the

asymptote to the saddle.
om the origin and

where 6 = 2e ' —— As bes before, the boundary curve is
s a e under small perturbations provided A ) 2.

We wish to understand the lob
' '

s
to ii62i/. It

e g obal behavior of solutions
o ( ). t turns out that Eq. (62) has a fixed o'

point it is convenient to introduce et
variable:

o in ro uce yet another boundary

fixed point, while those with c & 0 are e
ging rajectories have a universal initial slo e

g rajectories have an asymptoticall
in nite "vertical" slo e. It '

oica y
pe. is instructive to estimate th

oun ary mass along these a r
lar eN h

ese approaching trajectories. At
arge, t e mass formula (53) becomes

v=e +=e u.

In terms of v the boundary equation is

(65) m z+, z ) = 8+YB —Y+ AY+ —(lnY —2
4 Y

(68)

Acr+ & +
v ~ae~~ + (67)

where a ) 0 and c are inte ate in egration constants. A blowu
e p ase portrait near the ori in a eg g

wi c ( 0 are approaching the degenerate

„(Iv ——(v ) + A(Av —4)v'+ Ae (2v —Av'+-'+2
2v T+~+. (66)—

The phase portrait (for T~ = 0) is lot

ig. 2 for the underdamped case A = 2.1. T e

a ions. owever, there is a curious g
a e origin v = v' = 0 wh' h

v an repulsive for positive v'. Th
behavior arises b f

v . is unusual
ses ecause of an exact de en

equations at v = 0. ~&This de
egeneracy of the

our equation.
Near theori in thg, he equation is dominated b

~ ~

of degree one in v. Th' b
e y the terms

in v. is observation leads to
solution near th e origin:

s o the general

where the constant B is adjusted as in

is unchanged. One findne n s for c ( 0 that, on the boundary

cA ~+2

m e
—2cc +AcJ

4a2 (69)

so that the mass plummets to minus infinit

If a shock wave of total m M '

along fr+ = 0 th l
mass is sent at th e oundary

t j after the shock wavee initia ata ust a

v. s can e seen &om Figs. 1 b or Fi
K tl l Mth

attraction of the d
e, e initial data lie inin the basin of

o e egenerate fixed point.
The atholp ogical behavior alon tra ecto

ac o e formation as follows. By definition a
hol o hihO Yw c + (0 5. Theboun

en er suc are ion and

boundary line alon hi h
e imehke

= Yo. At the branching
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point, both the tangential and normal derivatives of Y
along the boundary will vanish. The condition for this to
occur follows directly from the boundary condition (35),
and in terms of the variable v it reads

v,'„(v) = A(v —Av ).

into (72). Thus the field redefinition (72) transforms the
bulk A g 0 theory into the manifestly free Az = 0 theory.

Now let us apply the boundary condition (23) for Yo ——

0 directly on the free 6elds x = x++x and y = y++y

8+x —0 x = o.e

For the special case of shock waves this reduces to the en-
ergy threshold M = 2A(e ' —4) for an apparent horizon
to form before the shock wave reaches the boundary. It
is easy to see from Fig. 1(d) that any curve which begins
at the vacuum [v(0) = e ', v'(0) = 0] and asymptotes to
the degenerate fixed point at the origin &om below nec-
essarily crosses the line v' = v,', . (The converse is not
true, as may be seen &om the 6gures: the boundary may
enter and leave a region where 0+Y ( 0 and still settle
back to the vacuum. ) Thus the runaway behavior lies be-
hind a black hole, and is another form of the "disaster"
discussed at the end of Sec. III.

V. THE A~ = 0 LIMIT

In this section we consider the theory obtained by set-
ting A = 0 in the action (7). Although black holes are
absent in this limit, it is of special interest for several
reasons. First, the theory remains semiclassically soluble
even after the nonlinear boundary conditions (23) are im-
posed. The resulting theory is comparable in complexity
to Liouville theory, and is of interest in its own right as
a nontrivial conformal field theory with boundary inter-
actions. It is similar to a boundary theory which was
recently exactly solved in [15,16] and analogous methods
may be applicable here. Second, it arises as an effective
short distance theory for (7) at scales short relative to
A . Finally, it bears the following direct relationship to
the Az g 0 theory. The fields X and Y for nonzero A

can be expressed in terms of free fields x and y,

0+0 x=0+0 y=0,
via the relation

y-(~) = -y+(~)

(76)

A convenient gauge is

x+((d ) = ld

and (76) then implies

(77)

x (cu ) = —ur —ln —.
2

The constraints further imply that

(78)

or

0+yO+y = 1 ——T++,f
y

(79)

1 f
y+ ((u+) = d~+ 1 — T+~+ (~+)— (80)

The reflection condition (76) gives

y-( ) = -y ( ).

Evidently the con6guration

where o. = AA. Note that this is not the same as rewrit-
ing (23) in terms of the free fields x and y, in which case
we would have a rather complex set of boundary condi-
tions for the &ee fields. It is straightforward to solve (75)
for the outgoing 6elds x, y in terms of the incoming
6elds x+, y+. The result is

X —Y=x —y,
A2

Y = y+ — d~+ d~-e'~*-» .
'Y

The gravitational stress tensor (9) becomes simply

T++ = p (8+yO+y —8+xi+x+ 8+zx) .

The OPE's

(72)

(73)

is stable under small matter perturbations &om 2 . Un-
fortunately (82) does not quite correspond to the z, y
configuration of the vacuum (10) of the A g 0 theory.
The x, y configuration which does correspond to (10) is
apparently not stable under perturbations, and thus (76)
does not directly translate into stable boundary condi-
&ions for the A g 0 theory.

+1 —1
8+x(o+)0+x(o+ )

. =
4p(o+ —o.+')2 '

~+y(o')&+y(~+ ) =
4p(o+ —o+')2 ' (74)

imply the original OPE's for X and Y when substituted
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