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We discuss the derivation of the so-called semiclassical equations for both minisuperspace and
dilaton gravity. We 6nd that there is no systematic derivation of a semiclassical theory in which

quantum mechanics is formulated in a space-time that is a solution of Einstein s equations, with the
expectation value of the matter stress tensor on the right-hand side. The issues involved are related
to the well-known problems associated with the interpretation of the Wheeler-DeWitt equation in

quantum gravity, including the problem of time. We explore the de Broglie —Bohm interpretation of
quantum mechanics (and field theory) as a way of spontaneously breaking general covariauce, and
thereby give meaning to the equations that many authors have been using to analyze black hole
evaporation. We comment on the implications for the "information loss" problem.

PACS number(s): 04.70.Dy, 04.60.Kz

I. INTRODUCTION

It is usually assumed that the problem of time in quan-
tum gravity is irrelevant to the questions associated with
black hole radiation. In particular it is thought that an
S matrix (or super scattering operator $) can be defined
and that the whole issue can be discussed within the or-
thodox interpretation of quantum mechanics (with clas-
sical apparatus and a classical observer). The implicit
assumption seems to be that the analyses need not, in
principle, be diferent &om that of a particle physics scat-
tering experiment.

However, a notion of time evolution is essential to the
definition of a scattering (or superscattering) operator,
and the question of whether information is lost or not
is well posed only within that context. It is also well
known that in the usual formulation of quantum gravity
[with Dirac or Becchi-Rouet-Stora- Tyutin (BRST) quan-
tization] there is no time evolution. As discussed in de-
tail in the reviews [1] there are serious problems with
all attempts to resolve this question. Nevertheless, it is
often asserted that as far as the black hole problem is
concerned this is not an issue. The reasons are not often
explicitly stated, but one or the other of the following as-
sumptions are implicit in most analyses of the problem:
(a) Hawking s original calculation [2] is seiniclassical, and
one should be able to derive a notion of time in this ap-
proximation; (b) the black hole space-time is open and
asymptotically flat. In this case there is a nonvanishing
Haxniltonian associated with spatial in6nity. This should
enable one to delne a notion of time evolution and an S
(or $) matrix.

Now if the semiclassical theory is internally self-
consistent one xnay ignore the problem of time and leave
the issue of how to derive the theory &om quantum grav-
ity to future work. However, the sexniclassical theory
is nonlinear (since it involves the expectation value of
the matter stress tensor) and thus violates the superpo-
sition principle. Thus it is unclear how one could use
standard S-matrix ideas. Furthermore, it has become in-

creasingly clear that the issue of information loss cannot
be resolved one way or the other without some under-
standing of what happens at short distance scalesi (such
as distances within a Planck length of the horizon). This
is clearly the regime of quantum gravity. Since there is
no well-defined theory at these scales2 (in four dimen-
sions), one can make assumptions about this regime in
accordance with ones prejudices. However, there is still
a serious problem of principle involved here. %hatever
the 6nal version of quantum gravity is like, as long as the
requirement of general covariance is imposed, the quan-
tum theory would seem to have the problem of time.
The question that arises then is whether the semiclas-
sical analyses can emerge &om the quantum theory in
some limit, at least for wave functions (such as that of a
coherent state) that are amenable to a classical interpre-
tation.

There are arguments in the literature that attempt to
derive semiclassical physics, and in particular the (func-
tional) Schrodinger equation, Rom the Wheeler-DeWitt
(WD) equation [6]. These are sometimes used to jus-
tify the statement that the semiclassical treatment of the
black hole problem can be derived, in the large Planck
mass limit, from quantum gravity. A careful examination
of these arguments, however, reveals that there is no sys-
tematic way in which the equations of semiclassical black
hole physics can be derived. In fact, the usual argument
does give a Schrodinger equation, but in a background,
which is a solution of the vacuum Einstein equations; i.e.,
it is independent of the (quantum) state of matter. Both
in the black hole case and in cosmological applications,
however, the geometry is supposed to be determined by
(the expectation value of) the matter stress tensor, so

See for example [3—5].
String theory may be the answer, but at present there is no

real understanding of anything beyond perturbation theory
around Bat backgrounds.
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the usual argument is clearly inadequate. Since the orig-
inal work on this qeustion, there have been attempts to
remedy this problem by various xneans. In the first part
of this paper we will argue that none of these are satis-
factory.

We will first discuss the issue in xninisuperspace. The
conceptual problem that we face is already manifest at
this level. However, the recent development of two-
dimensional dilaton-gravity field theories, which exhibit
classical dynamical black hole solutions [Callen, Gid-
dings, Harvey, and Strominger (CGHS), Ref. [7]] gives
us a much more interesting toy model within which these
questions can be investigated. In fact, the work of Refs.
[8—10] established that there is a class of quantum CGHS
theories that are exactly solvable (quantum) conformal
field theories (CFT's) in two dimensions. These theories
are well-defined quantum gravity theories, which have
nontrivial (dynamical black hole) solutions in the clas-
sical limit. Thus these models are ideal laboratories for
the study of the passage &om the exact quantum to the
semiclassical physics of black holes. Soxne coxnments on
the issues involved have already been published in [10].
In that paper it was pointed out that the usual (exact)
quantization of the theory [which in this case is a two-
dimensional (2D) conformal field theory] completely ob-
scures the semiclassical picture. In this paper we elabo-
rate further on this and, in particular, address two new
questions. The first is whether there is an alternative
to Dirac quantization (such as light cone gauge), which
can solve the problem. Our conclusion is that it cannot.
The second is whether the fact that we have an open sys-
tem can resolve the problem as in (b) above. Here too
the conclusion is negative. The boundary Hamiltonian
is irrelevant for the local dynamics of the quantum field
theory and hence has no effect at all on the problem of
time.

A possible resolution of these issues is to give up the
superposition principle for quantum gravity. In fact, as
is well known (see for example [1]),in the attempts to de-
rive the semiclassical equations &om the Wheeler-DeWitt
equation this principle is effectively abandoned. The ar-
gument may be made that the wave function of the uni-
verse is unique and one does not have the usual reasons
for superposing states, which are valid only for the quan-
tum mechanics of subsystems. Indeed the wave function
of the universe as it evolves would give rise to the exper-
imental situations, which behave like superpositions of
different states of subsystems. At the fundamental level
there may be no need to satisfy the superposition princi-
ple. If one accepts this argument then one loses the need
to impose the WD equation (as a linear constraint). Of
course it is still necessary to recover Einstein's equations
in the classical limit. This may be done by imposing the
constraint as an expectation value. In other words, the
constraint operators do not annihilate the physical states.
Instead, the only permissible states (i.e., states with the
correct classical limit, giving only geometries allowed by
Einstein's theory) are those in which the constraint op-
erators have an expectation value of zero. Since this is a
nonlinear condition, a linear superposition of such states
is, in general, not a physical state.

Such an ansatz would constitute a spontaneous break-
down of general covariance. In [10] it was argued that
this may be what one needs in order to have the stan-
dard semiclassical picture. The semiclassical equations
that have been used hitherto in all the interesting ap-
plications of quantum gravity (e.g., see [11]) are then
completely justified, if at the quantum level one takes
a coherent state. In the case of the solvable quant»m
gravity theory [8—10] (defined in the above fashion) that
emerges &om the classical CGHS model, we see in fact
that the semiclassical analysis is exact. However, this is
true only for those theories in which there is no boundary
in field space (see the third paper of [8] and [10]). In the-
ories with a boundary [12] (if they are well defined) this
is not so, but the semiclassical equations will emerge in
the large N limit in just the way that one expects in ordi-
nary (nongenerally covariant) quantum mechanics. This
is to be contrasted with the fact that if the usual linear
constraint equations are used, then there is no way of
recovering the semiclassical lixnit in the large N lixnit.

This derivation of sexniclassical physics involves aban-
doning the linearity of quantum mechanics at the fun-
damental level. While this may be justified in so far as
one takes the point of view that there is a unique wave
function of the universe, we believe that it is worthwhile
exploring an alternative. To this end we study the de
Broglie —Bohm interpretation of quantum mechanics. In
this interpretation there are definite orbits for the fields
of the theory that are guided by the quantum wave func-
tional. The latter also gives the possible distribution of
the initial values of such fields. In the context of quan-
tum gravity, picking an orbit means picking a particular
space-time and is tantamount to spontaneously breaking
general covariance. The equations for these orbits are,
in fact, the semiclassical equations corrected by certain
higher-order terms. We believe that this interpretation
gives a very natural way of understanding the emergence
of semiclassical physics. However, it must be stressed
that what one gets is not what is usually used in quantum
gravity (which is, in fact, more properly called the Born-
Oppenheimer approximation), but the standard O(h) ex-
pansion. In other words, one has (semi)classical equa-
tions explicitly modified by quantize corrections.

In the next section of this paper we discuss the argu-
ments for the emergence of semiclassical physics &om the
WD equations, and conclude that there is no systematic
derivation of the former. In the third section we discuss
this issue in the CGHS theory and come to the same con-
clusion. In the fourth section we show that both reduced
phase-space quantization, and the existence of a bound-
ary Hamiltonian, are irrelevant to the questions that we
are addressing. In the fifth section we present a possible
resolution of these issues, and in the concluding section
we summarize our arguments.

For a comprehensive review see Ref. [13].
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II. THE PROBLEM QF TIME
AND THE SEMICLASSICAL APPROXIMATION

IN MINISUPERSPACE

physical state condition on the "wave function for the
Universe:"

(2.6)
In this section we will review the derivation the semi-

classical limit of the Wheeler-DeWitt equation for the
example of minisuperspace [6]. We consider a homoge-
neous, isotropic space-time with the metric

This constraint implies

(2.7)

ds = —N(t) dt + a(t) dOs,

where the lapse function N and the scale factor a only
depend upon t, and dO& is a metric on three space. The
action for gravity coupled to a homogeneous scalar field

P(t) is

1 (al'd= dt —a M
~

—
~ +NVa(a))

f
2N ga)

'2

+ at —NV (dt)I2N

where

V(-(a) = —zka + sA,

and M is the Planck mass. The equations of motion &om
this action (in the N = 1 gauge) are

, (aa' s l s f(t)bN: —M
~

—a VG(a)
~

+a —+ V (ttt)) = 0,

(2.1)

That is, the wave function of the Universe is a station-
ary state with zero energy, and there is no Schrodinger
evolution of the physical states. It also implies that any
dynamical variable must commute with the Hamiltonian,
on the space of physical states, and thus also be time in-
dependent.

Is it possible to formulate a theory with Schrodinger
time evolution in the approximation that M )) (H ),
where H is the matter He~iltonian. In the Schrodinger
representation the constraint equation is the WD equa-
tion

h2 1 h2
H)II(a, g) = —8 (a8 ) — 8&

+a (M Va+ V ))hatt(a, d) = 0.

In the above we have resolved the ordering ambiguity in
the p term by requiring that the Hamiltonian be Her-
mitian in the inner product:

('(t(4) = f dadda dt'(a, dt)O(a, d) .

da: M —(aa) ———tt (a Va(a)))2 d G

dt 2

We now write

4'(a, P) = R(a, P)e* i

where B and S are real functions. Substituting in the
WD equation we find equations for the real and imagi-
nary parts:

bP: —(a P)+a 8pV (P) =0. (2.3)
, (8 S)'+,(8&S)'+ a'[M'V&+ V ]

The first equation is the constraint that the total energy
of the system is zero.

In terms of the Hamiltonian for this system

+ s (a8 ) R —8&R = 0, (2.8)

p + a M V~(a) + s p~ + a V (Q)2aM2 2G 8p(R AS) — a8 (R a8 S) = 0 .M2 (2.9)

!2.4 Expanding in powers of M,

with

p = —M aa, pp=aQ, (2 5)

Eq. (2.1) is the (secondary) constraint

0 =0.
Upon Dirac quantization of this system one has the

Equation (&.6) is the statement that the wave function +
is invariant under time reparametrizations. In the full theory
the constraints are a re8ection of general covariance at the
quantum level.
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S(a, P) = M S i(a, 4) + Sp(a, P) + M Si(a, g). . .

R(a, P) = Rp(a, P) + M Ri (a, P) +

From this we have

Oa . 1

OT a
=a=-—8 S i(a), (2.15)

we find the equations

O(M ): 0=8yS i

O(M ): 0= ——(8 S i) +a V~.
2a

(2.1o)

(2.11)

thus defining a definite orbit for the scale factor.
We have therefore succeeded in obtaining

a Schrodinger equation for the evolution of the matter
wave function. However, the Hamilton-Jacobi equation
(2.11) that determines the metric (i.e. , a) is equivalent
to the vacuum Einstein equation. The usual semiclassi-
cal equation

Defining

and

1
Rp(a, 4) = rp(a, P)a8 S i(a)

G„„=8vrG(T„„)

would have, instead of Eq. (2.11),resulted in an equation
of the form

we have

y) iso(a, f)/s ——(&-S-i)'+ a'VG = —
M. (&IH I&) (2.16)

eiM s g(a)/h
4'(a, P) = [g(a, P) + O(M )],a8 S i(a)

where from Eq. (2.10) S i only depends upon a. The
O(M ) equation can now be written as

(2.12)

What one needs in order to justify the usual semiclassical
picture is a derivation of the Schrodinger equation in a
background determined by the above equation. In order
to see whether this is possible we will use (2.16) in the
WD equation, and determine the conditions under which
the resulting equation for the matter wave function is
consistent with the Schrodinger equation.

Let us therefore write 4 as

where

and

0 1 0= ——(BS i)—
BT a Ba

Q2

2a

(2.13)

(2.14)

t'1
@(a,P) = exp

~

MS i(a)—
~
g(a, P)

gh
(1
t

= exp
i

—M S i(a) ~ f(a)y(a, P)

where S i(a) is defined to be a +independent (84,S
0) solution of (2.16). Substituting the above expression
in the WD equation gives

M2 h2—BS i8$ — (BS i)~g+aM Vay+ y(a8) S i+ (aB) y+H y=o.
a 2a 2a 2M a3

Using (2.16) and dividing by f we obtain

[H —(H )]y+ih —g S,—1 ih 8 f fP

with

0 =aB
+ sB8 i — =0.8 f 1 2 ih 82f

a 2as 2Mas f
The function f(a) will be defined by requiring that the

last term in brackets is zero: One now defines the time derivative as before,
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1 1
T =—— a~ —ia = ——3n~ —xn )a a

so that (2.17) becomes

[H- —(H-) ]X —ih +, ,ol.'X+

(2.18)

within this highly simplified context the problem has not
been resolved. Our aim here is to demonstrate clearly
that this is so precisely because the question is not well
posed. Indeed we believe that the role of the CGHS
model is that it gives a well-defined context within which
we can show precisely what problems arise in formulating
the question.

The model is defined by the action

We now assume the Schrodinger-like equation

[H —(H )]y = ih (2.19)

1S = — d o g—g e 2&[R+ 4(V'P) + 4A )
4m

(3.1)
and ask whether the remaining terms in Eq. (2.18) are
small compared with the terms in this equation.

For simplicity let us assume that V~ = 0 (e.g. , late
universe with A = 0). This implies, from Eq. (2.16),

a r /2(H )a —1

If we also assume that a is large, we have

asr 2/2(H ) as/2(V )
M M

In the above, in addition to the metric g and dilaton P
fields, there are N conformal scalar fields f; The. quan-
tum theory may be defined by the path integral after
gauge fixing to the conformal gauge g p ——e ~j p, where

g is a fiducial metric with unit determinant (say). The
independence of the functional integral &om the fiducial
metric then leads to the requirement that the conformal
gauge fixed theory with the translationally invariant mea-
sured be a conformal field theory (CFT) [8]. This may
then be written in terms of the Liouville-like action [8,9]

After some calculation one finds that the Schrodinger-like
equation (2.19) is consistent in the above sense, provided

M g(H )a'r ' —M g(V )a' » 1 .

There are several discussions in the literature that are
similar to the above. However, we feel that it was neces-
sary to go over this in some detail to demonstrate that the
derivation of semiclassical physics is far &om clear cut.
It is not by any means a systematic approximation &om
the exact theory even in this highly simplified model.

III. WHEELER-DEWITT EQUATION
IN 2D QUANTUM DILATON GRAVITY

8 = — d 0. p 8+XB X + 8+YB Y
4m

N

+ ) cl y gf +2P. 2 +./2/l~l(x+i')

(3.2)

Here the upper and lower signs correspond to K ( 0 and
K & 0, respectively, and rc = (N —24)/6, N being the
number of matter fields. The field variables in the above
are related to the original variables P and p that occur
in the CGHS action, gauge fixed to the conformal gauge
(g p = e2r il p), through the relations

Y = ~2~ p+ r e ~ —— dPe ~h($), (3.3)
2

The recent revival of interest in the problem of quan-
turn radiation &om black holes is almost entirely due
to the construction of a two-dimensional (2D) model of
dilaton gravity coupled to matter by Callan, Giddings,
Harvey, and Strominger [7]. The hope was that in a con-
text where the intractable ultraviolet problems of four-
dimensional gravity were absent, the conceptual issues
associated with Hawking radiation could be addressed
and resolved. Notwithstanding claims to the contrary
(e.g., Strominger and Hawking [14]),we believe that even

x = 2 g2/m f dg p(p), (3.4)

where

P(rtr) = e ~[(1+h) —rce ~(1+ h)]'~ (3-5)

In (3.3) and (3.4), the functions h(P) and h(P)
parametrize quantum (measure) corrections that may
arise when. transforming to the translationally invariant

sNote that we can rede6ne y = y, exp((1 jh) J (H )dt) and

obtain the Schrodinger equation for y, . In this case the non-

linear character of the equation is hidden in the phase redefi-

nition (see Brout and Venturi in reference [6]).
Note that this definition has the opposite sign to the K

de6ned in [8]. Also, henceforth we will assume tc & 0.
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measure (see the third paper of [8] for details). The state-
ment that the quant»~ theory has to be independent of
the fiducial metric (set equal to q in the above) implies
that this gauge fixed theory is a CFT. The above solu-
tion to this condition was obtained by considering only
the leading terms of the P function equations, but it can
be shown, in the cases where P has no zeros, that the
Liouville-like theory is an exact solution to the conformal
invariance conditions.

The above considerations mean that there are two
classes of quantum CGHS models: (a) those for which
P has a zero so that the integration range for the X, Y
fields cannot be extended over the whole real line; (b)
those for which P has no zeros and are exact CFT's. In
the case of theories of class (a), one may get semiclassi-
cal physics that looks like spherically symmetric collapse
and evaporation in four dimensions by imposing reBec-
tion boundary conditions where the boundary is time-
like [12]. There are, however, two problems with this.
First, at the semiclassical level the model does not have
a lower bound to the Arnowitt-Deser-Misner (ADM) en-

ergy [15]. This is refiected in the fact that there is a
pulse of negative energy, the so-called thunderpop [12],
just before complete evaporation of the black hole. Sec-
ond, the model (because of the boundary in the func-
tional integral) is probably not an exact CFT, and hence
it is unlikely that it is a true representation of the origi-
nal quantum CGHS theory. We will nevertheless make a
few speculative remarks about it in the next section.

Class (b) gives us an exactly solvable theory of quan-
tum 2D dilaton gravity. However, it does not give us the
picture of four-dimensional spherically symmetric black
hole evaporation that many authors have been looking
for. The space-time is conformal to two-dimensional
Minkowski space, and there is no black hole singularity.
Nevertheless, as stressed in the work of Ref. [10], it gives
us a theoretical laboratory in which to study the emer-
gence of semiclassical physics &om the exact quantum
theory. In [10] we attempted to do this starting from
the Fock space formulation of the theory. Our conclu-
sion was that the only way to recover the semiclassical
physics of the theory was to abandon the standard proce-
dure of quantization in which the physical state condition
was imposed on the states, and instead only require that
the expectation value in physical states of the constraint
operators be zero. Although we have not found any prob-
lem with this approach, it is more satisfying to get the
semiclassical equations, while preserving the superposi-
tion principle for the quantum gravity wave function. To
this end we discuss the Schrodinger wave functional ap-
proach to the problem with the constraints being imple-
mented through the WD equations for dilaton gravity.

The stress tensor for two-dimensional dilaton gravity
can be written as

T'gg =
2 (By XI X —BgYBgY)

1 2 N

8~Y+ —) 8~f;8~f;E2) 2
i=1

Defining

Y P2 2/e(X+Y)1/2

2

T+ = ——8+8 ((~ —( ) ——he+.K K

4 2

The Hamiltonian density is

Tpp = T++ + T + 2T+

= —[(+( + g.(' +2((+ —
t ")—8A e +]

N

+-, ):[f +f;"],
i=1

where the overdot and prime denote diHerentiation with
respect to the space-time coordinates v and 0, respec-
tively.

Now using the canonical momenta

we obtain

K 1
Ily = (+, Ily,. = f;—

16+ ' ' 4x
(3.6)

TOO
327r2

II~II + —[(+(' + 2(g+ —(")—8A e~+]

N

+-) [f,"+16''112&f] .
i=1

(3 7)

We also have the momentum density

T„=2z ('II +g'll

N

(rr -II,)+) f,'ll, .
i=1

(3.8)

We now quantize using Il„m (1/i)(h/bu) and obtain
Pa

the corresPonding oPerators Tpp and Tp1. The Wheeler-
DeWitt equation is thus

+ =
(

—
I

(X+Y)+in- &- =
I

—
I

(X- Y)
ge)

the components are

N

T++ = —[8+(+8+(- + Bg((+ —(-)]+ —) .8+f'8+f'
i=1

This implies some restrictions on the possible quantum
corrections, but there is a large class that satis6es these
conditions.

See the third reference in [8].

Several authors have discussed the WD equation for dilaton
gravity (see Ref. [22] for example), but none of them have
focused on the problem that we are addressing.
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&oo@[C+,C—,f*] = 0 (3.9)

and we also have the spatial diKeomorphism constraint

(, Bi hR (, 8 i bR . , bR
I

&' + 2
~ I q(

+
I (+ —2

~ I b(
+ ):f,' bf

= 0
i=1

Toi@[C+,C—,f*] = o-

Writing 4' in the form

4 = R[(+,(,f;] exp(iS[(+, (,f,])

we obtain, for the real part of Tpp@ = 0,

(3.10)

I

(' +2
I b

+
I C+ —2~ I b

+).f'b0) bS (, 01 hS . , bS

(3.13)

(3.14)
32m~ bS bS + "&X+ &-l+ &-[f']

r. b(+ b(

+Q+4m')
I I

= 0 (3.11)
. (bSI

respectively. The O(M i) expansion in the mini-
superspace example is replaced here by an expansion in

with

y[q q ]
i [ql qi 2(qii qii

) 8p2 j
]

S[C+ C— f'] = S— [C+, C—,f']
1

+So[(+ 0 f*]-+ Si[(+—0 f'] +-

1
R[(+ C f'] =-Ro[C+ C , f*]+-R[C—+ 4 f']+-

32vr2 1 b2B

r R b(+b( R ~- bf2i=1

One finds

O(r. ): 0= (3.15)

The imaginary part of TppC = 0 gives

N). b ( 2bS)
;bf; i bf)

O(K): 0 = 32~2bS gbS g

+ i [qi ql + 2(qll qV) 8p2 (+] (3.16)

b4+ & b4 J
+ « & b&+

For the real and imaginary parts of Tp&4 = 0 we have

As in the minisuperspace example one finds that largest
component of S is independent of the matter fields, and
the metric is determined by the vacuum Einstein equa-
tion [Eq. (3.16)].

For the order 1 equations we find

2). (bSo) 2 hS i bSp bS i hSp 1 b2Bp

Ro hf2

b, bSo b (,bS i) b (,hS i)imaginary: ) Ro + 4
I

Ro I
+

I Ro

One now defines a (local) time by

bS , b bS , b

bT b(+ b(

The real equation becomes

(3.17)

1bBp
)-Ro bf2
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Now given a function g (independent of the (f;})sat-
isfying

1bg 2h2S g

g bT g'+bg

with

i ='R x-x=

and defining rp,

rp ——Rpg,

the imaginary equation becomes the continuity equation

hrp 4n2 ) b ( 2bSp)
bT rp - bf; ( hf)'

Thus again we have the Schrodinger equation for mat-
ter, in a background determined by the vacuum Einstein
equation.

In order to see whether, as in the minisuperspace exam-
ple, one can at least give a heuristic argument to justify
the usual semiclassical equations we proceed as follows.
Define

Writing

X =rp~ iSO

~[~+,~, f;] = F[&+,~ ]X[~+,~, f;]
x exp(i~S q[(+, ( ]) .

we have the Schrodinger equation Substitution in the WD Eq. (3.9) gives [using Eq. (3.17)]

with

2bS gbS g ) . b 32m. 2 b2 . 2
h2S ~

~

T pp+ 32~m + ~V~
~
Fg —i (Fy) — (Fy) —32im2Fy

bt,"+ b( ) 6T ~ b +h
=0 (3.18)

N

Too = $ —4m*
~ + —

f~ )i=1

We now take S z to be an f; independent solution of the semiclassical equation

2bS gbS g
32em + eV~ = (Tpp)

+
(3.19)

and Eq. (3.18) becomes

.by . 2 (b2S g i 1 b2F 1 1bFI
bT b( b( ~F b(+b( 32m2F bT

32+2 f'1 hF by 1 bF by h y
F«+b& Fb~ b&+ b&+«)

In this case the functional I' will be defined by requiring
that the coefficient of y in the third term be zero:

8'S, i x b'F s sbF
b(+b( ~ F b(+b( 32m. 2 F bT

We now want to determine under what conditions
Eq. (3.20) reduces to the Schrodinger-like equation

.~x
(Too (Too))& = '

bT
In particular, note that the extra terms

32s2 t'1 bF by 1 hF by

(F b(~ «- F «- b(+ K+b(- j

will become small as r(N) gets large. However, in the
same limit our semiclassical equation (3.19) will approach
the vacuum Einstein equation and the usual formulation
cannot be recovered.

One might ask whether the required equations can be
obtained if (T ) scales with tc so that the left-hand side
of (3.19) is of the same order in the expansion as the
right-hand side. However, then we have no justification
for separating (3.20) as the O(ep) terms. In other words
if the large e approximation is to be used it must be
done systematically and that just leads us to the previ-
ous results, i.e., the Schrodinger equation in the vacuum
background. As far as we can see there is no alternative
argument (as in the mini-superspace case) either.
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IV. OTHER POSSIBILITIES

A. Reduced phase-space quantization
(light cone gauge)

An alternative to Dirac quantization is to first solve
the classical constraints and then quantize the physical
dynamical variables. In this case one has an intrinsic (lo-
cal) time in terms of which the wave function(al) of the
physical variables satisfies a local functional Schrodinger
equation. It may then be thought that this gives us a
definition of time in terms of which the S (or $) matrix
can be defined. However, as discussed in some detail by
Kuchar [1], this method does not give a resolution to the
problem of time: it is beset with the same diKculties as
the Dirac quantization method, in addition to suffering
from problems such as the multiple choice question stem-
ming &om the nonuniqueness in the choice of the time
variable. Also the Hamiltonian that is obtained &om
solving the classical constraints is in general nonlocal.
More importantly, we cannot find any way of reproduc-
ing the semiclassical physics of black hole collapse and
Hawking radiation starting &om this version of the exact
quantum theory.

It should also be stressed at this point that the mere
existence of a Hermitian reduced (local) Hamiltonian is
not at all a solution of the problem posed by Hawking.
First, since the theory does not admit the usual semi-
classical picture it is not clear how the problem can even
be posed. Second, although a Hermitian Hamiltonian
will lead to unitary evolution, the point is that accord-
ing to the semiclassical picture part of the state has gone
into the black hole and cannot be reconstructed by an
asymptotic observer outside the hole. This is the origin
of information loss according to Hawking [2]. Any refu-
tation of Hawking's claim should at least first reproduce
this semiclassical picture in the appropriate regime.

B. Boundary Hamiltonian

It is well known that the classical Hamiltonian for a
space-time that is asyinptotically fiat (such as that of a
black hole) has a boundary contribution. Since the bulk
Hamiltonian is weakly zero in a generally covariant the-
ory, the total energy (ADM mass) of such configurations
is given by the value of this boundary term. It has been
shown by Regge and Teitelboim [16] that this term is
necessary in order to cancel a boundary term that arises
in the derivation of Hamilton's equations for the system.

In a local quantum field theory, however, such a bound-
ary Hamiltonian cannot play any role whatsoever. In-
deed, microcausality requires that all local fields will
commute with such a boundary Hamiltonian and it is

irrelevant to the derivation of the Heisenberg equations.
The time evolution of the quantum Geld theory does not
depend on such a boundary Hamiltonian. To put it an-
other way one must define the theory with an infrared
cutoff (or by smearing with test functions, which fall off
rapidly at spatial infinity). Thus there will be no bound-
ary contributions to the energy. One should not expect
the S matrix (or $ matrix) to be defined by some quan-
tum analogue of the ADM energy. The latter seems to
have meaning only within the (seini)classical context.

V. DE BROGLIE—BOHM INTERPRETATION

OB2

Bt
+B (R8 S)=0 (5.2)

When one applies quantum mechanics to the universe
as a whole, the usual pragmatic interpretation, which
separates the world into classical observing system and
quantum systems, is clearly untenable. This has indeed
been a serious conceptual barrier (quite distinct from the
technical problems of quantum gravity) to understanding
quantum gravity. One possibility is to adopt the so-called
Everett (or many worlds) interpretation. However, it is
not at all clear that this interpretation provides us with
an explanation of why it is that experimental results have
definite values. ii The other possibility (recommended to
cosmologists and by implication practitioners of quan-
tum gravity by Bell [17]) is the de Broglie —Bohm (dBB)
interpretation [13].

We have argued in this paper (and in [10]) that none of
the usual arguments for deriving the semiclassical picture
from an exact formulation of quantum gravity are valid.
As we have seen the problem is essentialy the problem
of time that has been discussed extensively in the liter-
ature on quantum gravity [1]. The dBB picture gives a
natural way of getting parametric time in quantum grav-
ity [19,13], and it is the only way that we have found
where one can establish the validity of the physical pic-
ture of the semiclassical calculations. After reviewing
very brie8y the dBB formulation of one-particle quan-
tum mechanics, we will discuss the dBB interpretation
of quantum minisuperspace. Next, we will work out the
dilaton gravity case and discuss under what conditions
the semiclassical calculations might be valid.

Substituting the form g(z, t) = R(z, t) exp[iS(z, t)]
into the Schrodinger equation, with B and S real func-
tions, one has &om the real and imaginary equations:

BS (8 S)2
gt 2m

Though in the case of dilaton gravity it is possible to have
a local Hamiltonian.

Recent work by Gell-Mann and Hartle [18],as well as ear-
lier work cited in their work may clarify these issues, but we

do not understand these works sufBciently well to apply them
to our problem.
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with

h20R
dA(t) 1

Ch A(t)M

(5.6)

In the dBB interpretation one now postulates that
the particle moves on a trajectory X(t) with momentum
given by the Hamilton- Jacobi formula

P =mX=c9 Sf

When this is used in Eq. (5.1), it is in the form of the clas-
sical Hamilton-Jacobi equation, except tha, t there is an
additional "quantum potential" term Q. By difFerenti-
ating (5.1) one obtains the classical equations of motion
corrected by quantum terms coming from the Q term
Once the initial wave function and the initial position
of the particle are given, the theory predicts the wave
function and particle position at any future time. The
wave function itself plays a dual role. First, it aHects
the particle motion through the Q term in the equations
of motion. Second, it gives the distribution of possible
initial values of the particle position, and hence as a re-
sult of the continuity Eq. (5.3), also the distribution of
positions at any future time. The interpretation can be
shown to be in agreement with all experimental tests of
quantum mechanics. Its great merit is that it avoids
the ambiguities and paradoxes associated with the prag-
matic Copenhagen interpretation. This includes in par-
ticular the dividing line between the classical and quan-
tum realms, and the mysterious (nonunitary) collapse of
the wave function. In eKect it is an observer-independent
realist interpretation, and it seexns to us that the dBB
formulation, or something along those lines, is essential
for the discussion, not only of quant»m cosmology, but
also of the physics of black holes.

Let us now describe the dBB interpretation in the case
of mini-superspace. i2 We rewrite Eq. (2.8) as

dc (t)
A( )s

It should be noted that the equation for the classical tra-
jectory of the scale factor in (2.15) is of exactly the same
form as the above equation, except that there S was just
the solution to the classical Hamilton- Jacobi equation for
a in the absence of matter. Thus time was de6ned only
with respect to some vacuum configuration. On the other
hand in the dBB interpretation parametric time arises in
the full quantum theory precisely because choosing a par-
ticular trajectory amounts to a spontaneous breakdown
of general covariance. It is only the full ensexnble of tra-
jectories described by the wave functional 4 that satisfies
general covariance.

Substituting Eqs. (5.6) into Eq. (5.4) yields

, (o2—M —AV~ +A +V +Q

As Q -+ 0 we obtain the classical Eq. (2.1).
DifFerentiating (5.6) with respect to t, and difFerenti-

ating (5.4) with respect to a, one obtains, after some
manipulation,

A~
M Og AA — — A VG.

2

+3A —V = 8 (A Q) .

Similarly one gets

, (& S)' +,(B~S)' + a'[M'V~ + V + Q] = 0

with

(5 4)

(5.5)

Using the canonical momenta defined by Eq. (2.5) we
define the trajectories for the scale factor A(t) and the
matter field 4(t) by

These equations have already been derived by Vink [19].
However, his interpretation seems to be rather different, since
he seems to use them as a step towards the derivation of the
usual semiclassical equations (2.16) and (2.19), which in our
opinion are untenable except under very special conditions as
outlined in Sec. II, and for this purpose we do not think it is
necessary to invoke the dBB interpretation.

—(A 4') + A ByV = —A ByQ .
dt

In the limit Q ~ 0 these two equations become the clas-
sical equations of motion (2.2) and (2.3), respectively.

The classical equations are obtained in the regime
where Q is negligible. It should be noted that although
this term is explicitly of O(52) this is not sufficient rea-
son to neglect it. Whether one can neglect it or not is
a delicate question depending on the form of the wave
functional. Even in quantuxn mechanics there are states
that have no classical limit, such as stationary states,
for which this term exactly cancels the classical poten-
tial term. In quantum cosmology an example of this is
the Hartle-Hawking wave function [20], which is real and
thus will not allow a classical limit. It also will not have
an evolving geometry or matter fields according to the
dBB interpretation; it is the analogue of a stationary
state and is a superposition of expanding and contract-
ing states. The Vilenkin wave function [21] on the other
hand gives an expanding quantum trajectory with a well-
defined classical lixnit.

The dBB interpretation is extended to field theory in
a straightforward manner by replacing the trajectory of
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the particle by trajectories for the field variables. In 2D
dilaton gravity the analogs of Eqs. (5.1) and (5.2) are the
WD equations given by (3.11) and (3.12). In addition we
also have the constraint equations (3.13) and (3.14). The
trajectories are defined using Eq. (3.6):

These are to be compared with the classical equations
of motion derived &om the action (3.2):

—(" = 8A e~+,

BZ+(oi r)
Z+ o', r

07

&6~ bS
~ b(- q, =z,

f

~ ~

nfl (5.13)

Z (o, r) —=
BZ (cr, r) 16ir bS

b(+ q =z
fs

(5.7)

~ BE;(o, r) b'S

Br bf; ( z~
f' =Fs

—[Z (o) —Z" (o)] —A Ke +( )
8

/Q(rr')do'

f; =F;
(5.8)

In a similar manner we obtain the quantum extensions
of the other classical equations of motion:

-(Z+ —Z") = — do'Q(o')
8 + (5.9)

(E; —E,") = —— do'Q(o')
2

' ' bf;
f, =F;

(5.10)

In conjunction with the above equations of motion one
also has, after substituting (5.7) into (3.11) and (3.14),
the de Broglie —Bohm versions of the constraints:

These equations implicitly define a time parameter ~. As
before we get dynamics only for complex wave functionals
(S g 0).

We functionally differentiate (the spatial integral of)
(3.11) with respect to (+(o ), and the second equation in
(5.7) with respect to time to obtain

and the constraint equations coming from (3.7) and (3.8).
When Q m 0, equations (5.8)—(5.12) reduce to the

semiclassical equations discussed in [8,9,12] and many
other works. This is just the usual WEB approxima-
tion. The question as to what extent the semiclassical
equations are valid then becomes one of deciding when
and in what regimes the quantum potential term becomes
negligible. As pointed out earlier, in general, this cannot
be done for any wave functional @. In particular, since
the Wheeler-DeWitt equation is real it is always possible
to find a real solution and, as in the stationary state of
quantum mechanics or the Hartle-Hawking wave function
discussed above, there will not be any time evolution. In
order to have a dynamic semiclassical picture, one needs
a complex wave functional.

Given a complex wave functional one may then ask
under what conditions Q is negligible. Unfortunately we
have not yet been able to solve the WD equation for the
theory in order to decide this issue. We can, however,
speculate that, since the theories with no boundary in
field space (see Sec. III and [12] and [10]) have efFective
actions that are the same as the (semi)classical actions,
the wave functional is a pure phase so that R =const and
Q is zero. On the other hand it is likely that in theories
with boundary, as in that described by [12], Q is in fact
significant, especially when one approaches the boundary
of field space (which in the semiclassical analysis becomes
spacelike and hence gives rise to information loss in this
analysis). It should also be pointed out that Q incorpo-
rates all the Einstein-Podolsky-Rosen- (EPR-) type non-
localities of quantum mechanics and may well account for
the mechanism by which information is extracted &om
behind the horizon of the semiclassical picture. It may
also completely vitiate the semiclassical picture in that
the black hole itself may be washed out. These are ques-
tions that are presently under investigation.

—[Z+Z + Z+Z' + 2(Z+ —Z") —8A e +]

N

+-) (E,"+E,') = —q, (5.11)

B1 (, B&—
I

Z' +2
I
Z++

I
Z+ —2

4 ( Ba) ( + Bo)

N

+) EE; =0. (5.12)

We call these semiclassical rather than classical equations
because the definitions of the fields incorporate O(eh) con-
formal anomaly corrections. It should also be noted that if
we start from the Vfo equation of the original classical the-
ory, then O(h) corrections, which are responsible for Hawking
radiation, are missing.

The solutions that exist in the literature [22] do not include
the conformal anomaly corrections, and hence it is not clear
how to obtain the comparison to the calculations of Hawking
radiation.
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VI. CONCLUSIONS

Generally covariant quantum field theories are topolog-
ical theories in so far as all correlation functions are in-
dependent of space-time geoxnetry, and the only physical
operators are those which commute with the constraints.
The theory will thus only contain topological information
[23]. The problem of time in quantum gravity is just a
xnanifestation of this fact. It appears then that only the
spontaneous breaking of general covariaace at the quan-
tum level can restore a geometrical background within
which physical processes can be discussed. One of the
conclusions of this work is that the work on semiclassical
gravity (quantum field theory in curved space-time) has
to be interpreted in this way.

In the particular case of black hole formation and evap-
oration it has been argued that these questions are irrel-
evant. We find though that this is not the case. First we
showed, by a detailed discussion of both minisuperspace
and dilaton gravity, that there is no systexaatic deriva-
tion of quantum 6eld theory in a background that is de-
termined by the Einstein equation with a source term
given by the expectation value of the xaatter stress ten-
sor. What one gets from the expansion in inverse powers
of the Planck mass or the large N expaasion is quan-
tum field theory for the matter sector in a background
that is a solution of the vacuum Einstein equations [6].
Thus, for instance, the usual applications of quantum
field theory (QFT) in flat space particle physics for en-
ergy densities that are small compared to the Planck
density are justi6ed. One xnay argue in the minisuper-
space case that, while there is no systematic derivation
of the so-called semiclassical equations, it is still pos-
sible to show that in the late Universe the functional
Schrodinger equation is consistent with that which arises
from the Wheeler-DeWitt equation, once a classical cos-
mological solution (determined by the expectation value
of the matter solution) is used. This argument perhaps
justi6es quantum 6eld theory calculations in cosmological
backgrounds. However, for 2D dilaton gravity, the only
known field theoretic example that exhibits (at the semi-
classical level) the formation and evaporation of black
holes, we cannot 6nd such an argument.

We are then left with the problem of justifying the
semiclassical equations of dilaton gravity that maay
authors have used to explore the problems associated
with Hawking radiation. The equations in question
involve space-time difFerential equations for c-number
fields. In an earlier paper by one of us [10],it was argued
that if these are to be interpreted as expectation val-
ues of the corresponding equations for quantized fields
then one is forced to drop the constraint equation (WD
or BRST) as an equation on the states. In other words,

the semiclassical equations cannot emerge as expectation
values, in generally covariant physical states, of the corre-
sponding operator equations. One way out suggested in
that paper was to abandon the superposition principle at
the level of the wave function of the Universe, and to im-
pose the constraint by defining physical states as those in
which the constraint is satis6ed as an expectation value.
Although we do not see any logical Baw in this, in this
paper we have examined an alternative that enables us
to obtain the required semiclassical physics from the WD
equation. This involves the de Broglie —Bohm interpreta-
tion of quantuxn mechanics.

It seems to us that any discussion of quantum gravity
must go beyond the pragxnatic interpretation that divides
the world into classical apparatus and quantuxn system.
This is certainly the case for quantum cosmology, but
the arguments presented in this paper indicate that this
is so even for the black hole problem, at least if we start
from generally covariant physical states. As far as we can
see, the only way to get a picture of the evolution of a
black hole is to pick a quantum trajectory (in the sense
of dBB) &om the ensemble of trajectories that may be
described by the Schrodinger wave functional. This con-
stitutes a spontaneous breakdown of general covariance.
The resulting equations of motion and constraint equa-
tions are precisely the sexniclassical equations discussed
in the literature except that there are correction terms.
Given a solution of the WD equation, these additional
terms may be evaluated, and to the extent that they are
small, one may say that the semiclassical approximation
is valid. We have argued that for the dilaton gravity the-
ories with no field space boundary, these correction terms
are (probably) absent. However, in this case there is no
black hole singularity and no information loss problem.
On the other hand, in the theories with boundary, such
as that of Russo-Susskind-Thorlacius (RST) [12], it is
not at all clear that one should ignore these correction
terms. We are presently engaged in 6nding solutions to
the WD equation for such models so that these issues
xnay be further clari6ed.
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See [24] for reviews.

Information is lost only in the trivial sense that left movers
carry information from the right end of space to the left end
and do not communicate with the right movers. This is a
situation that one may obtain in ordinary Hat space quantum
mechanics and does not imply nonunitary evolution.
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