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Block spin renormalization group approach and taro-dimensional quantum gravity
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A block spin renormalization group approach is proposed for the dynamical triangulation formu-
lation of two-dimensional quantum gravity. The idea is to update link Hips on the block lattice in
response to link Hips on the original lattice. 3ust as the connectivity of the original lattice is meant
to be a lattice representation of the metric, the block links are determined in such a way that the
connectivity of the block lattice represents a block metric. As an illustration, this approach is ap-
plied to the Ising model coupled to two-dimensional quantum gravity. The correct critical coupling
is reproduced, but the critical exponent is obscured by unusually large 6nite-size e6'ects.

PACS number(s): 04.60.Nc, 05.70.Jk, 11.10.Gh

I. DY'NAMICAL TRIANGULATIONS AND
QUANTUM GRAVITY Z=) exp k) S;Ss

S (ij)

Dynamical triangulations are by now well established
as a discretization of two-dimensional quantum gravity,
at least when the central charge of the matter it is cou-
pled to is less than one [1]. A two-dimensional triangu-
lation is characterized by its points i, its links (ij), and
its triangles (ijk). This information is uniquely deter-
mined by the adjacency matrix G;~, which defines the
nearest-neighbor pairs:

1 . 1k' = —arcsinh = 0.2746. . .
2 3

(4)

and it has critical exponent

where the sum is over all con6gurations of the spins, S, =
+1. This, the usual Ising model [2] has a second-order
phase transition at k = k where

1 i, j are nearest neighbor,
0 otherwise.

All links are defined to be of length a, the lattice spacing,
which is usually taken to be one. Since the triangles are,
therefore, all equilateral, the coordination number at a
site i, q;, is related to the curvature B,'.

R; = z.(6 —q;)/q;. (2)

Six is the average coordination number on a regular trian-
gulation which has zero curvature. The adjacency matrix
acts like a metric in the sense that it tells which points
are near and which are far away. For points that are not
nearest neighbors, the geodesic distance is de6ned to be
the length of the shortest path between those points. In a
quantum theory of gravity, a sum over all possible met-
rics is required to compute the partition function. On
the lattice, this becomes a sum over all possible triangu-
lations. If an additional statistical mechanical variable is
placed on the nodes to represent matter, then a sum over
all possible matter con6gurations is required for each tri-
angulation. In a number of cases, these quantum gravity
plus matter systems can be solved analytically.

The Ising model illustrates this and is the only example
that will be discussed in this paper. In the absence of
quantum gravity, i.e., on a 6xed regular triangulation,
the partition function is de6ned as

where v is defined by the behavior of the correlation
length, (, near the critical coupling

((k —k') = (k —k')

Z = ) ) exp k) G;s(T)S;Ss
S i,j

This theory also has a second-order phase transition [3,4],
this time at

1 1 /108)k' = ——lntanh —ln
~

~

= 0.2162. . . ,
2 2 q23)

with the critical exponent

(8)

The exponent now appears in combination with the
HausdorH' dimension d, which is dynamically determined.
This combination appears because the correlation length
(the object whose behavior v describes) is a distance
whereas in quantum gravity direct control over length

In the presence of quantum gravity, the de6nition of the
partition function includes the sum over triangulations
(labeled by T):
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Z ) H[8]

S
(10)

FIG. 1. A link Sip.

Now average over blocks of spins as illustrated in Fig. 2.
A square lattice is used, but the same scheme works on a
triangulation which can be obtained by drawing in all of
the up and to the right diagonals. Label each block by m
and assign it a new spin t . More generally, a probability
can be assigned for every possible value of t

scales is lost. The relation between volume (still under
control) and distance is given by the HausdorfF dimen-
sion. It has been shown that for matter with central
charge less than one, the scaling dimensions at a crit-
ical point of the pure matter theory are "dressed" by
quant»m gravity so that the critical behavior of the two
theories is related [5].

Not all models of interest can be solved exactly. Nu-
merical methods provide another option. The key fact
that makes simulations of dynamical triangulations prac-
tical is that any triangulation (for a given topology) can
be reached &om any other triangulation by a sequence of
link fiips [6]. A link fiip is defined in Fig. 1 and is the
replacement of a link with a~other connecting the two
other points in the two triangles it shares. Matter can be
simulated in the usual way.

In numerical simulations of lattice theories for high en-
ergy physics, the primary difn. eulty is often dealing with
critical phenomena. When the lattice spacing is taken
to zero, the correlation length (in physical units) is zero
unless the correlation length in lattice units is infinite.
Thus the location of continuous phase transitions and the
study of their universal behavior' are generically problems
of interest for such theories. Finite-size scaling provides
one method of computing critical couplings and expo-
nents. This method has been successfully applied to sys-
tems coupled to quantum gravity such as the crumpling
transition [7] and the Ising model [8].

Another method, the block spin renormalization group
approach, is the subject of this paper. In this method, an
efFective theory is constructed by partitioning the lattice
into blocks and averaging the degrees of keedom within
each block. Starting with a critical theory and iterat-
ing this procedure produces a sequence of theories which
Bow toward a fixed point. Critical exponents can be cal-
culated using expectation values of operators determined
at this fixed point. This approach was first developed on
spin theories (hence the name) and applied also to lattice
gauge theories. It has not yet been applied to (the more
recently invented) dynamically triangulated random sur-
faces [9]. The objective of this paper is to apply the block
spin approach to this newer type of theory.

where lSl denotes the set of spins within the block.
Given a configuration of initial spins, the probability for
a configuration of block spins is

Multiplying by the probability of the initial configuration
and summing over all possible initial configurations gives
the total probability of obtaining the block configuration,
which can be viewed as resulting &om an efFective theory

The efFective theory has (for the scenario of Fig. 2) twice
the original lattice spacing. If the physics is unchanged
by this operation, the correlation length is, in lattice
units, half its previous value. The physics is unchanged
if the partition functions of the blocked and original the-
ories are identical. This is assured if

(14)

An example of a solution to this equation is

K(t, lsl ) = 8(t —f(lsl )) (15)

For instance, the "majority rule" for the Ising model is
of this form: for an odd number of spins if the majority
are up the block spin is up. Otherwise it is down. For

II- THE BLOCK SPIN RENORMALIZATION
GROUP APPROACH

First, consider in more detail the block spin approach
(see [10—16]). Denote a lattice spin variable by S so that
the partition function is

FIG. 2. A simple blocking scheme for spins. The nodes of
the original lattice are represented by the iritersections of the
straight lines. Block spins are formed by averaging [as with
Eq. (15)] the spins grouped with the rounded squares.
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aa evea xu~mber of Isiag spins, a tie breaker is required
(trivially modifying the previous equation).

In general, if the block spins are the same type of vari-
able as the original spins and if the blocked lattice is
isomorphic to the original, then K can be applied iter-
atively to produce a sequence of effective Hamiltonians.
Distances must be rescaled at each step. If the scale fac-
tor is 6, the ratio of the number of points in the original
lattice, N, to the number of points in the block lattice,
N', is

Ho = H* + ).h*o;. (24)

""*(')= A k (l) (25)

implying

The evolution of the coefficients (called linear scaling
fields) is determined by

N/N bD (16)
so that

h;(l) = Ii;e"" (26)

where D is the dimensioaality of the lattice. The corre-
lation length is reduced by b: H) = H'+ ) Ii;e"'0;,

(' = 4/b.

H' = R[H]. (18)

If this transformation has a fixed point

R[H'] = H',

then

More abstractly, the renormalization group transforma-
tion acts on the space of Hamiltonians

where H~ represents the efFective Hamiltonian after the
scale is changed by b = e~. The A; are critical exponents:
if A, ) 0, the ith perturbation grows (0; is relevant)
while if A; ( 0, the ith perturbation diminishes (0; is
irrelevant). If A; = 0, 0; is marginal.

To make contact with traditional scaliag ideas, con-
sider a system with only one relevant operator whose
corresponding linear scaling field is the coupling k. Take
all of the irrelevant couplings to be zero. Then Eq. (17)
can be written as

(' = ('/b
$(k —k') = e'((e"'(k —k')).

If l is chosen so that
(2O~

(28)

which has solutions (' = 0 and (' = oo. The former
corresponds to a (trivial) system at infinite temperature.
The latter corresponds to a (nontrivial) critical point.
There are many possible renormalization group transfor-
mations for a given system and not all of them iterate
to a nontrivial fixed point for the critical Hamiltonian
at hand. Aside from the constraint of Eq. (14) and the
requirement that the transformation reduces the number
of degrees of &eedom, it is also necessary to ask that it
be apt, i.e., that it focuses on the critical phenomena of
interest.

Now perturb H' with an operator 0 so that the sys-
tem is slightly oH' of criticality. It is convenient to
reparametrize the scale factor

e' oc (k —k') (29)

then

((k —k') = const x (k —k')

which is the same as Eq. (6) after making the identifica-
tion

v = 1/A.

How can this approach be realized in a m~merical set-
ting? In such a setting, it is the expectation values of
functions of products of the original spins,

b=e (21) (32)

in order to discuss differential changes of scale (now me-
diated by a transformation R~). Assiime that

d . . Ri[H'+ 0'] —(H'+ 0')
dl I-+o l

&0 + e ~ ~ (22)

LO,. = A;0,*. (23)

and the 0;- form a complete set of operators in the neigh-
borhood of H*, then, for Ho in that neighborhood,

where L is a linear operator and nonlinear terms (denoted
by the ellipsis) are neglected. If the eigenoperators of L
are de6ned by the equation

that are readily accessible. Expectation. values in the
blocked theory can be computed with the original spins
using the de6nition of blocked spins:

(0(t)) = ):0(t)
t

=) 0(t)) K(t, ]S] )e"'s'.
t S m

(34)

If K is a b function or majority rule thea each con6gu-
ration of spins speci6es a con6guration of block spins so
that the s~~~ on t is determined.

On an infinite lattice, the criticality of an initial Hami&-

toaian could be verified by observing that expectation
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values of arbitrary operators approach fixed values as the
renormalization group procedure is iterated. In practice,
a computationally manageable lattice is typically small,
especially aRer several iterations of the transformation.
Finite size efFects spoil the matching. This problem can
be circ»mvented by comparing expectation values ob-
tained on a lattice of N points blocked m times to those
obtained on a lattice of N' points blocked m —1 times
with N/N' = b . The two block lattices are the same
size so that differences in expectation values are due to
the difFerence in the Hamiltonians alone.

Once the couplings are near their critical values, they
can be systematically improved. Near the fixed point
Hamiltonian,

(0;) = (0;)~—~«+) *
bk; +, (35)

where the kz are the relevant bare parameters in the
theory and hk~ = k~ —k'. Formulating, as described
above, the difFerence between expectation values taken
&om original lattices of difFerent sizes blocked down to
lattices the same size gives

(0(ra) ) (0(ra —1)
)

&. a(o(")),
Bk~

g(0(ra —1)
)

~k
(36)

(n)
(o(-)o(-)) (o(-))(o(-))

~k(m) I i I i (37)

The critical exponents can also be obtained numerically.
If, after n iterations of the renormalization group trans-
formation,

then

H(") = H'+ 0;(k;" —k;. ), (38)

where L (large) denotes an initial lattice with some vol-
n~e N and 8 (small) denotes an initial lattice with vol-
+me N/b" The sup. erscripts indicate the blocking level.
This equation predicts the adjustment to the bare pa-
rameters necessary to achieve criticality. The term in
brackets can be computed &om expectation values using
expressions of the form

ear combinations of the k, ) and eigenvalues A which obey

A; = b"'. (43)

The stability matrix can be determined &om correlations
of the type in Eq. (37) by using the chain rule

a(o(")) . ak("' a(o("))
gk(~ —1) ~ ~ gk(n —1) gk(ra)

2 l j
(44)

Arbitrary couplings are implicated, so T;. is an infinite
matrix. In practice, only a finite number of expectation
values can be handled, so it must be truncated. This is
a source of error.

III. A BLOCK SPIN TRANSFORMATION FOR
DYNAMICAL TRIANGULATIONS

The block spin renormalization group approach has
been successfully applied to spin models and gauge the-
ories. How can it be applied to dynamical triangula-
tions? Since the Hausdor{F dimension is dynamically de-
termined, there is no direct access to the length scale.
Further, the degrees of &eedom do not consist of ele-
ments of an algebra or manifold residing on a regular
lattice so that they can simply be averaged in some way
and projected back onto the algebra or manifold. A block
spin approach for triangulations will have to look a little
difFerent.

Imagine a triangulation and another triangulation that
is somehow a result of blocking the original one. The
blocked lattice should have fewer points, but it should
still be a triangulation. If the original triangulation is
regular (implying toroidal topology), it is clear how to ar-
range this. For example, see Fig. 3. The volume (number
of points) is decreased by a factor of 4. Now, any other
triangulation (of the torus) can be reached from the orig-
inal triangulation by a sequence of link Hips. Likewise,
any other block triangulation can be reached from the
blocked one in Fig. 3 by a sequence of block link Hips.
The central idea of this paper is this: any rule that dic-

(42)

Comparing with Eq. (26) reveals that these eigenvalues
are related to the critical exponents:

R[H'+ (k,
" —k;)0;j = H'+ T,'. (k,

" —k;. )0.+

where now the scale factor b is fixed and the stability
matrix T gives

(k!")—k;. ) = r,.;(k,'" ') —k;. ) (40)

or

Bk"
aa'" "

H

(41)
1r /
I / I

I r I r
/

/

rl rI rIr I r /
I r r I r IIr Ir Ir

v

Diagonalizing this matrix gives linear scaling fields h (lin- FIG. 3. A blocking scheme for a regular triangulation.
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tates when a block link should be Hipped in terms of when
the original links are Hipped is equivalent to a de6nition
of a renormalization group kernel K.

In order for a kernel to be apt it must preserve the im-
portant physics. Physically, the triangulation is viewed
as a discretization of a Euclidean spacetime with the ad-
jacency matrix acting as a metric: points connected by
a link are "close," while points not connected by a link
are not close. The block lattice is produced by marking a
subset of points on the original lattice and then connect-
ing them (defining a blocked adjacency matrix) to form
the blocked lattice. If the blocked adjacency matrix is to
act as an effective metric on the block lattice, it should
indicate which block sites are close and which are further
away. A link on the block lattice has two neighboring tri-
angles just as in Fig. 1. Define the geodesic distance be-
tween block points x and y, r „,as the minimum number
of links that must be traversed on the underlying lattice
to get &om one point to the other. If block link Hips are
made whenever

~ad & ~bc) (45)

then the block lattice preserves the idea of a metric. This
now de6nes a block spin renormalization group transfor-
mation for dynamical triangulations. It will turn out to
be apt.

In order to handle matter coupled to this system, a
block spin algorithm must be specified for the matter as
well. Only Ising spins will be discussed in what follows. A
rule must be specified defining which nodes are associated
together in a block. Presumably one and only one of the
nodes that are specified as block nodes will appear in
each block. Then a rule (such as the majority rule) must
be given relating the block spin to those spins in the
block. For a regular triangulation (such as that of Fig.
3), the block node itself and the three neighboring nodes
in the forward directions (right and up) could be defined
as being in the block. This is the scheme of Fig. 2.
On a dynamical lattice such an assignment is not always
possible. There are often points on the original lattice
that are greater than distance one from any block node.
This means that either nodes further than distance one
from the block node must be included in the block, or
less than four nodes must sometimes be used.

The definition of block spin used here is as follows.
Each block node is in its own block. Each block node
is then allowed to pick (randomly) one nearest neighbor
that has not yet been picked (two different block nodes
sometimes share a neighbor). This is repeated twice so
that three neighbors are chosen if there is Do contention.
If, at some point in the selection process, there are no
neighbors that have not been spoken for, no node is se-
lected and that block has fewer than four spins. The
majority rule then determines the block spin. The weak-
ness in this procedure is that the coordination number
of a site inHuences the selection of the spins in a block
and therefore also the determination of the block spin.
This could electively contribute a relevant perturbation
to the Hamiltonian, spoiling the matching of expectation
values. Expectation values in the gravitational sector

should not be inBuenced, because the selection of block
links in no way depends on the selection of block spins.
In the calculations discussed below, there is a small ef-
fect present in the spin sector (at the highest blocking
level considered) but not in the gravitational sector that
might by explained in this way.

These ideas are implemented using the Ising model
coupled to quantum gravity with the critical value of the
coupling constant as given ln Eq. (8). The triangulations
are updated using the link Sip algorithm and the spins
are updated using the Wolff algorith~ [17]. The block
links are updated using the algorithm based on Eq. (45).
This is computationally intensive because it involves the
calculation of the distance between block nodes in terms
of the links of the underlying lattice. This distance can be
large at the lower blocking levels. Instead of calculating
both of the distances involved in Eq. (45), it is quicker
to just determine which is smaller. This can be done in a
loop that labels all of the neighbors of the four block sites
involved, then aQ of their neighbors and so on until the
neighbors &om one of the diagonal pairs meet. The block
link should join this pair. Five to ten passes through all
of the links of the block lattice are made with this pro-
cedure in order to implement the triangulation blocking
algorithm. The block spin procedure is then iterated by
treating the block lattice as an original lattice.

All original lattice sizes are chosen so that a regular
triangulation would block down to a 3 x 3 torus. This
choice is made to ease comparisons between the cases
with and without quantum gravity. The minimal trian-
gulation of a torus requires seven points, so nine points
is not wastefully large. The renormalization group trans-
formation de6ned in this paper rescales the volume by
a factor of 4, so possible volumes for the initial lattices
are nine times powers of 4. The vol»mes used are 144,
576, and 2304. These lattices can be renormalized twice,
three times, and four times, respectively. Runs on these
lattices involved 10 passes through each lattice where
a pass is defined as 16 sweeps through each link of the
lattice with the link Hip algorithm along with either 200
Wolff updates (for the smaller two lat'tices) or 800 (for
the largest).

Performing the renormalization group procedure at the
critical coupling should produce an expectation value of
any given operator that approaches a constant up to 6-
nite size effects which are controlled by only comparing
numbers obtained on effective lattices of the same size.
Three operators are used Rom the spin sector and three
from the gravity sector. Oq is defined as the product of
spins at the opposite ends of a link. 02 is defined as the
product of spins at the opposite ends of the conjugate
link, the link that would result &om a Hip. Oq is de-
6ned as the product of all four spins involved in Oq and
02. 04, 05, and 06 are defined just like the previous
three, except instead of using the spin, the coordination
number minus six is used. This gives information about
the gravitational sector. Another gravity sector operator
computed (07) is the maximum coordination number on
the lattice. Table I shows the resulting expectation value
of the Ising term (Oq) as a function of the vob~me and
blocking level n. This table demonstrates both the finite-
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TABLE I. The expectation value of the Ising term as a
function of the number of iterations of the renormalization
group transformation, n, and the volume of the initial lattice.

0
1
2
3
4

V = 2304
0.4946(1)
0.2304(4)
O.245O(7)
0.350(1)
0.489(2)

V=576
0.4989(2)
0.3066(5)
0.3517(9)
0.482(2)

V = 144
0.5093(4)
0.3971(7)
0.481(1)

size effects and the way they are countered by always
comparing numbers obtained on lattices of the same size.
Reading across the rows, the numbers vary due to Bnite-
size effects. Reading along diagonals, down and to the
left, the numbers are all obtained &om effective lattices
that are the same size and, in the bottom two diagonals,
they (nearly) approach a constant. The bottom number
in each column is from a lattice with volume nine. If Eq.
(36) is used to predict how far the input coupling is from
the true critical one, the prediction for bk = k —k' is

bk = 0.0002(3) (46)

0.003—

0.002-

0.001—

comparing the V = 144 and V = 576 data at the high-
est blocking levels (two and three, respectively). This
number should be zero, since the input coupling was the
known critical coupling. Results &om similar runs, but
with the system slightly off of criticality, are shown along
with this data in Fig. 4. For large enough iterations of
the renormalization group transformation and for input
couplings close enough to the critical value, the results
from Eq. (36) would fall on a straight line (as indicated
in the figure). The plotted points, obtained with a rela-
tively small number of iterations, are close to this line.

Thus, at this level of iteration, the critical coupling can
be estimated quite accurately. What happens at higher

levels of iteration? Here, a hint of trouble begins to ap-
pear. At k = k', the prediction for bk is

bk = o.ooos(3) (47)

so that 1/vd is obtained from the maximum eigenvalue
of the stability matrix using

1 lnA
vd lnv

(49)

with v = 4. The matrix T,'- can be truncated with differ-
ent numbers of operators and those estimates are listed in
each column of Table III. The operator order for trunca-
tions is O~, 03, 02, and 04, Satisfactory error estimates
could not be obtained when 05 and 06 were included.
Looking at the table, it is immediately clear that there
are effects from both the finite size of the lattice (as seen
by looking across rows) and the limited number of iter-
ations of the renormalization group transformation. It

comparing the V = 576 and V = 2304 data at the high-
est blocking levels. This number is statistically different
&om zero and signals some kind of trouble. This same
diKculty can be seen in the data in Table I, where the
n = 4 number does not match as well with the n = 3
n»mber on the same diagonal as the n = 3 and n = 2

numbers did. This result is not improved by longer runs
or more effort updating the block links. It could be a
result of correlations induced in the block spins by the
blocking algorithm as discussed earlier. Evidence that
the problem is in the spin sector rather than the gravity
sector is given by Table II, which gives the behavior of
all of the operators blocked to a lattice with volume nine.
All of the gravity sector operators match within statis-
tics. So, while the blocking procedure for triangulations
appears to be satisfactory, Eq. (47) signals a possible
flaw in the blocking procedure for matter that needs to
be investigated more carefully.

With this caveat regarding the n = 4 spin operators,
what about critical exponents? Table III lists estimates
for 1/vd obtained using Eqs. (41) and (44). Since the
volume is being rescaled here and not a length scale, Eq.
(43) must be rewritten slightly. If the volume rescaling
factor is v = b", then

(4s)

0.000-
C4

-0.001—
TABLE II. Expectation values of a variety of operators

(defined in the text) as a function of the initial lattice's volume
for n such that the blocked lattices have volume nine in each
case.

-0.003 i
I

-0.002
I

I

0.000
&k actual

0.002

FIG. 4. Predicted versus actual values for Bk = k —k'
obtained using Eq. (36). A line with slope one is drawn for
comparison.

Operator
Og

02
03
04
O5
06
Og

V=2304, n=4
0.489(2)
0.488(2)
0.306(2)
-0.365(4)
O.347(8)
0.20(4)
7.879(5)

V =576,n=3
0.482(2)
0.482(2)
0.293(2)
-0.367(2)
0.355(5)
0.15(1)
7.880(2)

V=144,75=2
0.481(1)
0.479(1)
0.289(1)

-0.368(1)
0.360(2)
0.038(8)
7.867(1)
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TABLE III. Estimates for 1/vd as a function of the vol-
ume of the initial lattice, the level n [from Eq. (41)], and the
number of operators used in the truncation of the stability
matrix. From one to four operators are used and the results
are listed down for each blocking level. Errors listed in paren-
theses were obtained by binning the data into at least twenty
bins. Those errors listed in square brackets were obtained
using fewer bins.

n
1

V = 2304
-0.269(3)
-0.260(4)

V=576
-0.068(3)
-0.080(4)

V = 144
0.083(2)
0.076(2)

0.417(2)
0.426(2)
0.455[1]
0.455[1]

0.378(3)
0.403(3)
0.432[3]
0.432[3]

0.342(3)
0.385(5)
0.410[5]
0.410[5]

0.493(1)
0.534(2)
0.545(1)
0.545(1)

0.407(3)
0.463(6)
0.476(6)
0.476[5]

0.449(3)
0.505(5)
0.513(6)
0.513[7]

is normal to have these eKects, but they are unusually
large here. Compare this data to that Rom the three-
dimensional Ising model as studied in [18]. There, us-

ing the regularity and the smallness of the finite-size ef-
fects, they are able to give an infinite lattice estimate for
each blocking level. Then, giving some thought to the
magnitude of the subleading exponent, they are able to
extrapolate to a large number of blockings and obtain
an estimate of I/vd in excellent agreement with others.
In their analog of Table III, the diH'erence between the
largest and smallest numbers in the table is no more than
30%. Here the large variation precludes such an analysis.

It is possible that with sufhcient data on larger lattices a
similar procedure would produce the correct result [Eq.
(9)] I/~d = 1/3.

There are systems where finite size eEects and eKects
due to too few blockings are so small that the detailed
procedure of [18] is virtually unnecessary. The two-
dimensional Ising model in the absence of quantum grav-
ity is an example. By taking the program that produced
the previous results and deleting the line that calls the
routine that updates the triangulations, it is easy to re-
produce the correct pure Ising exponents. For instance,
starting with a 24 x 24 lattice, setting the coupling to
the value given by Eq. (4), and using two operators
in the truncation of the stability matrix, the sequence
of estimates of 1/vd for n = 1, 2, and 3 is, respectively,
0.467(7), 0.51(2), and 0.498(7). These compare favorably
with the exact answer [from Eq. (5)], 0.5.

It should be possible to do block spin calculations sim-
ilar to the one described in this paper, but on arbitrary
topologies and with more general volume rescalings. Sim-
ply mark points on the original lattice and create a tri-
angulation with them in order to provide an initial block
lattice with the desired vob~me and topology. One way to
do this, starting with an initial lattice of volume V = N
and genus g, is to knock out (do the inverse of barycentric
subdivision on) n threefold coordinated nodes and their
associated triangles to produce a vob~me V' = N —n.
Once this initial block lattice exists, the simulation can
be carried on as above by updating the block lattice
according to the geodesic rule, Eq. (45). This defines
the renormalized lattice. The matter field is another is-
sue and is likely to be problematic if V'/V = 1. For
V'/V = 1/p with p an integer, a majority rule could
be used to average the site and p —1 randomly chosen
neighbors.
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